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Abstract

Overdose of acetaminophen (APAP) is a common cause of acute liver injury and liver failure. The 

mechanism involves formation of a reactive metabolite, protein binding, oxidative stress and 

activation of c-Jun N-terminal kinase (JNK), mitochondrial dysfunction, and nuclear DNA 

fragmentation caused by endonucleases released from damaged mitochondria. Previous work has 

shown that the natural product resveratrol (RSV) can protect against APAP hepatotoxicity in mice 

through prevention of lipid peroxidation and anti-inflammatory effects. However, these earlier 

studies did not take into consideration several fundamental aspects of the pathophysiology. To 

address this, we treated C57Bl/6 mice with 300 mg/kg APAP followed by 50 mg/kg RSV 1.5h 

later. Our results confirmed that RSV reduced liver injury after APAP overdose in mice. 

Importantly, RSV did not inhibit reactive metabolite formation and protein bindings, nor did it 

reduce activation of JNK. However, RSV decreased protein nitration after APAP treatment, 

possibly through direct scavenging of peroxynitrite. Interestingly, RSV also inhibited release of 

apoptosis-inducing factor and endonuclease G from mitochondria independent of Bax pore 

formation and prevented the downstream nuclear DNA fragmentation. Our data show that RSV 

protects against APAP hepatotoxicity both through antioxidant effects and by preventing 

mitochondrial release of endonucleases and nuclear DNA damage.
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1. INTRODUCTION

Acetaminophen (APAP) is an analgesic and antipyretic drug that is widely used in Western 

countries. While it is safe at therapeutic doses, overdose can cause acute liver injury and 

liver failure (Budnitz et al., 2011; Larson et al., 2005). The toxicity of APAP is initiated by 

the formation of a reactive metabolite, NAPQI, which can deplete glutathione and bind to 

cellular proteins, especially proteins in mitochondria (Tirmenstein et al., 1989). The 

mitochondrial protein binding disturbs the normal respiration of the mitochondria (Meyers et 

al., 1988) and enhances the formation of reactive oxygen species (ROS) (Jaeschke, 1990) 

and peroxynitrite (Hinson et al., 1998; Cover et al., 2005). The resulting oxidative stress 

activates the c-jun N-terminal kinases (JNK) 1/2 (Gunawan et al., 2006; Hendersen et al., 

1997; Saito et al., 2010a). JNK activation seems to involve several upstream kinases, 

including apoptosis signal regulating kinase 1 (Nakagawa et al., 2008), glycogen synthase 

kinase 3β (Shinohara et al., 2010), mixed lineage kinase 3 (Sharma et al., 2012), and 

possibly the receptor interacting protein kinase 3 (Ramachandran et al., 2013). Activated 

JNK then translocates to the mitochondria and eventually triggers the opening of the 

mitochondrial membrane permeability transition (MPT) pore (Hanawa et al., 2008; Kon et 

al., 2004; Masubuchi et al., 2005). This results in mitochondrial dysfunction and release of 

mitochondrial intermembrane proteins. In particular, apoptosis-inducing factor (AIF) and 

endonuclease G (EndoG) are released and translocate to the nucleus where they cause 

nuclear DNA fragmentation (Bajt et al., 2006, 2011). The extensive mitochondrial 

dysfunction and nuclear DNA damage leads to necrotic cell death (Gujral et al., 2002). 

Importantly, emerging evidence suggests that these mechanisms are also relevant for the 
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pathophysiology of APAP-induced liver injury in humans (McGill et al., 2012a; 2014; Xie 

et al., 2014).

The use of natural products in the prevention and treatment of liver diseases has gained 

considerable popularity (Zhang et al., 2013; Nair et al., 2014; Jaeschke et al., 2011; 2013). 

