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Root systems consist of different root types (RTs) with distinct
developmental and functional characteristics. RTs may be individ-
ually reprogrammed in response to their microenvironment to
maximize adaptive plasticity. Molecular understanding of such
specific remodeling—although crucial for crop improvement—is
limited. Here, RT-specific transcriptomes of adult rice crown, large
and fine lateral roots were assessed, revealing molecular evidence
for functional diversity among individual RTs. Of the three rice RTs,
crown roots displayed a significant enrichment of transcripts as-
sociated with phytohormones and secondary cell wall (SCW) me-
tabolism, whereas lateral RTs showed a greater accumulation of
transcripts related to mineral transport. In nature, arbuscular mycor-
rhizal (AM) symbiosis represents the default state of most root sys-
tems and is known to modify root system architecture. Rice RTs
become heterogeneously colonized by AM fungi, with large laterals
preferentially entering into the association. However, RT-specific
transcriptional responses to AM symbiosis were quantitatively most
pronounced for crown roots despite their modest physical engage-
ment in the interaction. Furthermore, colonized crown roots adopted
an expression profile more related to mycorrhizal large lateral than
to noncolonized crown roots, suggesting a fundamental reprogram-
ming of crown root character. Among these changes, a significant
reduction in SCW transcripts was observed that was correlated with
an alteration of SCW composition as determined by mass spectrom-
etry. The combined change in SCW, hormone- and transport-related
transcript profiles across the RTs indicates a previously overlooked
switch of functional relationships among RTs during AM symbiosis,
with a potential impact on root system architecture and functioning.
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Root systems of higher plants take up nutrients and water and
provide anchorage to the ground. These functions are shared
among distinct root types (RTs) of which the sturdier tap or
crown roots are implicated in anchorage, and the finer, soil-
exploring lateral roots in foraging for nutrients and water (1).
However, although RT-specific growth responses to abiotic
stimuli have been described (2), the molecular basis of this
functional diversification within the root system remains poorly
characterized. In recent years, significant efforts have been devoted
to the examination of transcriptomes of individual root cell types of
Arabidopsis thaliana and rice (3-6) and have provided important
insight into root cell patterning and functional specialization. Such
experiments have focused typically on young, developing tissue in
the primary root. In contrast, the transcriptional differences
among RTs from a mature root stock remain unknown. In addi-
tion to innate, within-root system diversity, root systems are
asymmetrically influenced by the abiotic and biotic environment.
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For example, due to heterogeneities in the soil, each individual
root might encounter different nutrient concentrations or soil
moisture (7, 8). In addition, soil microorganisms release signal-
ing molecules and induce changes in the microenvironment of
the root through their physiological activities (9). The response
of individual RTs to these alterations will have an important
impact on plant survival. Understanding root system behavior at
the RT level is therefore of great importance in rational breeding
approaches for greater plant stress tolerance and crop productivity.

Most plants, including major agricultural crops, engage in evo-
lutionarily ancient arbuscular mycorrhizal (AM) symbioses with
glomeromycotan fungi. These fungi colonize the root intracellularly
and increase plant mineral nutrition through uptake of nutrients via
an extended extraradical hyphal network and subsequent release by
highly branched hyphal structures, the arbuscules that colonize
root cortex cells (10, 11). Typically, AM colonization is unevenly
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distributed within the root system (12). This is particularly evident
in rice root systems that consist of three major RTs: weakly col-
onized crown roots (CRs), strongly colonized large lateral roots
(LLRs), and fine lateral roots (FLRs), which are not colonized
(13, 14). Differential colonization suggests that reciprocal root-
fungal signaling events prior and during colonization, and plant
physiological changes in response to colonization, are RT specific
and likely impact nutrition and root system development. Indeed,
AM colonization induces developmental responses that lead to
changes in root system architecture (12). In rice, these responses
are most pronounced in CRs, which grow longer and increase the
production of lateral roots (13). Such proliferative root system
changes potentially impact plant survival under stress conditions
such as drought or nutrient scarcity.

