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Abstract

Intensive care monitoring systems are typically developed from population data, but do not take 

into account the variability among individual patients’ characteristics. This study develops patient-

specific alarm algorithms in real time. Classification tree and neural network learning were carried 

out in batch mode on individual patients’ vital sign numerics in successive intervals of incremental 

duration to generate binary classifiers of patient state and thus to determine when to issue an 

alarm. Results suggest that the performance of these classifiers follows the course of a learning 

curve. After eight hours of patient-specific training during each of ten monitoring sessions, our 

neural networks reached average sensitivity, specificity, positive predictive value, and accuracy of 

0.96, 0.99, 0.79, and 0.99 respectively. The classification trees achieved 0.84, 0.98, 0.72, and 0.98 

respectively. Thus, patient-specific modeling in real time is not only feasible but also effective in 

generating alerts at the bedside.
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1 Introduction

In the Intensive Care Unit (ICU), an arsenal of medical devices continuously monitor each 

patient. The most computation-intensive of these devices is the bedside monitor, which takes 

in patients’ physiological measurements from biosensors and other devices, converts the 

incoming electrical signals into digitalized waveforms and vital sign numerics, displays 

these to caregivers, stores and analyzes them to track patients’ physiological state, and 
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sounds alarms whenever its built-in algorithms detect a physiological abnormality. While 

new biosensors have increased the number and quality of available physiological signals [8], 

and color touch screens have made bedside monitors more user-friendly, the clinical utility 

of alarm algorithms that are central to timely detection of adverse conditions have continued 

to advance at a slower pace than other medical technologies [10, 17, 5, 9, 7].

Until the 1990’s, most alarms were triggered when a specific physiological measurement fell 

outside pre-set threshold boundaries, without any specific dependence on other signals or, 

more importantly, the overall state of the patient, which was not represented. Even the most 

sophisticated algorithms, such as those interpreting electrocardiogram (ECG) variations, 

examined only one source of data, from ECG leads. Alarm detection in the newer generation 

of patient monitoring systems is more sophisticated than previously. Although the details of 

the new algorithms have not been disclosed, from publicly available information we know 

that they include sensitive artifact detection, noise elimination, pattern recognition of 

specific disease conditions, such as ventricular fibrillation, and some multiple-signal/multi-

channel data analysis. Indeed, we perceive a gradual shift in emphasis of ICU monitoring 

from issuing alarms toward creating alerts that are part of a larger decision support 

infrastructure. We will use alerts when we mean this expanded view.

In this paper we address another potential source of improvement: tuning alerting models to 

specialized patient populations, or, indeed, to the individual patient. After all, in critical care 

no two patients are the same.1 In fact, many patients behave in highly individual ways that 

might deviate significantly from the average patient in population-based models. What 

counts as “normal” for one patient may be highly abnormal if seen in another, and patients’ 

dynamic responses to changing circumstances also vary greatly from individual to individual 

[11].

Alarm algorithms today are developed retrospectively, by using previously collected 

datasets that encompass thousands of patients to build models that detect adverse clinical 

events, namely medical conditions that could become life-threatening. Once built, these 

algorithms are applied without further improvement to many patients in the ICU. Yet, a 

previous study from our laboratory found that some models built from one patient 

population performed significantly worse on data from two other groups of patients, but 

simply optimizing the thresholds used in these models to fit data from 9% of these other 

patients greatly improved the models’ performance [16]. This finding suggests that for 

patient monitoring to be robust, its algorithms must be able to adapt to a focused patient 

population or even to the individual patient.

The research reported here explores the most aggressive form of this hypothesis, that we can 

build effective patient-specific alarming models from a specific individual’s own data. Our 

preliminary findings were reported in [19, 20]. Obviously, such a “pure” strategy will be 

quite ineffective before any individual data are collected, so we also study the rate at which 

this approach can learn to produce accurate detection of clinically relevant events at the 

1Roger G. Mark, MIT, personal communication, 2000.
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bedside, using the system presented in [19]. As an initial investigation of this approach, the 

present study has numerous limitations, which we address in the discussion.