Among these products, resveratrol (RSV), a natural polyphenolic compound primarily found 

in the skin of grapes, is particularly well-studied (Bishayee et al, 2010). It has been shown to 

protect against liver damage caused by hepatic ischemia-reperfusion (Hassan-Khabbar et al., 

2008; 2010; Plin et al., 2005), ethanol toxicity (Ajmo et al., 2008; Min et al., 2008), high fat 

diet (Ahn et al., 2008) and hepatotoxic agents such as APAP (Masubuchi et al., 2009; Sener 

et al., 2006) and carbon tetrachloride (Rivera et al., 2008). The mechanisms that have been 

proposed to explain this protection include antioxidant effects, up-regulation of anti-oxidant 

enzymes, modulation of inflammatory responses, and induction of mitochondrial biogenesis 

(Lagouge et al., 2006; Baur et al., 2006; Sener et al., 2006; Masubuchi et al., 2009; Bishayee 

et al, 2010). The first group to examine the effect of RSV in APAP-induced liver injury 

concluded that it protected by acting as an antioxidant, preventing lipid peroxidation (LPO) 

and possibly neutrophil infiltration (Sener et al., 2006). A more recent study suggested that 

RSV protected by lowering expression of the pro-inflammatory cytokine TNF-α 

(Masubuchi et al., 2009). However, these mechanisms are in conflict with other data. For 

example, it has been clearly demonstrated that the low level of LPO caused by APAP is not 

critical for the liver injury (Knight et al., 2003). Furthermore, there is considerable evidence 

that the sterile inflammatory response after APAP does not contribute to the liver injury 

phase in mice or humans (Cover et al., 2006; Williams et al., 2010a; 2010b; 2011; 2014; Xie 

et al., 2013), although it may be needed for later recovery and regeneration (Jaeschke et al., 

2012; Holt et al., 2008). In addition, neither of these studies examined the effect of RSV on 

metabolic activation of APAP (i.e. NAPQI formation), which is an essential prerequisite for 

mechanistic investigation of any intervention in this model (Jaeschke et al., 2011; 2013). 

Finally, several critical events in the initiation and progression of APAP hepatotoxicity, 

including JNK activation and mitochondrial translocation, mitochondrial dysfunction, 

protein nitration, and nuclear DNA fragmentation were not investigated. Thus, the aim of 

the current study was to explore the effects of RSV treatment on these important 

mechanisms in APAP hepatotoxicity.

2. MATERIALS AND METHODS

2.1 Animals

Male C57Bl/6 mice (8–12 weeks old) were purchased from Jackson Laboratories (Bar 

Harbor, ME) and housed in an environmentally controlled room with a 12 h light/dark cycle 

and free access to food and water. All experiments followed the criteria of the National 

Research Council for the care and use of laboratory animals and were approved by the 

Institutional animal Care and Use Committee of the University of Kansas Medical Center.

2.2 In vivo experiments

Mice were fasted overnight, then injected i.p. with 300 mg APAP/kg body weight. APAP 

(Sigma, St Louis, MO) was dissolved in warm saline. At 1.5 h post-APAP, some animals 
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were i.p. injected with 50 mg/kg trans-resveratrol (RSV) (Cayman, Ann Arbor, MI) 

dissolved in 40% dimethyl sulfoxide (DMSO) in saline or with the vehicle alone (1.2 mL/

kg). Mice were euthanized at 0, 6, 24 or 48 h post-APAP and blood and livers were 

harvested. Blood was drawn from the caudal vena cava into a heparinized syringe and 

centrifuged to obtain plasma. The right and caudate liver lobes were used for isolation of 

mitochondria, as previously described (Xie et al., 2013). One portion from the left lateral 

lobe was fixed in 10% phosphate-buffered formalin for histology, and the remaining pieces 

were flash frozen and stored at −80°C for later analysis.

2.3 In vitro experiments

Primary mouse hepatocytes were isolated as previously described (Bajt et al., 2004). After a 

short incubation period to allow attachment to the culture dish, the cells were washed and 

treated with 5 mM APAP dissolved in the culture medium. Some cells were co-treated with 

either 100 µM RSV or DMSO vehicle and the cells were harvested at 0, 4.5 or 8.5 h post-

APAP.

