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Abstract

To reduce radiation dose in X-ray computed tomography (CT) imaging, one common strategy is to 

lower the tube current and exposure time settings during projection data acquisition. However, this 

strategy would inevitably increase the projection data noise, and the resulting image by the 

conventional filtered back-projection (FBP) method may suffer from excessive noise and streak 

artifacts. The well-known edge-preserving nonlocal means (NLM) filtering can reduce the noise-

induced artifacts in the FBP reconstructed image, but it sometimes cannot completely eliminate 

the artifacts, especially under the very low-dose circumstance when the image is severely 

degraded. Instead of taking NLM filtering, we proposed a NLM-regularized statistical image 

reconstruction scheme, which can effectively suppress the noise-induced artifacts and significantly 

improve the reconstructed image quality. From our previous investigation on NLM-based strategy, 

we noted that using a spatially-invariant filtering parameter in the regularization was rarely 

optimal for the entire field of view (FOV). Therefore, in this study we developed a novel strategy 

for designing spatially-variant filtering parameters which are adaptive to the local characteristics 

of the image to be reconstructed. This adaptive NLM-regularized statistical image reconstruction 

method was evaluated with low-contrast phantoms and clinical patient data to show (1) the 

necessity in introducing the spatial adaptivity and (2) the efficacy of the adaptivity in achieving 

superiority in reconstructing CT images from low-dose acquisitions.
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1. Introduction

The usage of X-ray computed tomography (CT) has increased dramatically since its 

introduction in the 1970s. It was estimated that 76 million CT scans were performed across 

the hospitals and clinics of the United States in 2013 [1]. The consequential radiation dose is 

significant and the potential radiation risks are receiving growing concerns [2]. Since the 

radiation risks typically decrease with the reduced radiation dose, many techniques and 

strategies have been proposed for dose reduction on the CT examinations [3-5]. One cost-

effective and commonly used way is to acquire CT projection data with a lower 

milliampere-second (mAs) protocol [6]. However, the use of the standard filtered 

backprojection (FBP) method (equipped on most of commercial CT scanners) to reconstruct 

the low-dose acquisitions frequently produce inferior results with excessive noise and streak 

artifacts. Many projection or image domain denoising methods were proposed to improve 

the quality of the FBP-reconstructed low-dose CT images. The low-pass filters have the 

drawback that while removing the noise, they may also blur other high-frequency 

components including edges and fine structures, which could be critical in clinical 

assessment. Some more sophisticated edge-preserving filters can mitigate this drawback to 

some extent. For instance, the nonlocal means (NLM) filter was successfully applied to 

FBP-reconstructed low-dose CT images for noise reduction [7]. Based on the success, 

several strategies were proposed to achieve further improvement, such as using large-scale 

neighborhood [8], considering local noise level [9], and exploiting a previous normal-dose 

CT image [10]. Despite all these efforts, it is still observed that the NLM filtering strategies 

sometimes cannot completely remove the noise and streak artifacts, especially under the 

desired circumstance for as low as possible on the radiation dose.

On the other hand, many statistical image reconstruction (SIR) methods [11], which take 

into account the statistical properties of the low-dose projection data and accommodate the 

imaging geometry, have been shown to be superior in suppressing the noise and streak 

artifacts as compared to the NLM filtering strategies. The SIR strategy has recently become 

an endeavor for almost all major vendors of clinical CT systems [12-14]. The SIR approach 

is typically formulated by an objective function consisting of a data-fidelity term and a 

regularization (or equivalently, penalty) term where the penalized weighted least-squares 