The architectural changes of the rice root system during
colonization and the difference in colonization pattern among the
RTs prompted the hypothesis that the transcriptome of each rice
RT must be differentially reprogrammed during AM colonization,
resulting in distinct developmental and physiological responses. To
address this hypothesis, we generated whole genome transcriptomic
data for the three rice RTs, individually collected from root systems
that were either noncolonized (NC) or colonized by the AM fungus
Rhizophagus irregularis (M). We report substantial differences
among the transcriptomes of rice CRs and lateral roots. CRs display
high expression levels of large numbers of genes involved in hor-
monal activity and secondary cell wall (SCW) biosynthesis, whereas
lateral roots show a stronger expression of certain nutrient trans-
porters. Importantly, we observed RT-specific responses to AM
colonization that included a switch in the class of hormone-related
genes and a large and systemic decrease in SCW gene expression
in CRs, accompanied by changes in cell wall phenolics.

Results

Global Patterns in the RT Transcriptome. To monitor the tran-
scriptomes of the RTs, CRs, LLRs, and FLRs were collected
from mock inoculated and R. irregularis colonized mature root
stocks of rice plants at V8, corresponding to late tillering stage (15).
Significant variation was expected between biological replicates (SI
Appendix, Fig. S1 A and B) because of the limited synchrony of
(¢) the developmental stages of each RT and of (if) fungal colo-
nization dynamics. Before collecting RTs, the root samples were
examined microscopically to confirm efficient colonization of my-
corrhizal roots and absence of colonization in control samples. In
inoculated root systems, the LLRs were the most strongly colo-
nized with a total root length colonization of 69.5% (+3.5%),
followed by CRs with 48.2% (+7.2%), and FLRs lacking fungal
colonization, confirming earlier observations (13).

Following an exploratory analysis (S Appendix, Fig. S1 A and B),
the number of genes being expressed in each RT was recorded (S7
Appendix, Fig. S1C). About one-half to two-thirds of the genes were
called “present” in the rice root systems of both NC and M con-
ditions. The three RTs showed a large overlap of transcriptionally
active genes across the two treatments. Interestingly, a significant
number of genes were expressed in only one or two of the RTs,
suggesting RT specificity in gene expression (SI Appendix, Fig. S1C).

Gene expression data (Dataset S1) were analyzed to identify
significant changes (FDR 10%) among RTs and mycorrhizal
condition using a linear model including RT, inoculation status,
and their interaction. This analysis identified 8,980 distinct genes
that accumulated differentially between at least one pair of
treatments (Dataset S2).

Distinct RT Transcriptomes. Examination of the transcriptional
profiles of noncolonized RTs revealed that the expression
profiles of LLRs and FLRs were highly similar (Fig. 1) and no
gene was detected by our model to be significantly differently
expressed between them (Dataset S2). This is surprising as FLRs
differ from LLRs in their reduced number of cell layers and in
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their tissue composition. However, the transcriptional profiles of
LLRs and FLRs were clearly distinct from that of CRs, with
5,591 transcripts accumulating to significantly different levels for
the CR-FLR comparison and 1,179 transcripts for the CR-LLR
comparison (Dataset S2 and Fig. 1), supporting the notion that
CRs and LRs are functionally different (1).