2.4 Biochemical assays

Plasma alanine aminotransferase (ALT) activity was measured using a kit, according to the 

manufacturer's instruction (Pointe Scientific, MI). Lactate dehydrogenase activity (LDH) 

was measured as previously described (Xie et al., 2013). The JC-1 assay was performed 

using a kit, according to the manufacturer’s instructions (Cell Technology, Fremont, CA). 

Assays for hepatic GSH and GSSG levels were performed using a modified Tietze assay, as 

previously described (Jaeschke and Mitchell, 1990). Real time-PCR for mRNA 

quantification was performed as previously described (Saito et al., 2010b). APAP-protein 

adducts were measured in liver tissues and mitochondrial pellets as described (Ni et al., 

2012b; McGill et al., 2012b).

2.5 Western Blotting

Western blotting was performed, as previously described (Bajt et al., 2000). The primary 

antibodies were rabbit anti-JNK and anti-phospho-JNK antibodies (Cell Signaling 

Technology, Danvers, MA), rabbit anti-Bax polyclonal antibody (Cell Signaling 

Technology, Danvers, MA), rabbit anti-AIF antibody (Cell Signaling Technology, Danvers, 

MA), rabbit anti-EndoG (ProSci, Poway, CA) and rabbit anti-nitrotyrosine (Upstate, Lake 

Placid, NY). A horseradish peroxidase-coupled anti-rabbit IgG (Santa Cruz) was used as 

secondary antibody.

2.6 Histology and immunohistochemistry

Formalin-fixed liver tissues were embedded in paraffin and 5 µm thick sections were cut. 

Hematoxylin and eosin (H&E) staining was performed for evaluation of tissue necrosis 

(Gujral et al., 2002). Nitrotyrosine staining was performed for assessment of nitrotyrosine 

(NT) protein adducts, as previously described (Knight et al., 2002), using the Dako LSAB 

peroxidase kit (Dako, Carpinteria, CA) and a rabbit polyclonal anti-nitrotyrosine antibody 

(Life Technologies, Grand Island, NY). Terminal deoxynucleotidyl transferase-mediated 

dUTP nick-end labeling (TUNEL) assay was performed for DNA strand break assessment 
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with the In Situ Cell Death Detection Kit, AP (Roche Diagnostics, Indianapolis, IN), as 

described in the manufacturer's instructions.

2.7 Statistics

All data were expressed as mean ± SE. For normally distributed data, statistical significance 

was evaluated by one-way analysis of variance (ANOVA), followed by Student Newman–

Keuls’ test. When the data were not normally distributed, ANOVA was performed on ranks, 

followed by Dunn’s multiple comparisons. P < 0.05 was considered significant.

3. RESULTS

3.1 RSV protects against APAP hepatotoxicity

To confirm that RSV protects against APAP hepatotoxicity, mice were treated with 300 

mg/kg APAP followed by 50 mg/kg RSV 1.5 h later and plasma and livers were collected at 

0, 6, 24, and 48 h post-APAP. Consistent with earlier reports, plasma ALT activities were 

significantly lower in the RSV-treated animals compared to vehicle-treated animals at all 

time points (Fig. 1A). Similarly, RSV-treated mice had less evidence of necrosis in H&E-

stained histology sections (Fig. 1B).

3.2 RSV does not interfere with protein binding but does reduce protein nitration

To determine whether RSV affects the metabolic activation of APAP, we next measured 

APAP-protein adducts at 6 h. There was no difference in adduct levels in either total liver 

homogenates or in mitochondrial fractions (Fig. 2), suggesting that RSV does not inhibit 

NAPQI formation or protein binding when administered 1.5 h after APAP. Consistent with 

this, there was also no difference in GSH depletion and recovery between vehicle and RSV-

treated mice at 6 and 24 h post-APAP (Fig. 3A). However, there were lower glutathione 

disulfide (GSSG) levels and a reduction in the GSSG-to-GSH ratio at 24 h (Fig. 3B). 