2 Methods

2.1 Clinical Setting

This research was carried out in collaboration with the pediatric Multidisciplinary ICU (P-

MICU) at Boston Children’s Hospital, with the approval by the hospital’s Institutional 

Review Board. The P-MICU staff allocated a spacious bedspace to the study and assisted 

with clinical annotations. Before each study session, informed consent was obtained from 

the patients and their families to ensure that they were willing to participate in the study and 

felt comfortable with the presence of the computer equipment and a trained observer. The 

first author served as the trained observer. During study sessions, which took place between 

2001 and 2003, between 8 AM and 2 AM, the trained observer sat at the bedspace with a 

laptop computer connected to the bedside monitor, with a curtain drawn between the patient 

and the observer whenever necessary. Patient confidentiality and privacy have been 

protected according to the hospital’s guidelines.

A total of 196 hours of monitoring data were collected and analyzed from 11 different 

patients ranging in age from infants to adolescents, five of whom were in especially critical 

condition. Data collection took place during 23 sessions, of which 14 were of at least eight 

hours’ duration, and four more of which lasted at least four hours. The shortest five sessions 

lasted between 2 and 3.5 hours.

2.2 Synchronized Data Collection

To support our study, we collected and recorded the following information during each 

session:

• The second-by-second numerics computed from the measured waveform data by 

the HP Viridia Neonatal Component Monitoring System (CMS) used in the P-

MICU. These include the heart rate derived from ECG waveforms, pulse rate from 

plethysmography, respiration rate, blood pressure (systolic, diastolic and mean) 

either arterial or measured by non-invasive means, arterial and venous oxygen 

saturation, and oxygen perfusion.

• One-minute running averages of all numerics. These averages are less prone to 

momentary noise, though they are obviously not as quickly responsive to changing 

conditions.

• Interpretations made by CMS and related information, including (a) clinical alarm 

status and severity, (b) whether any of the threshold alarms on individual signals 

have been triggered, (c) sensor or monitor malfunction (INOP) alarm status and 

severity, (d) monitor status, and (e) alarm suspension (when an alarm has been 

silenced by the nurse on duty).

• Clinical events noted and interpreted by the bedside observer, under each of the 

following circumstances:
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1. the bedside monitor issues an alarm other than an INOP

2. any of our alarm algorithms under investigation issues an alarm

3. the patient became irritated and required immediate attention even when no 

alarm is issued

For each clinical event, the bedside observer records the start and end time of the 

event, whether the patient is moving, whether a medical procedure (e.g., 

suctioning) is in process, and the medical staff’s response to the alarm, such as 

checking the patient, adjusting sensors, or silencing alarms without other 

intervention. In addition, the observer asks the nurse or physician at the bedside to 

classify the event into one of three categories:

1. true positive, clinically relevant (TP-R)

2. true positive, clinically irrelevant (TP-I)

3. false positive (FP)

Figure 1 shows the dialog box for annotating one event, in this case resulting from one of 

the algorithms under investigation issuing an alarm.

2.3 Models Derived from Different Amounts of Past Data

As we described in the Introduction, we investigate the degree to which models learned from 

a patient’s own data can be effective in interpreting future data points. Rather than doing this 

continually, we have chosen to construct interpretive models based on all previously 

collected data at 30 minutes, 1 hour, 2 hours, 4 hours, and 8 hours into each 12-hour 

recording session.

After each model is built, all subsequent data (i.e., one each second) are interpreted by each 

of the models and the results are recorded. In addition, we recorded each second the single-

signal threshold alarms and the more integrated CMS alarms issued. These records, along 

with the clinicians’ interpretations of clinical events, are then used both for training of our 

subsequent models and for evaluation of these models and their comparison against the 

outputs of the monitoring system.