Hormonal and transporter action underpin root system de-
velopment and functioning (3). We therefore investigated expres-
sion patterns of genes associated with these activities. Mapping
relative transcript abundance of differentially called genes across
the RTs revealed a distinct profile for hormone (SI Appendix, Fig.
S24)- and transport (SI Appendix, Fig. S2B)-associated genes. For
either group, relative transcript abundance was highest in CRs for
the majority of genes. Among the hormone-related genes, those
associated with the hormone auxin were overrepresented (39 of 68,
SI Appendix, Fig. S2A4), indicative of the main role CRs play during
root system architectural changes (13, 16). In addition, the high
abundance of transcripts encoding amino acid and peptide trans-
porters in the CRs (23 of 30 significantly differentially expressed)
points toward their pronounced contribution to organic as opposed
to inorganic nitrogen transport (two of four ammonium trans-
porters). LRs, on the contrary, showed an overall lower number of
highly expressed genes. However, transcript levels of inorganic ion
transporter-encoding genes were elevated for ammonium, chloride,
and magnesium transporter genes among others (SI Appendix, Fig.
S2B), thereby illustrating the importance of LRs for the uptake of
these essential elements from the soil. LLRs produced an in-
termediate transcriptional signature, which may be explained by the
tissue heterogeneity of this RT, with older aerenchymatic and
younger, cortex-containing parts being similar to CRs and FLRs,
respectively (15).

RT-Specific Transcriptome Changes in Response to AM. Examining
the impact of colonization by the AM fungus R. irregularis on the
transcriptome of individual RTs revealed a total of 8,980 tran-
scripts that accumulated differently in at least one pairwise
comparison (Dataset S2). Of these, 76 genes were significant for
the interaction between RT and mycorrhizal status, indicating
root-type—specific responses to AM.

To reveal relationships among the transcriptional signatures of
the three rice RTs, a network representation was produced, with
connections inversely proportional to the number of differen-
tially expressed transcripts among each pair of conditions (Fig.
2A). The relationship within the network representation helps
illustrate the strong similarity between expression profiles of
noncolonized LLRs and FLRs and their distinction from non-
colonized CRs. In response to AM symbiosis, both colonized
CRs and LLRs showed a significant shift in transcriptional
profile (Fig. 2 4 and C). Surprisingly, the number of transcripts
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Fig. 1. Differentially expressed genes among rice root types. Relative
expression (scale bar, Z-scale of SDs from the cross-sample mean; blue,
below the mean; yellow, above the mean) of 5,630 genes that are dif-
ferentially expressed (FDR 10%) in crown roots (CRs), large lateral roots
(LLRs), and fine lateral roots (FLRs) of rice. Both genes and samples are
clustered hierarchically. A large group of genes is distinguished by high
relative expression in CRs.
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Fig. 2. Similarity among gene expression profiles of colonized and non-
colonized rice root types. (A) Network representation of the number of
differentially expressed genes (FDR 10%) between each type of sample (CR,
crown roots; LLR, large lateral roots; FLR, fine lateral root; open circles,
noncolonized; filled circles, mycorrhizal). Line width is inversely proportional
to the number of significantly changing genes. (B) Number of genes that are
significantly (FDR 10%) up- (black) or down-regulated (gray) in CRs or LLRs
upon AM colonization. At FDR 10%, no gene was significantly regulated in
FLRs. (C) Relative expression (scale bar, Z-scale of SDs from the cross-sample
mean; blue, below the mean; yellow, above the mean) of the 8,980 differ-
entially expressed genes (FDR 10%) in each sample. NC, noncolonized; M,
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responding to AM was dramatically higher in CRs (4,436 genes)
than in LLRs (141 genes, Fig. 2B), although CRs were colonized
to a significantly lower extent than LLRs. This large response
brought the transcriptional signature of colonized CRs closer to
that of mycorrhizal LLRs than to noncolonized CRs (Fig. 2.4 and
C and SI Appendix, Fig. S1B). This is a remarkable observation as
it suggests that upon AM colonization CRs adopt a transcriptional
profile with increased similarity to LLRs. In contrast, the expres-
sion signature of the FLRs from colonized root systems remained
highly similar to that of noncolonized FLRs and LLRs (Fig. 2 4
and C), as no significant transcriptional changes in response to
AM colonization were detected in FLRs (10% FDR), consistent
with the absence of colonization from this RT (Dataset S2).