Although these data could suggest that RSV has antioxidant effects, it is difficult to 

determine whether or not the reduced GSSG at this late time point is a cause or a 

consequence of the protection. To further test this, we performed immunostaining for 

nitrotyrosine in the liver at 6 h post-APAP (Fig. 3C). Protein tyrosine nitration is thought to 

result from peroxynitrite (ONOO−) formed within mitochondria as a result of superoxide 

(O2
−) reacting with nitric oxide (NO) during APAP hepatotoxicity. Importantly, livers from 

RSV-treated animals stained much less strongly for nitrotyrosine (Fig. 3C) and lower 

nitrotyrosine levels were seen by western blotting (Fig. 3D). These data are consistent with 

the hypothesis that RSV may serve as a direct antioxidant at early time points. A number of 

natural products have been shown to induce expression of antioxidant genes (Wu et al., 

2014). To determine whether or not RSV also prevents oxidative stress by inducing a stress 

response, we measured expression of several known Nrf2 targets and other antioxidant 

genes, namely the catalytic subunit of glutamate cysteine ligase (Gclc), heme oxygenase-1 

(Ho-1), catalase, superoxide dismutases (Sod) 1 and 2, and metallothioneins 1 and 2 by RT-

PCR. Although most of these genes were induced by APAP, none were further induced by 

RSV co-treatment (Table 1). Thus, the antioxidant effects of RSV did not involve the 

selective induction of antioxidant genes.
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3.3 RSV does not affect JNK activation or the MPT

Because JNK activation during APAP hepatotoxicity is thought to require oxidative stress, 

we next measured JNK phosphorylation in these animals. Surprisingly, despite the reduced 

protein nitration, we did not observe a decrease in either activation or mitochondrial 

translocation of JNK between the vehicle and RSV-treated mice (Fig. 4). In fact, JNK 

activation appeared to be higher after RSV compared with vehicle treatment. The latter was 

not an effect of the RSV vehicle, as DMSO did not affect JNK activation or translocation 

(Suppl. Fig. 1). It is generally accepted that JNK translocation is a critical step in the 

mitochondrial dysfunction caused by APAP. To determine whether or not mitochondrial 

dysfunction was prevented by RSV despite the similar JNK activation, primary mouse 

hepatocytes were co-treated with 5 mM APAP and either vehicle or 100 µM RSV, and the 

mitochondrial membrane potential was assessed using the JC-1 assay. We found that RSV 

provided complete protection against APAP-induced cell death (Fig. 5A) without preventing 

the loss of the mitochondrial membrane potential (Fig. 5B). Mitochondrial membrane 

potential declined as early as 4.5 h post-treatment and remained low to at least 8.5 h. 

Interestingly, RSV alone actually caused a transient loss of the membrane potential, with 

recovery by 8.5 post-treatment (Fig.5B). These data show that, although RSV reduces 

oxidative stress in this model of APAP toxicity, the extent of the reduction may not be 

enough to prevent mitochondrial dysfunction.

3.4 RSV prevents release of endonucleases from mitochondria

To determine whether or not RSV affects release of endonucleases from the mitochondria 

and the resulting nuclear DNA fragmentation, AIF and EndoG release into the cytosol were 

measured by western blotting and TUNEL staining was performed in tissue sections. 

Interestingly, although RSV did not prevent mitochondrial JNK translocation in vivo or the 

loss of the mitochondrial membrane potential in vitro, it reduced both the release of these 

endonucleases from mitochondria (Fig. 6A) and nuclear DNA fragmentation (Fig. 6B). 

Because Bax has been shown to be responsible for release of AIF from mitochondria at early 

time points in APAP hepatotoxicity (Bajt et al., 2008), we next measured translocation of 

Bax into mitochondria. Surprisingly, there was no difference in mitochondrial Bax 

translocation between vehicle and RSV-treated animals (Fig. 6A). These data suggest that 

RSV protects against APAP hepatotoxicity, in part, by inhibiting Bax-independent release of 

AIF and EndoG from mitochondria and preventing nuclear DNA fragmentation. 