2.4 Gold Standard Data

The goal of our patient-specific alarm models is to make a binary judgment at each second’s 

data whether an alarm should or should not be called. To train these models, we assume that 

the answer should be “alarm” during any clinical event where the clinicians had called the 

event a true positive, whether or not it was considered clinically relevant. Conversely, the 

answer should be “stable” at any time that no event occurred or if an event occurred that was 

annotated as a false positive. Because events could be created not only by an alarm from 

CMS but also by alarms from our own models or from observations by the clinicians or 

observer, we are also able to recognize instances of false negatives, where an algorithm 

should have issued alarm but did not do so. We assume that all data points at times when no 

clinical event was recorded are true negatives (i.e., when none of the models, CMS, the 

clinicians or the observer saw an event).
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We used one additional method to modify these classifications: if the patient’s condition 

changed within the 30 minutes following an event, the classification of that event could be 

revised as appropriate. For example, if an alarm for bradycardia is classified as a false 

positive, and the patient becomes persistently hypotensive in the next 30 minutes, we would 

revise the classification to clinically relevant true positive. Thus, the gold standard for our 

classification tasks consists of human experts’ classification at the time the data become 

available and either verification or re-classification using subsequently obtained 

information. In case event classifications changed, we did not re-do training of models that 

had been built from data about that time period; however, models built at times after the 

correction would incorporate the revised classification. Such reclassification is rare, having 

occurred only five times in our 196 hours of data collection.

2.5 Training of Patient-Specific Alarm Algorithms

We chose to investigate two machine learning techniques that had shown potential in 

generating intelligent alarm algorithms in earlier studies [16, 18], classification trees and 

artificial neural networks. Classification tree learning is suited for the learning tasks in 

critical care because it is a useful classification method for problems in which 1) instances 

are represented by a fixed set of attributes; 2) the classification output is discrete-valued; 3) 

disjunctive description may be required; 4) training data may contain errors; and 5) the 

training data may contain missing attribute values [14]. Neural network learning is a general, 

practical method for learning real-valued, discrete-valued, and vector-valued nonlinear 

functions. It is especially useful for capturing nonlinear patterns. The training examples may 

contain errors, and evaluation of the learned target function is fast [12]. These capabilities 

work well for learning tasks in critical care settings.

For both learning algorithms, the input data consisted of the eight second-by-second 

numerics and the corresponding minute-by-minute running averages, as described in Section 

2.2. The classification label for the training data samples, as well as the output of each 

learned model, is binary: an “alarm” if the gold standard assignment of the data point was 

“alarm”, or “stable” otherwise, as described in Section 2.4.

For classification tree learning, we chose See5 [2] to conduct a top-down, greedy search 

through the space of possible classification trees. See5 is a Windows implementation of 

C5.0, a new-generation data mining tool that is built upon its predecessors C4.5 and ID3 for 

generating classification trees and rule-based classifiers more accurately, faster, and with 

less memory [3]. It includes the ability to handle discrete as well as continuous input values 

and a variety of pruning methods to try to avoid overfitting. The details of these methods are 

proprietary, but the software supports a number of user-tunable parameters.

After experimenting with 5 to 15-fold cross-validation and differential misclassification 

costs (see below), we chose the following settings: 10 trials for boosting, no cross-validation 

(to speed up training time), no differential misclassification costs, 25% local pruning, global 

pruning, 2 final minimum cases, no winnowing, no subset selection, and no sampling to 

obtain more balanced and generalized classification trees. A classification tree that is 

produced represents a branching sequence of binary decisions that successively subdivide 
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the hyperspace of data points until each terminal region contains only points whose labels 

are (preponderantly) the same. Figure 2 shows an example.

For neural network learning, we chose a model with a single output node and one layer of 

hidden nodes in which the number of nodes initially equalled the number of inputs. Each 

input is connected to each of the hidden nodes, and each hidden node feeds into the output 

node. We employ back-propagation as the core learning algorithm. Each hidden node is a 

sigmoid unit that takes in individual inputs x1, …, xn, calculates their weighted sum, and 

generates an output using the transfer function

for the k-th node. In the equation, wk,i is the weight for input xi, and δk is the neuron offset. 

The output node, by contrast, is a threshold unit producing a binary result. We employed the 

software EasyNN-plus because it could run back-propagation as an embedded application in 

batch-mode [1]. The learning rate was initially set at 1.0 and then optimized over the 

training cycles. The momentum for the weight-updating rule was first set at 0.8 and then 

optimized over training cycles. These parameters, as well as the number of nodes in the 

hidden layer, were adjusted using sequential multi-fold leave one out validation. Thirty 

percent of the training data were used as test data for the internal optimization of parameters. 