The quantitatively strong response of CRs to AM colonization
included a switch in the activities of genes belonging to different
hormonal pathways, foremost auxin. The predominantly auxin-
associated gene activity of noncolonized CR was suppressed in
mycorrhizal CRs (SI Appendix, Fig. S34), thereby suggesting a
profound remodelling of root developmental processes upon AM
colonization that may be linked with the well-documented changes
in root system architecture of mycorrhizal plants (12, 13).

Transporter-encoding representatives of the same gene family
frequently displayed opposing induction patterns between CRs and
LLRs and the two inoculation conditions (SI Appendix, Fig. S3B).
These families included, ammonium, sulfate, phosphate, and also
amino acid and peptide transporters. Such complementary gene
induction of different gene family members illustrates a broad shift
of the physiologically alternative and specific uptake machineries
across RTs and conditions and resembles the well-known expres-
sion pattern of phosphate transporter genes that constitutes the
molecular basis for the switch from direct to mycorrhizal phosphate
uptake upon root colonization with AM fungi (10).

Gene set enrichment analysis across all contrasts detected an
overrepresentation of cell wall organization and biosynthesis, with
higher gene expression in noncolonized CRs relative to LRs (Fig.
34 and Dataset S3). Closer examination revealed that most genes
falling into this functional category were related to biosynthesis of
SCW and the regulation thereof, hereafter referred to as “SCW
genes” (Fig. 3 B and C, SI Appendix, Fig. S44 and Table S1, and
Dataset S3). They included genes encoding the cellulose synthase
subunits 4, 7, and 9, that have been linked to secondary cell wall
synthesis (17), COBRAs involved in cellulose deposition at the
secondary cell wall (18), and also genes participating in lignin bio-
synthesis, including phenylalanine ammonia lyase and a large
number of peroxidase- and dirigent-encoding genes (19, 20) (SI
Appendix, Fig. S4 A-C and Table S1, and Datasets S2 and S3). This
strong expression of SCW genes lends molecular support to the
importance of CRs in anchorage and stabilization of the plant (1).

A cluster containing 2,607 transcripts was found to be present
at high levels specifically in CRs of noncolonized plants and
accumulated at reduced levels, comparable to the other root
types, following AM colonization (Fig. 2B). This cluster largely
drove the shifting relationship between colonized CRs and LLRs
observed in the network matrix (Fig. 24). Gene set enrichment
analysis revealed that this cluster included the SCW genes found
to be most highly expressed in CRs (Fig. 3 A-C, SI Appendix, Fig.
S4 A-C, and Dataset S3). This large-scale RT-specific expression
signature may have escaped notice in previous transcriptome
analyses as a result of the limited spatial resolution afforded by
sampling whole root systems.

Systemic Suppression of SCW Genes by AM. Decreased expression
of SCW genes in a specific RT is a previously unknown feature of

mycorrhizal; root types as in A. Both genes and samples are clustered hier-
archically. A large group of genes was distinguished by high relative ex-
pression in noncolonized crown roots (CR.NC).
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Fig. 3. Gene set enrichment analysis identifies cell-wall-biosynthesis-related
genes. (A) Enrichment of gene ontology biological process for all contrasts.
Relative gene set expression differences (scale bar, fold-change of gene sets;
blue, down-regulated; yellow, up-regulated) are shown for all contrasts among
noncolonized (NC) and mycorrhizal (M) crown roots (CRs), large lateral roots
(LLRs), and fine lateral roots (FLRs). **FDR 10%, *FDR 25%. Microarray-based
expression of (B) genes involved in cellulose biosynthesis or SCW modification
and (C) genes involved in monolignol biosynthesis in NC and M CRs, large
lateral roots (LLRs), and fine lateral roots (FLRs).
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root system responses to AM colonization. Therefore, we studied
this phenomenon in more detail and addressed whether down-
regulation of these genes in mycorrhizal CRs was restricted to
colonized cells, to entire CRs containing colonized areas, or
whether it occurred systemically. We focused on a set of five
representative SCW genes and examined their expression in “split
root” systems—a physical separation of the root system into two
compartments, of which only one is inoculated with AM fungal
spores. Following colonization [at 7 wk postinoculation (wpi), V8
stage of rice development] (15) of one side of the split root,
transcripts of all five genes were down-regulated in CRs on both
sides of the split root, indicating that AM repression of these
genes was systemic and not spatially limited to colonization units
(SI Appendix, Fig. S5A4). In one of the biological replicates, only
LLRs but not CRs established functional symbiosis, as indicated
by transcript accumulation of the phosphate transporter 11
(PT11), a mycorrhiza-specific gene exclusively expressed in cells
containing arbuscules and required for mycorrhizal phosphate
uptake (21). Nonetheless, SCW genes were down-regulated in the
CRs of this replicate, indicating that colonization of LLRs alone is
sufficient to cause reduced expression of SCW genes in CRs.