Interestingly, we found that treatment with DMSO vehicle alone caused a minor increase in 

endonuclease release as well (Suppl. Fig. 1). Thus, the fact that RSV completely prevented 

AIF release and reduced EndoG release after treatment with APAP and the RSV vehicle 

further supports the idea that RSV is an effective inhibitor of endonuclease release.

4. DISCUSSION

The objective of the current investigation was to evaluate the mechanisms of protection of 

RSV against APAP hepatotoxicity. Previous work has shown that RSV can prevent LPO 

and inflammation during APAP hepatotoxicity. However, those earlier studies failed to test 

the effects of RSV on critical upstream events in the basic pathophysiology of APAP-

induced liver injury. In contrast, our data suggest that the delayed administration of RSV did 
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not affect protein adduct formation but appeared to protect by scavenging peroxynitrite and 

by preventing nuclear DNA fragmentation through inhibiting release of the endonucleases 

AIF and EndoG from mitochondria.

4.1 Resveratrol as direct scavenger of peroxynitrite

Several groups have provided evidence for peroxynitrite formation during APAP-induced 

liver injury (Hinson et al, 1998; Knight et al., 2001) and follow-up studies have 

demonstrated that peroxynitrite is indeed a critical cytotoxic mediator in the 

pathophysiology (Knight et al., 2002). The oxidant stress is mainly located in mitochondria 

(Jaeschke, 1990), presumably derived from the impaired respiratory chain (Meyers et al., 

1988), and consequently peroxynitrite formation occurs also in mitochondria (Cover et al., 

2005). The mitochondrial oxidant stress and peroxynitrite are responsible for the opening of 

the mitochondrial membrane permeability transition pore (MPT) and necrotic cell death 

(Kon et al., 2004, 2010). Our data indicated the protective effect of RSV correlated with 

extensive reduction of nitrotyrosine adducts in the liver at 6 h. Interestingly, there was no 

significant effect on GSSG formation, which indicated that RSV appeared to mainly 

scavenge peroxynitrite rather than prevent the oxidant stress during these early time points. 

In support of this conclusion, RSV did not affect protein adduct formation including adducts 

in mitochondria and did not affect JNK activation and translocation to mitochondria, which 

are related to the mitochondrial oxidant stress (Hanawa et al., 2008; Saito et al., 2010a). On 

the other hand, several studies have shown that RSV can act as a direct scavenger of 

peroxynitrite. Holthoff et al. (2010) found that RSV prevents serum albumin nitration by 5-

amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride (SIN-1), which is a donor of both NO 

and O2
− and therefore serves as a source of ONOO−, with an EC50 of ~23 µM. Importantly, 

they also observed that RSV could prevent nitrotyrosine formation in cultured cells at 

concentrations similar to the one used in our study (Holthoff et al., 2010). These data were 

confirmed by another group (Yang et al., 2012). Although it has been reported that RSV can 

induce expression of endogenous antioxidant genes (Surh et al., 2008), we were unable to 

reproduce this in our model. Our findings are more consistent with a recent report showing 

that RSV failed to induce expression of Nrf2-dependent antioxidant response genes in a 

high-throughput screening study (Wu et al., 2014). Thus, our data support the hypothesis 

that RSV protected in vivo mainly by directly scavenging peroxynitrite.