The training time was capped at 120 seconds. The detailed rationale for the settings for both 

learning methods is given in [19].

2.6 Implementation

All computations were performed on a Dell laptop computer running Windows 2000 on a 

2.2 GHz Pentium 4 CPU with 1GB of RAM. The most demanding computational load arose 

during the times when new classification models were being built. This occurred five times 

during each session, and at each time both a classification tree and a neural network model 

were constructed. At all times, including while building new models, the computer was 

acquiring data from the bedside monitor, storing these data into its own database, running 

each previously trained model on the current data, opening annotation windows 

corresponding to newly detected events from the CMS data, our algorithms, or the observer, 

and managing the user interface, which could simultaneously display numerous annotation 

windows if the staff were busy taking care of the patient and had not yet had time to make 

their interpretations of the events.

To support this highly heterogeneous workload, and to permit interfacing to the 

communication programs, the database, and the machine learning programs, our program 

was multi-threaded and relied on the facilities of the operating system to permit the 

simultaneous execution of all these tasks. Some of the limits imposed on the learning 

algorithms resulted from the system’s inability to keep up with all the necessary 

computations if the learning algorithms were allowed to demand more computing power. 

For example, during execution of the learning algorithms, we did note instances where the 

CMS interface would miss some incoming data points because the overall system did not 

respond quickly enough to data appearing in the input buffer.
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3 Results

We were able to collect data during 23 sessions from 11 patients over a total of 196 

monitoring hours, and to build and test our learning algorithms in real time on these data. 

We describe the incidence of alarm conditions for the monitored patients and the computer 

time needed to train our models, and we present the performance of our algorithms in terms 

of sensitivity, specificity, positive predictive value, and overall accuracy.

3.1 Adverse Events

During the 196 monitoring hours, there were 325 clinical alarms sounded by the bedside 

monitor and two false negatives observed at the bedside by the trained observer. Of the 

alarms, 290 were true positives that required clinical interventions, 20 were true positives 

that did not require clinical intervention, and 15 were false positives. The 312 adverse 

clinical events generally were both sparse and brief in time, totaling 4.35% of the 196 

monitoring hours. The number of such events experienced by each patient in the study 

varied significantly. Four patients had only one event in more than two hours, three patients 

experienced an average of three events per hour, and one suffered six events per hour. 

Although the typical percentage of time each patient spent in an alarm condition was low, 

these also varied widely, from essentially zero to a high of 42% of the time, for the patient 

experiencing six alarms per hour.

3.2 Training Time

Table 1 shows the amount of time spent that See5 took to train classification tree models 

using various numbers of data points and several settings of parameters for one typical 12-

hour study session. Training times for other sessions varied by as much as ±50%. We always 

used the 25% setting for See5’s global pruning, to help avoid overfitting. A 10-fold cross 

validation is useful for estimating the accuracy of the classification tree, but it also increased 

the training time approximately three-fold for every doubling in the number of data points. 

Boosting generally yields a higher predictive accuracy for the classifier, but at the cost of a 

nonlinear increase in training time.

Training neural networks in general took more time than training classification trees. 

EasyNN-plus does not keep track of training time; thus, precise estimates of training times 

are not available for neural network learning. A rough estimate based on repeated 

observations was in the range of a few seconds to several minutes for 1800 to 28800 training 

data points, corresponding to 30 minutes to 8 monitoring hours. Training time could vary 

significantly with different training specifications, such as learning rate, momentum, the 

number of validation cycles, and the target error for each cycle. EasyNN-plus was set to stop 

training at 120 seconds, despite a toll on modeling accuracy, to prevent its computational 

demands from disrupting the overall system.

3.3 Performance of Learned Models

We present performance data for our learned models averaged over those ten sessions that 

lasted at least eleven hours, which accounted for about 120 of the 196 total monitoring 
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hours. We chose this threshold so that there would be adequate test data in each session after 

computing the final models at the eight-hour time.