(PWLS) is one of the commonly used objective function [11]. The penalty (or 

regularization) in the PWLS criterion plays a critical role for successful image 

reconstruction [15-28]. Among these studies, several explored the NLM-based 

regularization for PWLS image reconstruction of low-dose CT [24-28]. For instance, Ma et 

al [24] proposed a previous normal-dose scan induced NLM regularization to improve the 

follow-up low-dose CT scans reconstruction. A temporal NLM regularization [25, 26] was 

also investigated for four-dimensional CT and cone-beam CT reconstruction, where the 

reconstruction of current frame image utilizing two neighboring frame images. However, the 

previous normal-dose CT image or neighboring frame images may not be readily available 
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for some applications. Therefore, in our previous study [27,28], a NLM-based generic 

regularization was explored using the currently available low-dose scan, wherein the 

regularization exploits a one-step-late (OSL) strategy to estimate the associated weighting 

coefficients. The NLM-regularized statistical image reconstruction scheme demonstrated 

promising reconstructions from low-dose data of relatively high-contrast phantoms [27,28]. 

For clinical applications where the CT images contain not only high-contrast objects but also 

low-contrast objects and subtle structures, the reconstruction scheme could be problematic 

due to the use of a spatially-invariant filtering parameter h in the regularization. A spatially-

invariant denoising may be too strong for some regions (blurring much) while too weak for 

other regions (filtering little) across the entire field of view (FOV) [8]. To address this issue, 

in this study we developed a novel strategy in designing adaptive filtering parameters for the 

NLM-based regularization by considering local characteristics of the to-be-reconstructed 

image, and the resulting new name is called adaptive NLM-based regularization.

The remainder of this paper is presented as follows. Section 2 explicitly illustrates the 

framework of the proposed adaptive NLM-regularized statistical image reconstruction 

algorithm, and further describes the associated issues about the algorithm implementation 

and performance evaluation. Section 3 reports the experimental results using both phantom 

and patient datasets. Finally, discussions on and conclusions from the experimental results 

are presented in Section 4.

2. Methods and Materials

2.1. Review of the NLM methodology

The NLM method was proposed as a non-iterative and edge-preserving filter for image 

denoising [29-30]. It reduces image noise by replacing each pixel’s intensity with a 

weighted average of its neighbors according to similarity. Although the similarity 

comparison could be performed between any two pixels within the entire image, it is 

typically limited to a fixed neighboring window area (called search-window (SW), e.g., 

17×17, in 2D case) of target pixel in practice for computation efficiency. Mathematically, 

the NLM method can be describes as [29-30]:

(1)

where μ̂ = (μ̂
1, …, μ̂

J)T represents the noisy image to be smoothed, and NLM(μ̂
j) is the 

intensity value of pixel j after the NLM filtering.

However, different from the previous neighborhood filters, the NLM calculates the 

similarity based on patch instead of a single pixel. A patch of a pixel can be defined as a 

squared region centered at that pixel (called patch-window (PW), e.g., 5×5, in 2D case). Let 

P(μ̂
j) denote the patch centered at pixel j and P(μ̂

k) denote the patch centered at pixel k. The 

similarity between pixels j and k depends on the weighted Euclidean distance of their 

patches . The exponential function converts the similarity to weighting 

coefficient which indicates the interaction degree between two pixels. Specifically, the 

weighting coefficient is given as:
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(2)

The parameter h in Eq. (2) controls the decay of the exponential function as well as the 

weighting coefficient. When h is small, the image tends to be weakly smoothed, and vice 

versa. For simplicity, h is called filtering parameter hereafter. According to [29-30], the 

filtering parameter h is a function of the standard deviation of the image noise. And if we 

further consider the size of the patch-window, the parameter h can be given as [31]:

(3)

where τ and η are free scalar parameters, σ is the standard deviation of the image noise, and |

PWj| denotes the size of the patch-window. However, it is well known that the noise 

distribution of low-dose CT images is non-stationary, so determining the standard deviation 

σ is not a trivial task. In the past, the parameter h has been simply set to be a global constant 

for the entire FOV, e.g., in [7, 8, 10], although such a practice may result in suboptimal 

filtering result. Besides, the NLM filter usually cannot effectively suppress the streak 

artifacts of low-dose CT images. The experimental results in Section 3 illustrate the 

limitations of the traditional NLM filtering with a spatial-invariant constant filtering 

parameter h.

