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Abstract

Malaria, HIV, and tuberculosis (TB) collectively account for several million deaths each year, 

with all three ranking among the top ten killers in low-income countries. Despite being caused by 

very different organisms, malaria, HIV, and TB present a suite of challenges for mathematical 

modellers that are particularly pronounced in these infections, but represent general problems in 

infectious disease modelling, and highlight many of the challenges described throughout this 

issue. Here, we describe some of the unifying challenges that arise in modelling malaria, HIV, and 

TB, including variation in dynamics within the host, diversity in the pathogen, and heterogeneity 

in human contact networks and behaviour. Through the lens of these three pathogens, we provide 

specific examples of the other challenges in this issue and discuss their implications for informing 

public health efforts.

Introduction

Taken together, malaria, HIV, and tuberculosis (TB) infect more than a third of the global 

population and are responsible for almost three million deaths each year (1–3). Substantial 

investments in the prevention and treatment of these three pathogens have led to significant 

reductions in morbidity and mortality worldwide over the past century (1–3). Throughout 

this advancement, mathematical modelling has been a key tool in helping to understand 

transmission dynamics and in predicting the impact of control programs (4–10). For 

example, vector control as a way to effectively reduce malaria was recognized through 
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population-level compartmental modelling more than 100 years ago (11) and the importance 

of CD4+ lymphocytes as sites for HIV proliferation was predicted using simple models 

nearly two decades ago (12). Although these and other models have provided valuable 

insights, incomplete understanding of the biology and transmission of these three pathogens 

remains a significant hurdle to the development of useful mathematical frameworks; new 

theoretical approaches and improved integration of a variety of different kinds of data are 

needed. Here, we use malaria, HIV, and TB to examine unifying mathematical challenges 

across the field of infectious disease modelling, despite their biological differences, to 

provide concrete examples reflecting general problems in the field, and to consider the role 

that modelling can play to inform public health efforts. We focus our attention on relatively 

simple models, exposing the data gaps and uncertainties that create fundamental challenges 

in designing basic model structures and parameterization, rather than on large-scale 

simulations, which often suffer from the same knowledge gaps as simpler frameworks but 

are less transparent and can be difficult to interpret. Indeed, we propose that, in general, 

while simple models often do not capture the biological complexities of these infections, 

more complex models may lack the data for parameterization and validation, presenting a 

paradox for modellers. We identify challenges in the following main areas: variation in 

dynamics within the host, pathogen genetic diversity, and heterogeneity in human contact 

networks and behaviour. Throughout, we reference specific modelling challenges addressed 

in depth elsewhere in this issue (referred to by article and challenge number).

1. Understanding infection dynamics in the host

The majority of models designed to inform policy on malaria, HIV, and TB are based upon 

population-level compartmental models, which generally assume single categories of 

infected and immune people, a fixed rate of recovery, and simple estimates for the duration 

of infectiousness (13–15). The most commonly used Susceptible-Infected-Recovered (SIR) 

compartmental models were developed to study outbreaks of acute immunizing infections 

among immunologically naïve populations, often describing the potential for an epidemic 

through summary statistics such as the reproductive number, R0. These assumptions must be 

modified for endemic pathogens exhibiting variable infection dynamics in the host (Article 

15 (16) Challenge #2), heterogeneous immunological states between hosts (Article 11 (17) 

Challenge #4), and significant spatial and temporal variation in risk (Article 20 (18) 

Challenge #1). At the level of an individual, all three of these pathogens cause a wide range 

of clinical and infection outcomes related to host genetic heterogeneity, coinfection, or 

previous exposure (Article 11 (17) Challenge #5), and this creates extensive variability in 

both the infection length and the dynamics of infectiousness of an individual (Figure 1). 

Therefore, assumptions of a constant rate of loss of infectiousness and a uniform recovery 

rate may not adequately represent the infectious population underlying transmission.

In malaria, sustained parasite proliferation in the blood by the most virulent species 

Plasmodium falciparum may lead to a chronic phase of highly variable intensity and 

duration (19, 20) (Figure 1A). Repeated and simultaneous infections with different 

antigenically diverse parasites lead to a “semi-immune” status in older children and adults in 

endemic regions that is protective against severe disease (21); however, little is known about 

how patterns of exposure alter the distribution of chronic periods and the extent of the 
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infectious population (22–26) (Article 8 (27) Challenge #6). Most infected individuals in 

endemic regions harbour multiple clones and have a complex history of exposure (Article 15 

(16) Challenge #5), and although compartments can be added to SIR frameworks to account 

for the accumulation of multiple exposures, basic parameters are lacking to describe these 

individuals including relative infectiousness to mosquitoes, susceptibility to new infections, 

and rates of clearance of infection (Article 11 (17) Challenge #5; Article 18 (28) Challenge 

#1). Ultimately, this means that the probability of a mosquito bite leading to infection is 

poorly defined, so feedback between human and mosquito components of the model may be 

mis-specified, complicating estimates of the impact of different interventions (22).

