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Abstract

There is now a large body of literature supporting a linkage between exposure to air pollutants and 

asthma morbidity. However, the extent and significance of this relationship varies considerably 

between pollutants, location, scale of analysis, and analysis methods. Our primary goal is to 

evaluate the relationship between asthma hospitalizations, levels of ambient air pollution, and 

weather conditions in Los Angeles (LA) County, California, an area with a historical record of 

heavy air pollution. County-wide measures of Carbon Monoxide (CO), Nitrogen Dioxide (NO2), 

Ozone (O3), Particulate Matter < 10 μ m (PM10), Particulate Matter < 2.5 μ m (PM2.5), maximum 

temperature, and relative humidity were collected for all months from 2001 to 2008. We then 

related these variables to monthly asthma hospitalization rates using Bayesian regression models 

with temporal random effects. We evaluated model performance using a goodness of fit criterion 

and predictive ability. Asthma hospitalization rates in LA County decreased between 2001 and 

2008. Traffic-related pollutants, CO and NO2, were significant and positively correlated with 

asthma hospitalizations. PM2.5 also had a positive, significant association with asthma 

hospitalizations. PM10, relative humidity, and maximum temperature produced mixed results, 

whereas O3 was non-significant in all models. Inclusion of temporal random effects satisfies 

statistical model assumptions, improves model fit, and yields increased predictive accuracy and 

precision compared to their non-temporal counterparts. Generally, pollution levels and asthma 

hospitalizations decreased during the 9 year study period. Our findings also indicate that after 

accounting for seasonality in the data, asthma hospitalization rate has a significant positive 

relationship with ambient levels of CO, NO2, and PM2.5.
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1. Introduction

Long term exposures to NO2, O3, and PM10 have been associated with chronic respiratory 

impairments (Wilhelm et al., 2008) and a large body of literature supports an association 

between increased levels of ambient air pollution and negative effects on human health (for 

a review, see Samet and Krewski 2007). A number of recent studies have shown that rates of 

asthma incidence, exacerbation, and/or mortality rise with increased exposure to various air 

pollutants (Gehring et al., 2010; Ho et al., 2007; Ko et al. 2007; Szyszkowicz 2008), 

although others have reported highly mixed results by pollutant (Burra et al. 2009; Mar and 

Koenig 2009; Moore et al. 2008), inconclusive results (Chan et al. 2009; Wilson et al. 2005), 

or no definitive relationship (Abe et al. 2009). Variation in study design and modeling 

methods possibly contribute to the lack of consistency in results (Akinbami et al. 2010), 

whereas the choice of outcome (e.g., prevalence, emergency department visits, 

hospitalizations, mortality), spatio-temporal scale (e.g., data aggregation level, temporal 

resolution), and exposure modeling (e.g., ambient monitor data, personal exposure data) 

have the potential to influence the observed relationship.

We examine the relationship between asthma morbidity, air pollution, and weather 

conditions at a county-scale of analysis. Monthly observations of asthma hospitalizations are 

compared with ambient levels of criteria air pollutants regulated by the Environmental 

Protection Agency (EPA), temperature, and relative humidity in a time-series analysis. After 

adjusting for confounding due to seasonal variation in the data, we formulate single and 

multi-pollutant linear regression models with parameter and predictive inference following a 

Bayesian framework. The addition of temporal random effects to the linear regression 

models accounts for dependence between observations that was not explained by predictor 

variables or seasonal trends. This enables comparison with traditional regression models that 

do not account for temporal dependence between observations.

This study yields three outcomes: i) identifies the models that best predict monthly asthma 

hospitalization rates; ii) reports the directionality and significance of the observed 

relationships between ambient air pollution, weather conditions, and asthma 

hospitalizations, and; iii) examines the differences in model fit, predictive performance, and 

inference between comparable models with and without temporal random effects.