To define the tissue domain in CRs in which the SCW gene
expression was affected by AM inoculation, we analyzed the pro-
moter activity of one of these genes, CesA44, which was reproducibly
and strongly suppressed in mycorrhizal CRs (Fig. 44), using a GUS
reporter line (22). A growing rice plant has CRs of different ages
and developmental stages. We categorized these into newly
emerged (ECRs), mature (MCRs) and old crown roots (OCRs). In
both NC and M plants, ECR that had not yet developed lateral
roots, expressed pCes44-GUS along the whole root length except
the tip, whereas OCRs did not show any expression (Fig. 4B). In
MCRs, GUS expression was observed in an extended zone behind
the root tip. In mycorrhizal root systems, the area and strength of
the GUS stain was strongly reduced (Fig. 4B), confirming our
microarray and real-time RT-PCR expression analysis and in-
dicating that CesA44 (and possibly other SCW genes) is down-reg-
ulated mainly in the newly growing tissue above the root tip, a tissue
that later becomes colonized as this part of the root matures.

Suppression of SCW Genes Is Associated with an Established Symbiosis.
The reduced expression of SCW genes upon inoculation with
R. irregularis could occur in response to early presymbiotic or to
symbiotic signals (12). To distinguish between these possibilities
we quantified transcript accumulation of the five SCW marker genes
at an earlier and a later time point, at 3 and 7 wpi, respectively.
Down-regulation of SCW genes was observed at 7 wpi, when sym-
biosis was fully functional, as reflected by the expression of PT11 in
LLRs and CRs (SI Appendix, Fig. S5B). At 3 wpi, the five SCW
genes were expressed at similar levels in CRs of mock- and AM
fungi-inoculated root systems. A generally higher expression of the
genes at 3 wpi compared with 7 wpi was also consistent with the
strong pCesA4-GUS expression in ECRs (Fig. 4B). This indicated
that down-regulation of SCW genes occurred in developmentally
older MCRs, and/or required an established symbiosis.

In maize roots, phosphate deficiency is correlated with the
induction of genes related to the biosynthesis of cell wall phe-
nolics (23). Thus, improved phosphate nutrition through AM
symbiosis (10) could be responsible for decreased SCW gene
expression. Rice lines perturbed in PT11 function are unable to
take up phosphate via AM (21). However, all representative
SCW genes were down- regulated in colonized roots of ptl]
RNAI plants (SI Appendix, Fig. S5C). These results indicate that
the decreased SCW gene expression during AM is independent
of mycorrhizal phosphate uptake.