Tables 2 and 3 show the performance of the models learned by our methods purely from 

previous data about the individual patient, using classification trees and neural networks, 

respectively. For comparison, we also show the performance (in each table) of the CMS 

algorithm built into the bedside monitor and of a simple threshold algorithm representative 

of the previous generation of monitors. Both classification tree and neural network derived 

models have extremely low sensitivities based on only the first half hour of data, and 

gradually improve as more data become available. With eight hours of data, the two 

methods attain average sensitivities of 0.84 and 0.96, respectively. Positive predictive value 

(PPV) starts high for both methods based on very little data, drops dramatically, and then 

recovers to exceed the PPV of the threshold algorithm after training on eight hours of data. 

Both specificity and overall accuracy start high, drop slightly, and then increase to close to 

1.0 with additional training data. Comparing the average performance measures of the two 

learning methods shows that for each length of training data the neural network learned 

models seem better than the classification tree ones.

4 Discussion

Our goal in this work was to explore the hypothesis that effective classification models for 

identifying when it is appropriate to alarm during ICU monitoring could be learned from the 

individual patient’s own history in the ICU and from annotations by the clinical staff of 

those earlier data. If this approach is valid, we would expect that more sophisticated systems 

than the ones we have built would combine the best current population-based monitoring 

algorithms with patient-specific learned models such as we explore here to produce better 

combined monitors. We have not directly studied this broader expectation, but we believe 

that our results make a good plausibility argument for it.

4.1 Learning Curve for Patient-Specific Learning

At the onset of this research, we expected that patient-specific learning would exhibit the 

characteristics of a standard learning curve. Indeed, we see a number of such characteristics 

in Figure 3, which shows the data in Tables 2 and 3 as plots that demonstrate the changes in 

average sensitivity, specificity, positive predictive value and accuracy of the patient-specific 

models as a function of the amount of training data. Although our models as trained on 2 

hours or less of patient data generally perform much more poorly than either CMS or a 

simple threshold model, our models, especially those based on neural networks, exhibit 

improvements in each of our performance measures that demonstrate significant learning 

with additional data. In fact, models trained on four and eight hours of data approach (or 

sometimes surpass, in the case of the threshold algorithm) the performance of systems that 

have been optimized over large populations and many more data points.

We could not have expected the models based on only a half-hour of data to do very well, 

because in many monitoring sessions there had been very few alarm events during that brief 

time. Thus, these models have been unable to learn alarm events, leading to their low 

sensitivity. To our surprise, however, these models’ specificity is high. One explanation of 
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their high specificity is that they properly (although not very intelligently) call all stable 

points correctly. Even models built from one, two and four hours of data suffer from this 

finding. We believe that this same phenomenon probably also accounts for the sharp dip in 

positive predictive value and the milder dip in accuracy in the models trained on one and 

two hours of data.

The monotonic increase with time in sensitivity of our models, as shown by Figure 3, 

suggests that by something like eight hours, the algorithms have encountered most of the 

alarm conditions that they need to recognize. Although the average performances of the 

models from both classification tree learning and neural network learning are not as high as 

that of the current bedside monitors, the models built from eight hours of training data are 

more specific, accurate, and able to predict correctly than the threshold alarm algorithm 

does, although their sensitivity remains lower. We had not anticipated this result, though as 

in most machine learning applications, additional training data tend to lead to better 

performance. Indeed, we now expect that these performance measures would continue to 

improve with additional patient-specific training data. The principal limits to such 

improvement come from the possibility that the models would eventually over-fit the 

available data and that patients’ physiological state would eventually change so as to make 

predictions based on past data incorrect.

4.2 Implications for Learning Methods

In our experiments, models built using neural networks do better on almost every measure 

than those built using classification trees. Perhaps this should not be surprising given the 

continuous nature of the input data and the greater ability of neural networks to model non-

linear interactions among the data. As illustrated by the classification tree in Figure 2, the 

minute averaged data play a critical role toward the leaves of the tree, probably because they 

better take into account the context within which each data point is interpreted. Perhaps 

additional derived features, such as local slopes, or the parameters of linear models fit 

locally to the data might additionally improve classification, as has been the case in earlier 

work by Tsien [16].