2.2. Overview of the adaptive NLM-regularized statistical image reconstruction method

2.2.1. PWLS image reconstruction—Mathematically, low-dose CT image 

reconstruction is an ill-posed problem due to the presence of significant noise and other 

inconsistencies in the projection data. Therefore, it is usually formulated as the maximum a 

posterior (MAP) estimation by posing a regularization (or equivalently, penalty) term to 

regularize the solution. One common choice for low-dose CT image reconstruction is to 

minimize a PWLS objective function, and a non-negative constraint is usually added 

considering the physical meaning of the attenuation coefficients [11]:

(4)

where y ∈ ℝI×1 is the vector of measured line integrals, and I is the total number of line 

integral measurements; μ ∈ ℝJ×1 is the vector of attenuation coefficients of the object to be 

reconstructed, and J is the number of image pixels; A ∈ ℝI×J is the system or projection 

matrix and its element Aij is typically calculated as the intersection length of projection ray i 

with voxel j; Σ ∈ ℝI×I is the covariance matrix, and since the measurement among different 

detector bins are assumed to be independent, it is diagonal and ; U(μ) denotes 

the penalty term; β > 0 is a scalar control parameter that balances the data fidelity and the 

penalty; the symbols T and -1 herein are transpose and inverse operators, respectively.

Zhang et al. Page 4

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The variance of the noise in line integral measurements can be determined by the following 

mean-variance relationship in consideration of X-ray quanta noise and system electronic 

noise [32,33]:

(5)

where N̄
0i represents the mean number of X-ray photons just before entering the patient and 

going toward the detector bin i, and can be measured by system calibration, e.g., by air 

scans; ȳi and  are the mean and variance of the line integral measurements in detector bin 

i for repeated acquisitions; and  is the variance of the electronic noise.

2.2.2. NLM-based regularization term—The NLM-based generic regularization can be 

described as [27, 28]:

(6)

where ϕ denotes a positive potential function and can be chosen as ϕ(Δ) = |Δ|p (1 ≤ p ≤ 2). It 

should be noted that the weighting coefficients wjk(μ) in Eq. (6) are computed on the image 

μ, rather than a reference image such as in [24, 34]. Thus, we call it as NLM-based generic 

regularization to differentiate it from those needing a reference image. However, using the 

generic regularization in Eq. (6) may cause difficulty in optimizing the objective function in 

Eq. (4), because the weighting coefficients are actually computed on the unknown image μ. 

To address this issue, an empirical one-step-late (OSL) implementation is employed for the 

optimization task, where the weighting coefficients are computed on current image estimate 

and then are assumed to be constants when updating the image. Such an OSL iteration 

scheme has been demonstrated to be feasible and effective in the previous studies [28, 35].

2.2.3. Local adaption of the filtering parameter h—The filtering parameter h 

determines the smoothness of the resulting image, where larger h results in more smoothing 

and smaller h results in less smoothing. In the previous studies, the h in the NLM-based 

regularizations was often set to be a constant across the entire FOV [24-28, 34-35]. 

However, when the local characteristics of the image differ significantly across the entire 

FOV, a constant h may result in inferior/suboptimal reconstruction result, since it may be 

too large for some regions (blurring edges and subtle structures) while too small (filtering 

little) for other regions within the image domain. To mitigate this issue, in this study, we 

propose a novel locally-adaptive estimation of the filtering parameter h at pixel j as:

(7)

where s and t are two constants, and can be determined through experiments.
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The rationale behind the mathematical expression of Eq. (7) is that the value of h should 

depend on the similarity between the patch of target pixel and the patches within the 

corresponding SW. That is, when SW contains many similar patches to P(μj), h needs to be 

decreased to reduce the influence of the other patches. On the contrary, when very few 

similar patches exist in SW for P(μj), h needs to be increased to relax the selection [36]. To 

achieve robust implementation of the similarity dependence in Eq. (7), the constant t is 

introduced to ensure numerical stability and adequate filtering for uniform regions, and the 

constant s is introduced to control the relative filtering strength for non-uniform regions in 

the image domain.