4.2 Mitochondrial dysfunction and DNA fragmentation

Due to a lack of caspase activation, caspase-activated DNase cannot be involved in nuclear 

DNA damage during APAP hepatotoxicity (Jaeschke et al., 2006). Instead it was shown that 

DNA fragmentation is linked to mitochondrial dysfunction (Cover et al., 2005). More 

specifically, AIF and EndoG are released from the intermembrane space of mitochondria 

into the cytosol and translocate to the nucleus to induce DNA damage (Bajt et al., 2006) and 

generate DNA fragments of various sizes (Cover et al., 2005; Jahr et al., 2001). Importantly, 

preventing DNA fragmentation reduces the injury (Bajt et al., 2008; 2011). Release of both 

endonucleases appears to require two steps: the formation of a pore in the outer 

mitochondrial membrane, and proteolytic cleavage of the inner-membrane-anchored N-

terminus of AIF (Arnoult et al., 2003; Otera et al., 2005). The issue of what protease is 

responsible for the latter is controversial. Conflicting reports suggest that the enzyme is a 
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caspase (Arnoult et al., 2003), a calpain (Polster et al., 2005; Chen et al., 2011), or a 

mitochondrial processing peptidase (Otera et al., 2005). In any case, it has been proposed 

that AIF release, in particular, occurs in two phases during APAP-induced liver injury: an 

early phase (1–2 h) mediated by Bax, and a late phase (> 6 h) mediated either by the MPT or 

through some other unknown mechanism (Bajt et al., 2008). Because RSV did not affect 

mitochondrial Bax translocation, inhibition of AIF and EndoG release by RSV was unlikely 

caused by reduced Bax pore formation. However, effective scavenging of peroxynitrite 

prevented cell necrosis, which involves the MPT and mitochondrial swelling (Kon et al., 

2004, 2010; Masubuchi et al., 2005). Thus, the likely reason for the reduced release of 

mitochondrial intermembrane proteins after RSV treatment was the inhibition of the MPT 

by removing peroxynitrite as a major trigger. This conclusion does not contradict the 

observation that RSV protected in vitro without preventing the early depolarization of 

mitochondria. In fact, a temporary, reversible mitochondrial depolarization has been shown 

during APAP hepatotoxicity (Hu et al., 2011).

4.3 Alternate mitochondrial effects of RSV

RSV has been reported to have indirect effects on mitochondria as well. It has been shown 

to enhance mitochondrial biogenesis through Sirt1, which activates PGC-1α, the co-

activator of the nuclear respiratory factor (Nrf) proteins that control mitochondrial 

biogenesis (Komen and Thorburn, 2014). RSV can also induce autophagy (Ni et al., 2013), 

which removes damaged mitochondria from hepatocytes during APAP-induced liver injury 

(Ni et al., 2012a). However, we were unable to detect any differences in the hepatic content 

of mitochondrial biogenesis or autophagy markers between vehicle and RSV-treated animals 

(Du et al., unpublished data), suggesting that neither were responsible for the protection by 

RSV. There is also some evidence that RSV can affect mitochondrial respiration and 

reactive oxygen species production by altering the acetylation status of electron transport 

chain proteins in cardiac issue (Shinmura et al., 2011). It is possible that a similar effect 

could also contribute to the protection that we observed with RSV in APAP hepatotoxicity.

It is important to point out that many studies using natural products fail to assess the effect 

of a compound or its vehicle (for example, DMSO, which is a known cytochrome P450 

inhibitor) on the metabolism of APAP to its reactive metabolite (Jaeschke et al., 2011, 

2013). Reactive metabolite formation and APAP-protein binding are critical initiating events 

in the mechanisms of APAP-induced liver injury. Anything that interferes with the protein 

binding will affect the toxicity (Jaeschke et al., 2011, 2013). In this study, we administered 

RSV 1.5 post-APAP, which is sufficiently late to avoid interfering with APAP 

biotransformation to its reactive metabolite and the resulting protein binding, which are 

complete by this time (McGill et al., 2013). Moreover, we found that RSV post-treatment 

did not affect APAP-protein adduct formation. Thus, we can reasonably conclude that RSV 

did not alter APAP metabolism in our experiments.