AM Causes Changes in the Cell Wall Phenolic Acid Composition of CR
Tips. Down-regulation of SCW might presage differences in cell
wall composition or levels of SCW metabolites in CRs after AM
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Fig. 4. AM colonization reduces SCW marker gene activity and alters the
composition of cell wall phenolics in distinct zones of CRs. (A) Real time RT-
PCR-based expression pattern of the SCW marker gene CesA4 in non-
colonized (NC) and mycorrhizal (M) crown roots (CRs), large lateral roots
(LLRs), and fine lateral roots (FLRs). Means of two technical replicates are
shown. (B) pCesA4-GUS expression in old (OCRs) and early emerging (ECRs)
noncolonized (NC), and mycorrhizal (M) crown roots and in NC vs. M mature
crown roots (MCRs). (Scale bars, 1 cm.) (C) Cell wall phenolic acid (lignin
precursor) composition of tips (one-third of root length from apex of CRs) of
NC and M root systems as determined by HPLC-multiple reaction monitoring
(MRM) after alkaline hydrolysis followed by an acid hydrolysis. Data for each
hydrolysis subfraction are displayed. Means + SE of eight biological repli-
cates consisting each of a pool of five root systems are shown in micrograms
per gram of cell wall residues (CWRs). S, H, and G refer to the phenolic acid
precursors of S, H, and G lignin. S refers to the sum of syringic and sinapic
acid; H refers to the sum of 4-OH-benzaldehyde, 4-OH-benzoic acid, p-cou-
maric acid, and caffeic acid; and G refers to the sum of vanillic acid, ferulic
acid, and coniferaldehyde. (D) Details of the measured extracts shown in C
for all conditions where changes between NC and M were significant.

colonization. We quantified cell wall phenolic acids that are
precursors of lignin (24), an important structural component of
SCW. According to the pCesA4-GUS expression pattern under
our assay conditions, we expected most changes to occur in the
part of the CR proximal to the root tip. Therefore, we separated
the lower third (“tip”) from the upper part (“top”) before
chemical analysis. AM colonization was accompanied by a re-
duction of syringic acid, 4-OH-benzoic acid, p-coumaric acid,
and ferulic acid in root system tips (Fig. 4 C and D), whereas no
difference was found for tops (SI Appendix, Table S2). This
finding was consistent with the reduced transcript accumulation
of genes putatively involved in the biosynthesis of cell wall
phenolics, such as genes encoding for instance phenylalanine
ammonia lyase (Fig. 3C) and leads to the conclusion that the
reduced accumulation of SCW transcripts in CRs during AM was
indeed translated into a metabolic-developmental output. Tran-
scription of SCW genes and the resulting SCW composition were
predominantly affected in newly growing tissue (tip) following
establishment of AM symbiosis.
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Discussion

To gain a better understanding of functional differences among
rice root types we performed root-type-specific transcriptional
profiling of nonstimulated root systems and of root systems
colonized by the AM fungus R. irregularis. In noncolonized root
systems a strong divergence of the transcriptional profile of CRs
from that of both lateral root types was detected, including a
high accumulation of transcripts related to SCW biosynthesis,
which is in line with the role of CRs in plant stabilization.

Whereas LRs exhibited a transcriptional activity consistent
with a role in the uptake of mineral ions, the presence of sig-
nificantly higher expressed genes encoding transport proteins for
organic nitrogen (amino acid and peptide transporters) in CRs
was unexpected and contrasted with the small number of in-
organic nitrogen (ammonium) transporters. Plants take up soil
nitrogen either in the inorganic form as ammonium and nitrate
or in the organic form as amino acids, peptides, or proteins (25,
26). In natural ecosystems, the availability of organic nitrogen
sources depends on the soil type and may exceed levels of am-
monium and nitrate (25). Of the different RTs, rice LRs there-
fore mostly contribute to uptake of inorganic minerals, whereas
CRs appear to predominantly participate in acquisition and/or
partitioning of organic nitrogen within the plant (27).