Infection with HIV is incurable, which removes the need to estimate heterogeneous 

parameters of recovery and immunity, but complex within-host dynamics lead to variable 

infectious periods (Figure 1B). An HIV infection is characterized by an initial acute phase 

with rapid pathogen growth, followed by stabilization at a set point viral load that plays a 

critical role in determining the duration of the chronic period (29) but is highly 

heterogeneous among individuals, likely the result of complex and poorly understood 

interplay between the host immune system and the virus (30) (Article 13 (31) Challenge #3). 

As a result, the progression from chronic, low-density infections to full-blown AIDS and the 

variable length of chronic infections remain difficult to incorporate within epidemiological 

models (Figure 1B). In particular, including individual heterogeneity in the rate of transition 

through these different states of disease and infectiousness will require a better 

understanding of the complex mechanisms determining the dynamics of HIV within an 

individual.

The dominant source of variability in the within-host dynamics of tuberculosis infections 

results from heterogeneity in the timing of active disease. Most new infections result in an 

asymptomatic “latent” infection, with innate immunity controlling bacillary growth in the 

lung (32) (see (33) for a novel view on latent infections). Although latent infection confers 

immunity to active disease arising from reinfection (34), a small proportion of those who are 

latently infected progress to active disease (32). The lack of data on the distribution of times 

between becoming infectious to self-cure, disease or diagnosis, with indirect estimates 

suggesting that this period can range from a few months to several years (35), makes 

realistic incorporation of the initiation of active disease into models difficult (Article 22 (36) 

Challenge #3) (Figure 1C). It is clear that TB progresses much more rapidly in HIV-positive 

than in HIV-negative individuals (37), emphasizing the important and understudied 

dynamics that may result from co-infection (Article 13 (31) Challenge #2).

Heterogeneous within-host dynamics for all three infections make it difficult to establish the 

timing and duration of latent or chronic infection periods, where transmission potential may 

differ significantly from acute infection. As a result, modelling the impact of individual-

level interventions on population-level transmission is challenging. Given the paucity of 

data on the dynamics of natural infections in endemic regions (Article 22 (36) Challenge 

#3), standard model frameworks frequently assume that varying previous exposure does not 

alter distributions of infectious periods in malaria, that infectiousness is not related to 

within-host infection dynamics for HIV, and that TB progression rates are randomly 

distributed. Note that we have focused here on simple smodels, but the same uncertain 
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parameters governing within-host dynamics must also be estimated in more complex 

frameworks (Article 15 (16) Challenge #7; Article 23 (38)). A more thorough understanding 

of within host infection dynamics of malaria, HIV, and TB will lead to a more accurate 

assessment of the infectious populations responsible for transmission, a crucial quantity 

when evaluating interventions to inform policy decisions.

2. Incorporating pathogen genetic variation

Although very different organisms cause malaria, HIV, and TB, pathogen genetic diversity 

is a major obstacle to the design and use of vaccines and therapeutics for all three, hindering 

control and elimination prospects. Any model incorporating multiple pathogen strains faces 

the challenge of keeping track of people infected with, and immune to, different strains 

(Article 11 (17)), as well as defining the antigenic relationships between strains, their rate of 

genetic change (Articles 13 (31) and 14 (39)), genetic bottlenecks resulting from 

transmission (Article 15 (16) Challenge #1), and the consequences and frequency of 

superinfection (Article 15 (16) Challenge #5; Article 16 (40) Challenge #6).

The malaria parasite exhibits remarkable genetic diversity, especially among gene families 

such as the var genes, which are involved in phenotypic variation within the host and 

associated with disease outcome (41). Diversity among these gene families is continually 

generated through frequent recombination, a mode of diversification that is difficult to 

accommodate within modelling frameworks (Article 14 (39) Challenge #5). Indeed, malaria 

parasite genomic diversity is so great in endemic regions that we still lack adequate 

genotype markers, making it nearly impossible to track genotypes in a population or to 

sensitively establish the multiplicity of infection (42). Model complexities arising from 

frequent superinfection include a rapid increase in the number of categories necessary to 

account for individuals harbouring varying numbers of genotypes and insufficient data to 

accurately assign immunological relationships against parasite genotypes. Most models 

incorporating superinfection assume independence of strains with a fixed time since 

infection for each genotype, neglecting the impact of superinfection on duration of infection 

and relative infectiousness to mosquitoes (Article 15 (16) Challenge #5; Article 16 (40) 

Challenge #6). In particular, parameterizing the outcome of competition between strains 

within a single host plays an important role for understanding how variation created in a 

single infection carries over to the next human host, as the mosquito vector acts as a critical 

genetic bottleneck (43) (Article 15 (16)).