4.4 Effect of RSV on sterile inflammation

It was suggested that RSV protected against APAP-induced liver injury because of its anti-

inflammatory effects (Masubuchi et al., 2009; Sener et al., 2006). Although there is 

consensus in the literature that APAP hepatotoxicity triggers an extensive sterile 
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inflammatory response with cytokine formation and neutrophil recruitment (Cover et al., 

2006; Williams et al., 2010a, 2010b), the pathophysiological relevance of inflammation is 

controversial (Jaeschke et al., 2012). Sterile inflammation is critically dependent on the 

release of damage associated molecular patterns (DAMPs) from necrotic cells. Thus, a 

reduction in cell necrosis will attenuate DAMP release and consequently reduce pro-

inflammatory cytokine formation and neutrophil infiltration (Xie et al., 2013). One of the 

previous studies showed RSV partially protected against APAP toxicity with reduced 

neutrophil accumulation at 4 h (Sener et al., 2009). However, the 4 h time point is very early 

during the injury phase and DAMP release making it likely that the reduced injury was the 

cause of the lower neutrophil infiltration. The second study also showed only a correlation 

between less liver injury in the RSV-treated group and reduced hepatic TNF-α mRNA 

expression (Masubuchi et al., 2009). Thus, none of these studies actually demonstrated a 

direct anti-inflammatory effect of RSV. Together, the preponderance of experimental 

evidence argues against inflammation being a major contributor to APAP-induced liver 

injury in experimental animals (Jaeschke et al., 2012) and in humans (Antoniades et al., 

2012; Williams et al., 2014).

4.5 Summary and conclusions

In summary, our data suggest that therapeutic administration of RSV protects against APAP-

induced liver injury by scavenging peroxynitrite and by preventing AIF and EndoG release 

from mitochondria and the subsequent nuclear DNA fragmentation. These findings are in 

contrast to previously reported mechanisms of RSV-mediated protection and illustrate the 

importance of considering all steps in the basic pathophysiology of APAP toxicity. 

Importantly, our data strongly emphasize that RSV may be a valid treatment option for 

APAP overdose.
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Abbreviations

AIF apoptosis-inducing factor

ALT alanine aminotransferase

APAP acetaminophen

DAMP damage associated molecular pattern

DMSO dimethyl sulfoxide
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EndoG endonuclease G

GSH glutathione

GSSG glutathione disulfide

gclc Glutamate-cysteine ligase, catalytic subunit

H&E hematoxilin& ampeosin

Ho-1 heme oxygenase 1

JNK c-Jun N-terminal kinase

LDH lactate dehydrogenase

LPO lipid peroxidation

MPT mitochondrial membrane permeability transition

Mt metallothionein

NAPQI N-acetyl-p-benzoquinone imine

RSV resveratrol

SOD superoxide dismutase

TUNEL terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay
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HIGHLIGHTS

- Resveratrol post-treatment protects against acetaminophen hepatotoxicity

- Resveratrol post-treatment does not affect acetaminophen-protein binding or 

JNK activation

- Resveratrol reduces oxidative stress and nitrotyrosine staining during 

acetaminophen toxicity

- Resveratrol reduces release of endonucleases from damaged mitochondria 

during acetaminophen toxicity
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Figure 1. Resveratrol protects against acetaminophen (APAP) hepatotoxicity
Mice were treated with 300 mg/kg APAP followed by dimethyl sulfoxide (DMSO) vehicle 

or 50 mg/kg resveratrol (RSV) 1.5h later. Plasma and liver tissue were harvested at the 

indicated time points post-APAP. (A) Plasma alanine aminotransferase (ALT) activity. (B) 

H&E stained liver sections. Bars represent means ± SEM for n = 3–6 mice. *P < 0.05 vs. 

0h. #P < 0.05 vs. APAP + DMSO treatment.
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Figure 2. Resveratrol post-treatment does not affect acetaminophen (APAP)-protein binding
Mice were treated with 300 mg/kg APAP followed by dimethyl sulfoxide (DMSO) vehicle 

or 50 mg/kg resveratrol (RSV) 1.5h later. Liver tissue was harvested at 6h post-APAP. 