Interestingly, CRs showed a highly divergent pattern of hor-
mone-associated gene activities from lateral RTs. Notably, tran-
scripts encoding auxin-signaling related genes were present at
increased levels, suggesting a specific difference in the hormone
status of CRs, which at the same time represent the RT with
central adaptive significance for root system architecture. In-
deed, mimicking a common ecosystem scenario by exposing rice
roots to the beneficial AM fungus R. irregularis resulted in the
strongest transcriptional response in CRs, altering accumulation of
the large group of genes associated with auxin transport and sig-
naling. This result is in line with earlier analyses of AM-induced
root system architecture changes that showed CRs to undergo the
most apparent developmental modifications, including an increased
elongation and production of lateral roots (13). For example, a
gain-of-function mutation in OsI4AA11 blocks LR development in
rice (28) and the reduced expression of OsIAAI1 (and possibly
other AUXJ/IAA genes) observed in colonized CRs might be asso-
ciated with increased LR formation during AM symbiosis (13).
Beneficial root-infecting ectomycorrhizal fungi (29-32) and the
endophytic fungus Piriformospora indica (33) are known to pro-
duce auxin (IAA). However, the absence of genes related to auxin
biosynthesis in the genome of R. irregularis (34) argues against AM
fungi directly contributing to root auxin distribution. Instead,
other factors likely cause changes in auxin signaling in CRs upon
AM colonization.

In A. thaliana, a stimulation of LR development was attributed
to cell wall softening (35). Consistent with these data and the
observed changes in auxin-related genes, the specific down-reg-
ulation of SCW synthesis in CRs of mycorrhizal rice root systems
might be associated with the observed increase in LR formation
during AM symbiosis (12). Interestingly, in both systems cell wall
modulation occurred in the tissue zone right behind the root tip,
possibly leading to a relaxation of the physical wall constraints,
thereby promoting lateral root formation. Colonization by
R. irregularis exerted a systemic effect on SCW gene expression
predominantly in mature CRs, indicating that an unknown systemic
signal is triggered by AM formation. Remarkably, in the basal
liverworts Conocephalum conicum, mycorrhizal colonization also
leads to cell wall modifications as monitored by diminished auto-
fluorescence, indicative of reduced cell wall phenolics (36).
Modification of cell wall properties upon establishment of AM
symbioses may therefore correspond to an evolutionarily conserved
phenomenon. Because AM fungal genomes do not contain plant
cell wall hydrolytic enzymes (34), the down-regulation of plant
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secondary cell wall genes might be key to AM colonization of
CRs as cell wall loosening might facilitate intercellular fungal
proliferation. Simultaneously or alternatively, it might be a con-
sequence of carbon partitioning toward the microsymbiont, in-
dependent of fungal phosphate delivery (37, 38).

Our work reveals distinct root-organ transcriptional profiles in
nonstimulated root systems and a combination of root-organ-spe-
cific and overlapping responses to AM colonization, demonstrating
that a thorough understanding of root system remodelling in re-
sponse to external cues will require separate examination of the
constituent root types.

Materials and Methods

All rice lines arose in Oryza sativa ssp. japonica cv. Nipponbare. Root systems
were dissected with forceps under a stereomicroscope. As CRs emerge directly
from the shoot they are readily distinguished and sampled. To minimize de-
velopmental variability we sampled only MCRs and OCRs that had already
developed lateral roots, whereas LR-free, newly emerging CRs (ECR) were
avoided. LLRs and FLRs span diverse developmental stages and both emerge
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from a CR or LLR. Therefore, it is technically challenging to separate them.
Four biological replicates, corresponding each to five pooled plants, were
collected for individual RTs and treatments. Plant and fungal growth condi-
tions, and also basic molecular biology methods followed standard protocols
described in S/ Appendix. Affymetrix Genechip hybridization and processing
of the data followed routine manuals recommended by the manufac-
turers. A detailed description of the bioinformatics approach to both defining
differentially expressed genes and gene set enrichment test is given in S/
Appendix. Cell-wall-bound phenolic compounds were extracted according to
the method reported in ref. 39 with minor modifications, explained in S/ Ap-
pendix. Phenolic acids were quantified by LC-MS/MS following a protocol as
detailed in S/ Appendlix.
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