Rapid diversification within and between hosts poses significant challenges for HIV, where 

every possible point mutation may arise in a single day during HIV proliferation (44), and 

this complex within-host diversity is subsequently shaped through pressure from the host's 

immune system and drug treatment (Article 15 (16) Challenge #2). On a population level, 

the antigenic Env glycoprotein exhibits extensive diversity, which increases by 1–2% every 

year (45). Modellers must decide whether to include both within-host and population-level 

models of viral diversification. In the absence of an explicit within-host component, 

assumptions must be made about how diversity generated during an individual infection 

relates to the subset of viral genomes that are successfully transmitted (Article 14 (39) 

Challenge #7). Despite a recent rise in interest, there remains insufficient data about the 
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relationship between within host diversification and transmission for HIV, so current 

theoretical frameworks make strong assumptions about the bottleneck imposed by 

transmission (Article 15 (16) Challenge #1) and the impact of superinfection (Article 15 (16) 

Challenges #5 and #6).

Although Mycobacterium tuberculosis is one of the least diverse bacterial pathogens, among 

the few of its loci that vary are genes that harbour mutations coding for drug resistance (46). 

Evidence that different drug resistant strains and lineages have different mutation rates, 

different fitness costs and elicit different levels of immunity suggests the epidemiological 

dynamics of drug resistant TB will require a better understanding of the biology of strain 

differences and the inclusion of multiple strains in models (47) (Article 14 (39) Challenge 

#6). Selection within the host and resulting emergence of drug resistance at a population 

level is not well understood although the relationship between pathogen diversity and the 

immune system is known to be critical. Models must be adapted to include evolution and 

dynamics of pathogen genotypes across scales in order to understand the emergence and 

maintenance of diverse populations of Mycobactrium tuberculosis (Article 13 (31) 

Challenge #4). Consequences for TB epidemiology depend on measuring and understanding 

fitness across pathogen generations, for which little conclusive data exists (48). 

Characterizing the impact of genetic diversity on the fitness of drug resistant TB strains will 

allow for incorporation into strain models.

Pathogen genetic diversity is often ignored within prevailing models of malaria, HIV, and 

TB despite the variety of strains and genotypes known to circulate at the population level. 

As antigenic variation among, and competition between, strains will alter their frequency in 

the population and transmission overall, the inclusion of multiple genetic variants will be 

important for many policy questions, particularly in relation to drug resistance.

3. Accounting for heterogeneous contact rates and changes in behaviour

The inclusion of realistic human behaviours relating to the spread of disease and the efficacy 

of interventions remains a challenge for many infectious disease models (Articles 18 (28) 

and 20 (18)), but represents a particular problem for malaria, HIV, and TB. Heterogeneities 

from dynamic contact networks, such as sexual contacts in HIV and indirect contacts in 

vector-borne infections like malaria, as well as a wide range of behaviours that influence 

exposure and effectiveness of treatment, are challenging to accurately parameterize (49, 50) 

(Article 18 (28); Article 19 (51) Challenges #3 and #4). Travel of infected individuals, 

which is often difficult to measure, spreads infections within and between countries and 

regions (Article 4 (52) Challenge #6; Article 20 (18) Challenge #3), jeopardizing the 

sustainability of control programs and prospects for elimination (53) (Article 3 (54)). In all 

three cases, vulnerable groups may exhibit fundamentally different epidemiological 

dynamics than the general population, and must be modelled and parameterized separately.

Malaria requires a vector for transmission, in contrast to many pathogens including HIV and 

TB, so contacts between people are by definition indirect (Figure 2A). The variability of 

vector habitats and hosts means that malaria prevalence shows strong geographical 

heterogeneity (Article 6 (55) Challenge #2), with transmission being focused in so-called 

“hotspots” or in mobile populations that are exposed to infection through forestry or 
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agricultural work (56–58). These heterogeneities are obscured by prevalence estimates that 

are generally derived on large spatial scales, and decrease the predictive power of 

mathematical models of transmission (59) (Article 20 (18) Challenges #1 and #5). Complex 

dynamics may emerge from the interaction of seasonal travel for agricultural work and 

seasonal changes in the environmental drivers of mosquito populations, and are difficult to 

accommodate in current model frameworks. Additional variation arises as many individuals 

do not seek treatment or use preventive measures like bed nets despite widespread 

availability, which makes it difficult to predict the impact of interventions and the timelines 

required for control and elimination.