2. Study Area

California is often viewed as a leader in state-wide efforts to reduce emissions from 

transportation activities (Boies et al. 2009). At the state level, improved technologies in 

vehicular emissions, due to both government regulation and manufacturer innovation, have 

led to substantial reductions in ambient air pollution in spite of a growing population and 

increases in total miles driven per year (Kahn and Schwartz 2008). However, Los Angeles 

(LA) County is consistently one of the most polluted counties in the United States, ranking 

as the 6 th worst for short-term particle pollution (24 hour PM2.5), the 12 th worst for year-

round particle pollution (annual PM2.5), and 5 th worst for O3 pollution from 2006 to 2008 

(American Lung Association 2010). During the 1970s and 1980s, the city of Los Angeles 

implemented the most encompassing regulatory air pollution control program in the nation 
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and the region has seen dramatic and consistent declines in pollution levels (Mazmanian 

2009). Since 1985, few regions with similar population and economic growth have 

improved their PM10 and O3 pollution levels as much as the Los Angeles region, however 

unhealthy air persists despite these gains (Hall et al. 2010). Su et al. (2009) report that the 

quality of the air continues to have a major impact on the residents of LA County due to a 

heavy reliance on automotive travel, a large number of goods moved through the Long 

Beach/Los Angeles port complex, a regional susceptibility for atmospheric inversion 

(trapping air near the land surface), and little chance for precipitation removal of pollutants.

3. Materials

Average daily levels of criteria pollutants were collected from the Environmental Protection 

Agengy (EPA) AQS Datamart (http://www.epa.gov/ttn/airs/aqsdatamart) for all dates 

between January 1, 2001 and December 31, 2008 and all monitoring stations falling within 

20 km of the outermost boundaries of LA County. San Clemente Island and Santa Catalina 

Island were not included due to their small populations and the lack of a monitoring station 

on either island. Although 20 km is an arbitrary distance, it was chosen based on previous 

research in southern California where data from ambient monitoring stations were used to 

measure pollutant exposure, e.g., 5 miles (Wilhelm et al. 2008), 20 miles (Neidell 2004), and 

50 km (Moore et al. 2008). Figure1 shows the county bounds, study area bounds, and 

locations of monitoring stations that measured the pollutants of interest at least once 

between 2001 and 2009.

We collected daily hospital admission counts for LA County in which the primary diagnosis 

was extrinsic, intrinsic, or other asthma from the Healthcare Information Resource Center, 

which is within the purview of the Office of Statewide Health Planning and Development 

(OSHPD). The subset of the database provided to us included information on:

• Daily admission (counts) for patients with asthma for the calendar years 1983–

2008.

• County of Patient Residence.

• Principal Diagnosis.

• Secondary Diagnosis (i.e., the diagnosis of asthma was made in any of the 

secondary diagnosis variables).

• Types of asthma:

– Extrinsic (ICD-9-CM codes 493.0x);

– Intrinsic (ICD-9-CM codes 493.1x);

– Other (ICD-9-CM codes 493.8x);

Any daily admission count falling between 1 and 4 was masked and reported as a dummy 

value. The extrinsic and intrinsic asthma categories contained a large number of masked 

values, accounting for 81% and 100% of their non-zero daily entries, respectively. 

Considering the high level of uncertainty associated with the masked values, these two 

categories were removed prior to analysis. The vast majority of the overall asthma 
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admissions were diagnosed under other asthma. Given the range of the masked value (1–4), 

other asthma admissions constitute between 89% and 94% of the total asthma admissions. 

Therefore, we believe that removing these admissions did not significantly affect the results 

of the analysis. PRISM (from http://www.prism.oregonstate.edu/) monthly maximum 

temperature (labeled as Tmax in tables and figures) data were downloaded for the 

conterminous US. The raster grids were clipped to the boundaries of LA County and a 

county-wide mean was calculated using the clipped grid cells. Relative humidity 

measurements are not available from PRISM, therefore daily measurements of mean 

temperature, mean wet bulb temperature, and mean atmospheric pressure were downloaded 

from the National Climatic Data Center (http://www.ncdc.noaa.gov) for all weather stations 

locations inside the previously mentioned study area bounds. At each weather station, mean 

daily relative humidity (labeled as RH in tables and figures) was calculated using mean 

temperature, wet bulb, and atmospheric pressure readings.

4. Methods

1. Pre-processing

Daily pollution and relative humidity were predicted at a high spatial resolution (i.e., 3×3 

km grid) over the study area using a Bayesian kriging model (Banerjee et al. 2004) and 

point-referenced data collected at the monitoring stations within the larger study area 

boundaries. In an effort to balance the robustness of theses predicted surfaces and data 

availability, a daily surface was created only if 10 stations collected a reading on that day. 