There are many possible improvements to our methods, which may move us toward more 

accurate monitoring systems. We have already mentioned the need to combine the best 

existing models for decision support with patient-specific learning methods. Especially early 

during a patient’s ICU stay, the general models trained on population data must bear the 

brunt of recognizing alarm events because the patient-specific learning methods have not yet 

had a chance to learn much. Later, we should put greater reliance on the learning methods, 

though there will remain circumstances novel to any individual patient that should be better 

recognized by a more broadly-trained monitoring algorithm. For any such combined model, 

it would be helpful for each component to issue not only a classification label for each data 

point but also some indication of its certainty. For example, our neural network models 

could use a sigmoid rather than a threshold output unit, so that their results could be 

combined with other monitoring outputs using some method that relies on continuous risk or 

probability scores from its inputs.

Zhang and Szolovits Page 9

J Biomed Inform. Author manuscript; available in PMC 2015 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In retrospect, we believe that a better set of experiments would have learned the shorter-term 

models from the last rather than the first n hours of data. That would have reflected the most 

recent history of the patient and thus been a more fair indication of their value. Nevertheless, 

we suspect that the patient-specific models trained on longer data series would still have 

performed better.

Our method learned five different sets of models during monitoring session that lasted eight 

hours or more. Consecutive sets of models were built using twice as much data as the 

previous set did, and each time we learned new models, we did so by running batch training 

algorithms over all the previously collected data. Had we run truly incremental (on-line) 

learning algorithms [6], we would not have had to choose particular training durations 

because any model would have kept completely up to date to interpret each new data point. 

However, the feasibility of running incremental learning algorithms for model development 

in clinical settings such as the ICU still needs to be examined; thus, as a first step in 

realizing patient-specific learning in real time, this research has focused on the incremental 

nature of the learning tasks itself and used non-incremental learning algorithms to carry out 

these tasks. We plan to use truly incremental learning algorithms to develop patient-specific 

models in the future. Because the first two commandments for implementing clinical 

information systems are “speed is everything” and “doctors won’t wait for the computer’s 

pearls” [15], we still face the challenging questions of how to optimize on-line training. 

Methods that learn more sophisticated models or ones that explore a larger set of parameter 

settings for learning may be too slow to run on-line. Some delays in using the most recent 

data may even be desirable if it takes time for clinicians to give their gold standard 

annotations or for the patient’s future course to modify an annotation.

4.3 Imbalanced Datasets

Because appropriate alarm events are relatively rare, the vast preponderance of data points 

collected in a study such as this one should be classified as stable. As a result, learning 

algorithms may be justified to learn to classify all data points as “stable” and to consider the 

true positives simply as “noise” that could be suppressed by the learners during pruning.

One way to overcome this problem is to use an asymmetric cost function, one that penalizes 

misclassification of alarm points (false negatives) more heavily than misclassification of 

stable points (false positives). This seems clinically reasonable, because in a monitoring 

situation we may be willing to accept more false alarms in order to avoid missing true ones. 

We did some limited experiments with asymmetric cost functions ranging from 10:1 to 

1000:1 for penalizing false negatives, but the resulting models seemed generally inferior to 

the ones reported above, mainly due to significant decreases in specificity. We do not know 

what the right cost ratio should be; a careful cost-benefit analysis to determine this ratio has 

not been performed, to our knowledge.

We also experimented using resampling methods to overcome the problem introduced by 

the imbalanced datasets, but also without positive results. For example, sub-sampling the 

“stable” points to equalize the number of alarm and stable training points increased the 

number of false positives called by our models without notable improvement in other 
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measures. Perhaps by discarding many of the stable points, the models learn fewer of what 

are considered clinically normal conditions in critical care.

We also tried replicating the data points labeled as alarm, but the resulting training dataset 

became much bigger in size. While each model did not take much time to classify each new 

data point, the training time increased significantly with more training examples. Other, 

more sophisticated resampling methods such as bagging [4] might do a better job at 

addressing this problem.

4.4 Time

Perhaps the major impediment to further development and deployment of the new methods 

introduced here lies in the need for correctly annotated data from a very busy, tense, and 

pressured environment. Clinical staff are unlikely to have the time to annotate all clinical 

events listed in Section 2.2 or the resources to hire trained observers to perform that task, as 

done by the first author in our experiments. Therefore, automated methods to annotate 

clinical events are essential to patient-specific learning in real time. The sources of data we 

have for developing such annotations are the responses of clinicians to alarms and an ability 

to judge the appropriateness of an alarm based on what happens in the (near) future course 

of the patient. These, perhaps combined with data from additional instruments in the ICU, 

may suffice to provide a basis for learning improved patient-specific models. One capacity 

of human observers that no automated methods could completely emulate, however, is the 

timely identification of events where an alarm should have been considered but was not.