2.3. Parameters selection

2.3.1. Adaptive NLM regularization related parameters—There are five parameters 

related to the proposed adaptive NLM-based regularization (size of SW, size of PW, 

standard deviation a of the Gaussian kernel, and constants t and s). Determining the optimal 

values for these five parameters for the adaptive NLM-based regularization is not a trivial 

task. Extensive experiments revealed that the sizes of SW and PW as well as the standard 

deviation a do not have noticeable effects on the reconstructed image when they are set in a 

reasonable range. Therefore, a typical selection of SW=17×17, PW=5×5 and a=5 was used 

for all the cases in this study. As for the constants t and s in Eq. (7), it was found that 

t=4×10-6 was good for all the datasets, and the optimal value for s differed slightly within a 

small range for different datasets, e.g., from 4×10-4 to 1×10-3.

2.3.2. Hyper-parameter β—The hyper-parameter β controls the tradeoff between the data 

fidelity term and the regularization term in the PWLS objective function. The selection of 

optimal β value for the SIR methods remains an open question. Generally, a larger β value 

produces a more smoothed reconstruction with lower noise level but also lower spatial 

resolution, and vice versa.

According to our experiments, too small s value may introduce artifacts and too small β 

value cannot effectively suppress the noise, while too large value of either parameter may 

blur the image edges. In this study, we set the two parameters in a reasonable range and 

performed a grid search for different combinations of them, and then determined the optimal 

combination through visual inspection and quantitative measures of corresponding 

reconstruction result.

2.4. Projection data acquisitions

2.4.1. Digital clock phantom data—A computer simulated clock phantom was utilized 

in this study, which is modified from the reported one in [37]. The clock phantom consists 

of a water background and eight circular inserts with different contrasts (C1: -100%, C2: 

+150%, C3: +7%, C4: -50%, C5: +85%, C6: -15%, C7: -7%, C8: +30%). The low-dose 

sinogram data of the clock phantom was acquired using the simulation method in [38]. After 

calculating the noise-free line integral, the noisy measurement Ni at detector bin i was 

generated according to the statistical model:
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(8)

where N̄
0i was set to be 3×104 and  was set to be 10 in this study [38]. Then the 

corresponding noisy line integrals were calculated by the logarithm transform. The scanning 

geometry was the same as the Siemens Somatom Sensation 16 CT scanner (Siemens 

Healthcare, Forchheim, Germany), which is illustrated in Table 1.

2.4.2. Physical anthropomorphic torso phantom data—To evaluate the above 

presented reconstruction algorithm in a more realistic situation, an anthropomorphic torso 

phantom (Radiology Support Devices, Inc., Long Beach, CA) was used for experimental 

projection data acquisition. The phantom was scanned by the same clinical Siemens scanner 

(as described in Table 1) in a cine mode at a fixed bed position. The X-ray tube voltage was 

set to be 120kVp and the mAs level was set to be 40mAs. The CT scanner was rotated 150 

times around the torso phantom.

The central slice sinogram data of one scan was extracted and regarded as the low-dose 

scan. The averaged sinogram data of that slice from 150 repeated scans was reconstructed by 

the FBP method to serve as the ground truth image for evaluation purpose.

2.4.3. Clinical patient data—The projection data of a patient were acquired using the 

same Siemens scanner after obtaining informed consent from the patient, and this clinical 

data serve as a pilot clinical study. The patient was scheduled for CT scan for medical 

reasons. The X-ray tube voltage was 120kVp, and the mAs level was 20mAs, which was 

considered as ultra low-dose scan in clinic.

