Skip to main content
. 2015 May 18;2015:814104. doi: 10.1155/2015/814104

Table 9.

Details of the 23 features resulting by the backward elimination method using Näive Bayes Classifier.

23 features
Backward elimination
Haralick features Haar-like features Statistical features
Orientation Coordinate Mask size Type Mask size Entry
Position* Coordinates
Normalized gray level* Value
Correlation 0 Y 7
Correlation* 45 X 3
Correlation* 45 X 5
Correlation 45 X 7
Correlation* 45 X 9
Correlation 45 Y 9
Correlation 45 Y 5
Correlation* 90 Y 9
Homogeneity 135 Z 3
Gradient* 5 DF¯
Gradient 7 DF¯
Contrast* 135 Y 3
Gradient 9 OP¯
Homogeneity* 90 X 9
Gradient 3 BH¯
Skewness* 7
Gradient* 5 EC¯
Gradient 3 IL¯
Template* 1
Skewness* 5
Gradient 5 MN¯

The asterisk indicates the entries also present in the list of 36 SFS features. For Haralick features, the orientation in degrees, reference coordinate, and the size of the cubic mask used are reported. In case of Haar-like features, the entry value indicates the template type used (see Figure 2). For statistical/positional kind, the size of the cubic mask used and/or the self-explained value is listed, depending on the specific feature type. In particular for gradients, the column named Entry indicates the segment of the reference diagonal as shown in Figure 3.