Computer time was also an impediment in our experiments, as we have mentioned. A 

single-processor laptop machine was barely able to keep up with our computational 

demands. Of course this type of problem is normally overcome by technical advances 

according to Moore’s Law [13]. For example, the computers being manufactured in 2008 

typically have multiple processors, faster memory buses, and both computers and monitors 

have more robust and faster serial communication ports. Despite these improvements, it 

appears that added sophistication in the nature of the learning algorithms, the complexity of 

the models being learned, the amount of training data, and optimization by investigating a 

space of tunable learning parameters might demand enough additional computing time to 

overtake even faster computers. For example, we artificially limited the slower neural 

network training program to 120 seconds of training time; yet Table 1 suggests that training 

times may increase non-linearly, especially when boosting and cross-validation are used, 

even in the faster classification tree learner. Furthermore, because variations in parameter 

settings can lead to significantly different models being constructed, the learning time 

becomes less predictable.

5 Conclusion

Our expanded system of real-time data collection and algorithm development demonstrated 

that patient-specific learning in real time is a feasible approach to developing alarm 

algorithms for monitoring purposes in the ICU. Performance measures of the trained 

classification trees and neural networks were consistent with the course of a generalized 

learning process. The ones that are trained with eight hours of monitored numerics data 
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outperformed the standard threshold alarm algorithm, which represented the alarm 

algorithms in previous generations of patient monitoring systems, and came close in 

performance to the alarm algorithm in the new-generation monitors. These algorithms are 

also useful for integrating multiple physiological signals in detecting adverse clinical events 

and generate informative alerts at the bedside. Our methodology could be used in 

constructing comprehensive models that, in tracking the state of a patient, generalize over 

both disease processes and patient populations.
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Figure 1. 
Example of an annotation box that allows the bedside observer to record the nature and 

duration of an event, as well as an indication of whether the clinical staff consider it a false 

positive, true positive that is clinically relevant, or true positive that is clinically irrelevant.
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Figure 2. 
An example classification tree. This asymmetric tree encodes a succession of decision 

criteria, where each condition leads either to a classification (0/stable or 1/alarm) or to a 

subsequent threshold test. For example, according to this tree, if the patient’s O2Sat exceeds 

91, that is considered stable. If it is below 87, that is considered an alarm condition. In-

between, we need to examine the heart rate, which, if above 211, means alarm. Otherwise, 

we continue to apply further threshold tests until we reach a classification. The numbers in 

parentheses show the total number of training instances that fell into this region of the 

hyperspace and the number of these that were misclassified. These counts are not generally 

integers and the number of misclassifications is not zero because of See5’s pruning methods, 

which try to avoid overfitting. This tree had the smallest training error among a community 

of classifiers that were built on 14,400 training data points (from 4 monitoring hours) with 

10 trials of boosting. Reproduced with permission from [20]. Copyright @ 2007 IEEE.
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Figure 3. 
Plots of averaged (a) sensitivity, (b) specificity, (c) positive predictive value, and (d) 

accuracy of models trained on increasing amounts of patient-specific data, compared to the 

performance of the CMS algorithm and a simple threshold algorithm. The horizontal axes 

are logarithmic in time, and the vertical axes for (b) and (d) are expanded to show 

differences in a narrow range of values. Vertical bars indicate the ranges of the individual 

values that comprise the averages. The data come from Tables 2 and 3.
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Table 1

Training Time for Classification Tree Learning (seconds). Reproduced with permission from [20]. Copyright 

@ 2007 IEEE.

Data
Points

Global Pruning 25% 10-fold Cross-validation
Global Pruning 25%

10 Boosting Trials
10-fold Cross-validation

Global Pruning 25%

1800 < 0.1 0.1 0.1

3600 0.1 0.2 2.5

7200 0.2 0.7 3.2

14400 0.5 2.0 11.0

28800 1.1 6.0 53.5
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