2.5. Performance evaluation

2.5.1. Evaluation by noise reduction—Two quantitative metrics, peak signal-to-noise 

ratio (PSNR) and normalized mean square error (NMSE), were utilized to evaluate the noise 

reduction performance of different reconstruction methods. Let μr = (μr,1, …, μr,J)T denote 

the vector of reconstructed image and μ0 = (μ0,1, …, μ0,J)T be the vector of the ground truth 

image, the two metrics are defined as:

(9)

(10)

2.5.2. Assessing local image quality—In order to assess the image quality of regions 

of interest (ROIs) by different reconstruction methods, the root mean squared error (RMSE) 

which indicates the difference between reconstructed image and the ground truth image, and 

the universal quality index (UQI) [39] which measures the similarity, were utilized to 
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evaluate the quality performance of different methods in terms of detailed ROIs 

reconstruction.

Mathematically, the two metrics are defined as (where Q is the number of pixels in the 

ROI):

(11)

(12)

where , , , 

, 

.

The UQI quantifies the noise, spatial resolution, and texture correlation between two images, 

and has been widely used in CT image quality evaluation during past years.

3. Results

In this work, three categories of projection data were utilized to validate the performance of 

the proposed adaptive NLM-regularized statistical image reconstruction method (referred to 

as PWLS-adaptiveNLM) for X-ray CT imaging from low-dose acquisitions. For comparison 

purpose, the standard FBP reconstruction, the FBP reconstruction followed by NLM 

filtering (referred to as FBP+NLM filtering), the NLM-regularized statistical image 

reconstruction with constant filtering parameter (referred to as PWLS-NLM), and the total 

variation regularized statistical image reconstruction (referred to as PWLS-TV) were also 

implemented in a similar fashion as the implementation of the proposed method. To ensure 

the fairness of comparison, the parameters for each method were carefully tuned to obtain 

the best image quality.

3.1. Digital clock phantom outcome

3.1.1. Visualization-based evaluation—The reconstructed images by the FBP, FBP

+NLM filtering, PWLS-NLM, PWLS-adaptiveNLM and PWLS-TV from the simulated 

low-dose sinogram are shown in Figure 1(b)-(f). The zoom-in views of three low-contrast 

inserts (C3: +7%, C6: -15%, C7: -7%) by different reconstruction methods are also 

illustrated. We can see that the FBP+NLM filtering can suppress the noise in the FBP 

reconstructed image to a large extent, but it is still not comparable to the PWLS-NLM 

reconstructed image. However, since these two methods use a constant filtering parameter, 

their outcomes seem to blur the low-contrast inserts substantially. In contrast, the PWLS-
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adaptiveNLM method can effectively suppress the noise while retaining the low-contrast 

objects. Finally, the PWLS-TV reconstructed image slightly suffers from patchy artifacts in 

the uniform region, and the low-contrast inserts are also considerably distorted.

3.1.2. Noise reduction performance—To evaluate the noise reduction performance of 

the different reconstruction methods, two quantitative metrics were employed. According to 

Table 2, the proposed PWLS-adaptiveNLM method offers the highest PSNR and lowest 

NMSE, and therefore outperforms other methods in term of noise reduction, which is 

consistent with the visual inspection.

3.1.3. Assessing local image quality—In order to evaluate the performance of 

different methods on the reconstruction of fine structures, we chose eight ROIs in the clock 

phantom, as labeled by the red rectangles in Figure 1(b). Since the FBP reconstructed image 

was obviously worse than those by the other four methods due to the excessive noise, we 

excluded it and only compared the local image quality by the other four methods. The 

quantitative results with RMSE and UQI are illustrated in Figure 2. Still, the proposed 

PWLS-adaptiveNLM has the best local image quality for the eight detailed ROIs with the 

lowest RMSE and highest UQI. The UQI quantifies the noise, spatial resolution, and texture 

correlation. From Figure 2(b), it is noted that the UQI values of the high-contrast ROIs 

(including C1: -100%, C2: +150%, C4: -50%, C5: +85%, C8: +30%) by the four different 

methods are relatively high and comparable, while the UQI values of the low-contrast ROIs 

(including C3: +7%, C6: -15%, C7: -7%) by the four different methods are relatively low 

and differ substantially. These results suggest that the low-contrast objects are more difficult 

to recover but the PWLS-adaptiveNLM method performed well in recovering them. The 

merit is significant, since we know that the low-contrast objects reconstruction can be very 

critical in clinic.