APAP-protein adducts were measured in both whole liver homogenates and isolated 

mitochondrial fractions. Bar graphs show mean ± SEM for n = 3–6 mice.
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Figure 3. Resveratrol post-treatment does not affect glutathione depletion but does reduce 
oxidative stress and nitrotyrosine levels in the liver
Mice were treated with 300 mg/kg acetaminophen (APAP) followed by dimethyl sulfoxide 

(DMSO) vehicle or 50 mg/kg resveratrol (RSV) 1.5h later. Liver tissue was harvested at the 

indicated time points post-APAP. (A) Total hepatic glutathione (GSH) levels. (B) The 

percentage of total GSH in the oxidized form (GSSG). (C) Nitrotyrosine staining of liver 

tissue sections. (D) Western blot of whole liver homogenate using an anti-nitrotyrosine 

antibody. Bar graphs show mean ± SEM for n = 3–6 mice. *P < 0.05 vs. CTRL. #P < 0.05 

vs. APAP + DMSO treatment.
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Figure 4. Resveratrol does not prevent c-Jun N-terminal kinase (JNK) activation or 
mitochondrial translocation
Mice were treated with 300 mg/kg acetaminophen (APAP) followed by dimethyl sulfoxide 

(DMSO) vehicle or 50 mg/kg resveratrol (RSV) 1.5h later. (A) Liver tissue was harvested at 

6 h post-APAP and mitochondrial and cytosol fractions were isolated and probed for the 

total and phosphorylated forms of the c-Jun N-terminal kinases 1/2. (B) Densitometry. Bar 

graphs show mean ± SEM for n = 3–4 mice. *P < 0.05 vs. CTRL. #P< 0.05 vs. APAP + 

DMSO treatment.
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Figure 5. Resveratrol protects against acetaminophen (APAP) toxicity in vitro without 
preventing loss of mitochondrial membrane potential
Primary mouse hepatocytes were treated with 5 mM APAP and co-treated with either 

dimethyl sulfoxide (DMSO) vehicle or 100 µM resveratrol (RSV). (A) Lactate 

dehydrogenase (LDH) release into the cell culture medium. (B) Mitochondrial membrane 

potential, based on JC-1 red/green fluorescence ratio. Bar graphs show mean ± SEM for n = 

3 hepatocyte preparations. *P < 0.05 vs. CTRL.
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Figure 6. Resveratrol prevents release of endonucleases factor from mitochondria and nuclear 
DNA fragmentation during acetaminophen (APAP) hepatotoxicity
Mice were treated with 300 mg/kg APAP followed by dimethyl sulfoxide (DMSO) vehicle 

or 50 mg/kg resveratrol (RSV) 1.5h later. Liver tissue was harvested at 6 h post-APAP and 

mitochondrial and cytosol fractions were isolated. (A) Western blots for apoptosis-induced 

factor (AIF), endonuclease G (EndoG), and Bax in subcellular fractions. (B) Densitometry. 

Bar graphs show mean ± SEM for n = 3–4 mice. *P < 0.05 vs. CTRL. #P< 0.05 vs. APAP + 

DMSO treatment. (C) Nuclear DNA fragmentation in liver tissue sections as visualized by 

the TUNEL assay.
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Table 1

Induction of antioxidant genes

Gene CTRL APAP APAP + Veh. APAP + RSV

Gclc 1.0±0.16 2.0±0.36* 4.1±0.40* 2.7±0.13*

Catalase 1.0±0.14 0.63±0.03 0.58±0.05 0.56±0.03*

Ho-1 1.0±0.16 63.6±4.8* 45.2±3.6* 40.7±3.1*

Sod1 1.0±0.14 1.0±0.11 1.1±0.10 1.3±0.10

Sod2 1.0±0.060 0.72±0.09* 0.73±0.05* 0.75±0.04*

Mt-1 1.0±0.50 14.3±1.4* 15.1±0.71* 19.0±2.5*

Mt-2 1.0±0.69 20.1±3.2* 15.1±0.42* 18.1±0.54*

Data are expressed as mean ± SE for n = 3–6.

*
p < 0.05 vs. CTRL.
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