HIV spreads unevenly through communities defined by distinct behaviours (Figure 2B), 

such as sex workers, men who have sex with men, and injecting drug users (60–64). 

Measuring and quantifying the heterogeneities in these networks remains challenging 

(Article 21 (65)); for example, partnership acquisition rates are needed to generate realistic 

contact networks in models, but generally only cross-sectional data is available on the total 

number of partners each individual has over a specified time period (66). These different 

social groups may also exhibit systematic variations in behaviours affecting treatment-

seeking, adherence to treatment, and exposure, such as the use of condoms or the dropout of 

people over the so-called treatment cascade (67), which can further alter the risk and course 

of infection. Even when detailed data is available, the incorporation of temporally changing 

interactions is challenging to include and nearly impossible to accurately parameterize. 

Static and highly simplified contact patterns are often used in the absence of data on the 

complex and dynamic network structures that actually underlie HIV transmission.

For the spread of TB (Figure 2C), many occupational and behavioural risk factors that 

enhance transmission have been clearly identified, focusing attention on the homeless and 

substance users in low burden settings in the US and Europe (68), and on health care 

workers, drivers of crowded vehicles, prisoners, migrants, those working in mines and 

residents of overcrowded slums in high burden countries (69). Collecting reliable data on 

patterns of movement and migration is difficult, particularly across borders among refugee 

and migrant communities, who are at high risk of infection (Article 22 (36)). Among those 

infected, behaviour strongly influences the duration of infectiousness because treatment 

seeking depends on access to care and recognition of symptoms, which overlap with other 

chronic lung conditions including smoking (70). All of these factors lead to difficulty 

identifying the infectious population, while the lack of granularity in incidence and 

prevalence data and the inability to directly capture values for behavioural parameters make 

valid parameterization of models challenging (Article 23 (38) Challenge #4).

Despite the known importance of behaviour on disease prevalence, the extent of the 

infectious population, and the emergence of drug resistance, the social factors that drive 

individual behaviours are poorly understood. What level of behaviour change is necessary to 

alter an epidemic (Article 4 (52) Challenge #1) and the level of detailed data required to 

measure this change (Article 4 Challenges #2 and #4) remain open questions. Social and 

spatial aspects are often not accounted for in traditional model frameworks, which 

generalize behaviour on a population level, and this not only distorts epidemic dynamics but 

also underestimates re-exposure and reinfection among groups most at risk (71) (Articles 16 
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(40) and 19 (51)). Furthermore, most models treat behaviour as static, although 

modifications of behaviour are likely to change as perception of risk shifts along with 

transmission. Incorporating variation in behaviour over the course of an intervention or in 

the case of multiple interventions is essential if models are to reliably predict the impact of 

the interventions or calculate their cost-effectiveness (72, 73) (Article 2 (54) Challenge #5).

Conclusion

As we move towards control and potentially elimination for malaria, HIV, and TB, 

mathematical models provide a powerful framework to consider the possible impact of 

interventions, identify areas where further empirical work is needed, and focus on the 

important policy and research questions. Critical knowledge gaps for the effective 

application of models for policy include spatial and temporal variations in disease 

prevalence and transmission intensity, host-pathogen interactions and infection outcome, 

and human behaviour. Most importantly, better communication between modellers and 

experimentalists or field workers will be needed to refine the questions, determine which 

data are most important and must urgently needed, and to ensure that the analytical work 

leads to better policy and better control of all three infections (Article 2 (27, 74) Challenges 

#4 and #6).
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Malaria, HIV, and TB prompt mathematical challenges in infectious disease 

modelling.

There exist many critical knowledge gaps to accurately parameterize models.

Complex within-host dynamics leads to variation in infectiousness among 

individuals.

Pathogen genetic diversity alters prevalence and transmission of pathogens.

Heterogeneous behaviour influences exposure and treatment effectiveness.

Childs et al. Page 13

Epidemics. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Pathogen dynamics within individual infections
Grey shaded areas denote periods where the infection is asymptomatic, either due to 

chronicity in malaria (A) and HIV (B) or latency as in TB (C). Despite a lack of symptoms, 

particularly during chronic infections, individuals may still be infectious and contribute to 

spread of the pathogen.
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Figure 2. Networks for spread of infection
Malaria (A) transmission between individuals (circles) requires the mosquito vector, 

resulting in “hotspots” for transmission driven by heightened exposure to malaria-infected 

mosquitoes in certain regions (red circles). For HIV (B) and TB (C) transmission occurs 

between individuals in a directed fashion indicated by arrows. Dotted black lines indicate 

spatially separated populations.
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