3.2. Physical anthropomorphic torso phantom outcome

3.2.1. Visualization-based evaluation—Figure 3(a) shows one transverse image of the 

anthropomorphic torso phantom reconstructed by the FBP method from the averaged 

sinogram of 150 repeated scans, which serves as the ground truth image for evaluation. 

Figure 3(b)-(f) illustrates the reconstructed images by the FBP, FBP+NLM filtering, PWLS-

NLM, PWLS-adaptiveNLM and PWLS-TV from a low-dose 40mAs sinogram. The FBP

+NLM filtering method can suppress the noise pretty well, but there are still tiny streak 

artifacts in the image. The three PWLS methods outperform the FBP+NLM in terms of 

streak artifacts suppression, which can be attributed to the statistical modeling of the 

sinogram data. From the zoom-in views of the detailed regions, we can observe that the 

PWLS-adaptiveNLM method is superior to the PWLS-NLM and PWLS-TV on the 

reconstruction of the fine structures.

3.2.2. Noise reduction performance—Table 3 lists the quantitative results of the five 

different reconstruction methods on the anthropomorphic torso phantom with PSNR and 

NMSE metrics. The proposed PWLS-adaptiveNLM method also demonstrates better 

performance than the other four methods on image noise reduction.
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3.2.3. Assessing local image quality—To quantitatively demonstrate the benefits of 

the proposed PWLS-adaptiveNLM method, we compare the performance of the four 

methods on the reconstruction of ROIs with fine structures, which are labeled with red 

rectangles in Figure 3(b). The corresponding quantitative results based on the RMSE and 

UQI metrics are shown in Figure 4. Again, the PWLS-adaptiveNLM method yielded the 

lowest RMSE and the highest UQI for all the five detailed ROIs.

3.3. Clinical patient data outcome

The reconstructed images by the FBP, FBP+NLM filtering, PWLS-NLM, PWLS-

adaptiveNLM and PWLS-TV from the ultra low-dose 20mAs sinogram of the patient are 

shown in Figure 5(a)-(e). We can see that the FBP+NLM filtering method cannot eliminate 

the streak artifacts in the image, while the three PWLS methods do not have such problem 

due to the statistical modeling of the sinogram data. However, the PWLS-TV exhibits slight 

patchy artifacts in the region indicated by the arrow, which is also reported in [17, 20]. From 

the zoom-in views of the three detailed regions, we can also see that the PWLS-

adaptiveNLM method outperforms the other methods on the reconstruction of the fine 

structures.

However, for the patient study, we cannot implement the quantitative evaluations as the 

phantom studies due to the lack of ground truth image. Still, we observe that the patient 

study exhibits the same trend as the phantom studies through visual inspection.

4. Discussions and Conclusions

In this study, we proposed and validated an adaptive NLM-regularized statistical image 

reconstruction method for X-ray CT from low-dose acquisitions. One motivation of this 

work is that the traditional NLM filtering methods sometimes cannot completely remove the 

noise and streak artifacts in the low-dose CT images, especially when the streak artifacts are 

very severe. The NLM-regularized statistical image reconstruction method can mitigate this 

problem, partially due to the explicit statistical modeling of the projection data. However, 

the choice of the associated filtering parameter h as a spatially-invariant global constant in 

the NLM-based regularization may not be optimal for the reconstruction of the entire image. 

To further improve the reconstruction results, we proposed a novel strategy to determine 

locally optimal filtering parameter by considering local characteristics of the image, which 

made the NLM-based regularization to be adaptive. The experimental results with the 

PWLS-NLM and PWLS-adaptiveNLM methods proved that it is indeed necessary and 

beneficial to introduce the spatial adaptivity of the filtering parameter.

It is noted that the adaptive NLM-based regularization in this study is implemented in 2D 

domain. The implementation can be expanded to 3D space by setting the search-window and 

patch window to, for instance, 17×17×17 and 5×5×5 respectively for isotropic data. This 

may further improve the performance of the proposed method, although it would also 

increase the computation burden.

Also, it is noted that the proposed adaptive NLM regularization shares similar idea with the 

edge-preserving TV [40] and adaptive-weighted TV [41,42] regularization. Although using 
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different mechanism to incorporate the spatial adaptivity, they essentially both consider 

local characteristics of the image to be reconstructed. However, the NLM-based 

regularization may have the advantage of better eliminating the patchy artifacts sometimes 

appearing in the TV-based regularization, due to the use of a larger neighborhood.

As any other proposed method, the presented PWLS-adaptiveNLM method also has some 

potential limitations. The first one is the parameters tuning. While the sizes of search-

window and patch-window (also the standard deviation of the Gaussian kernel) do not show 

noticeable effects on the reconstructed image when they are set in a reasonable range and the 

parameter setting t = 4×10-6 in Eq. (7) works well, the strength parameter s in Eq. (7) seems 

need more manual tuning than the others. In this study, a typical range for s was found from 

4×10-4 to 1×10-3. Further investigation on the strength parameter is needed. This is another 

topic in our future research plan.

Sharing the same challenges as other iterative reconstruction methods do, the proposed 

method also faces the limitation in computation efficiency due to the multiple re-projection 

and back-projection operation cycles between the projection data domain and image domain 

as well as the weighting coefficients calculation in each iterative circle. With constant 

improvement in fast computation via dedicated hardware and software, the computational 

efficiency could not be a major challenge in the future.
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Figure 1. 
One slice of the clock phantom: (a) phantom; (b) FBP reconstruction from simulated noisy 

sinogram; (c) FBP+NLM filtering from simulated noisy sinogram (h=0.012); (d) PWLS-

NLM reconstruction from simulated noisy sinogram (β=5×106, h=0.008); (e) PWLS-

adaptiveNLM reconstruction from simulated noisy sinogram (β=5×106, s=5×10-4, 

t=4×10-6); (f) PWLS-TV reconstruction from simulated noisy sinogram (β=2×103). All the 

images are displayed with the same window.
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Figure 2. 
Performance comparison of the four methods on reconstruction of the eight ROIs labeled in 

Figure 1(b) with RMSE and UQI metrics. The corresponding methods are illustrated in 

figure legend.
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Figure 3. 
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A reconstructed slice of the anthropomorphic torso phantom: (a) FBP reconstruction from 

the averaged sinogram; (b) FBP reconstruction from the 40mAs sinogram; (c) FBP+NLM 

filtering from the 40mAs sinogram (h=0.012); (d) PWLS-NLM reconstruction from the 

40mAs sinogram (β=3×105, h=0.008); (e) PWLS-adaptiveNLM reconstruction from the 

40mAs sinogram (β=3×105, s=5×10-4, t=4×10-6); (f) PWLS-TV reconstruction from the 

40mAs sinogram (β=200). All the images are displayed with the same window.

Zhang et al. Page 18

Comput Med Imaging Graph. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Performance comparison of the four methods on the reconstruction of detailed ROIs labeled 

in Figure 3(b) with RMSE and UQI metrics. The corresponding methods are illustrated in 

figure legend.
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Figure 5. 
A reconstructed slice of the patient data: (a) FBP reconstruction from the 20mAs sinogram; 

(b) FBP+NLM filtering from the 20mAs sinogram (h=0.012); (c) PWLS-NLM 

reconstruction from the 20mAs sinogram (β=1×105, h=0.008); (d) PWLS-adaptiveNLM 

reconstruction from the 20mAs sinogram (β=1×105, s=1×10-3, t=4×10-6); (e) PWLS-TV 

reconstruction from the 20mAs sinogram (β=50). All the images are displayed with the same 

window.
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Table 1

The system geometry of the Siemens Somatom Sensation 16 CT scanner

Parameter

source-to-detector distance 1040 mm

source-to-object distance 570 mm

number of detector bins 672

detector bin spacing 1.407 mm

projection views per rotation 1160
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