The daily number of stations collecting SO2 data did not meet the requirements for number 

of point observations per day at any time during the study period, therefore this pollutant 

was not included in our study. The predicted surfaces were then clipped to the county 

boundaries and the mean value of the clipped surfaces were recorded as the county-level 

daily values (see Figure 2). Monthly values were created by averaging these daily values 

within the given month.

We calculated monthly rate of asthma hospitalizations (expressed as mean daily rate) using 

the hospital admission counts from OSHPD and population data collected from the State of 

California (www.dof.ca.gov/research/demographic). The county-level population data were 

only available in yearly increments, therefore they were interpolated linearly to monthly 

increments in an effort to match the temporal units of the hospitalization data. The 

interpolated monthly data offer a more realistic scenario of population change compared to 

the alternative of a more dramatic population shift occurring on January 1st of every year. 

Using the monthly population data and the daily hospitalization counts, we calculated the 

mean daily hospitalization rate for each month. The use of mean daily rate in lieu of overall 

monthly rate accounts for the inconsistent number of days in each month. Each month’s 

mean daily hospitalization rate was natural log transformed and set as the outcome variable 

in the regression analysis detailed in Section 3. This transformation produced an 

approximately normally distributed variable, which meets model assumptions. Further, the 

transformation ensured the correct support following back-transformation of model fitted 

and predicted values.
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2. Data preparation

Preliminary investigations of the data revealed high correlation between predictor variables 

due to strong seasonal oscillation (see Figure 3). Seasonality was removed prior to 

modeling, thereby accounting for the potential confounding due to the temporal cycles 

within the variables (Burnett et al. 2001). For each variable, a two-sided moving average 

filter was used to identify the yearly and seasonal trends in the data using a two step process 

(Peng and Dominici 2008). First, the yearly trend was identified and removed from the data. 

Then, using the yearly de-trended data, the seasonal oscillation was identified. Due to the 

nature of the moving average filter, the results deviated slightly from a regular oscillating 

cycle. Therefore, we calculated the monthly mean values of the original seasonal trend over 

all years resulting in a regular, repeating cycle consistent throughout the entire study period. 

The estimated seasonal trend was then removed from the original data resulting in the de-

trended data product containing both the long and short term variability in the data without 

the collinearity between variables due only to seasonal fluctuations. Supplemental Material, 

Figure 1 illustrates the individual data preparation steps. Supplemental Material, Tables 1 

and 2 report the Pearson Correlation Coefficients between all of the predictor variables 

before and after seasonal trend removal. High correlation (> 0.5) was found in 8 of 21 pair 

wise comparisons prior to de-trending and 6 of 21 afterward.

Prior to regression analysis, the predictor variables were natural log transformed. The 

transformation produced approximately normally distributed variables.

3. Regression analysis

Assuming that the transformed mean hospitalization rate, y(t), is normally distributed, we 

assume a regression model

(1)

where x(t) is a p×1 vector of temporally referenced predictors, β is a p×1 vector of 

regression coefficients, u(t) is a temporal process, and (t) an independent white noise process 

capturing residual variation not captured by the temporal process – for example, variation 

that occurs at a temporal resolution finner than that of the observed data. With any collection 

of n observations, say T = {t1,…,tn}, we assume that the ε(ti) ’s are identically and 

independently distributed as N (0, τ2).

Turning to u (ti) ’s, one approach would be to seek out parametric forms such as cyclical 

trends or growth curves that model increasing trends. These, however, are usually much less 

flexible and do not fit the data well in most cases. Furthermore, inference on residual 

temporal correlation structures is no longer easily available. A richer and more versatile 

approach models the u (ti) ’s as zero-centered temporal random effects. There is no loss of 

generality in assuming mean zero as any trend or structure in large scale variation can be 

incorporated in x(t)′ β. These random effects, therefore, are a part of the residual from the 

regression and provide local adjustment (with structured dependence) to the mean. They can 

also be interpreted as capturing the effect of unmeasured or unobserved predictors with 

temporal pattern.
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The joint distribution of these effects will depend upon our specification for u(t). In 

particular, we posit that the u (ti) ’s should be correlated with each other. In other words, 

random effects arising from time points closer to each other would tend to cluster more than 

those arising from time points farther away. A rich and flexible modeling choice for this 

purpose is the Gaussian process (e.g.,Rasmussen and Williams 2006), u (t) ~ GP(0, C(·,·;θ)), 

specified by a valid covariance function C (t, s;θ) = Cov(u(t),.u(s)) that models the 

covariance corresponding to a pair of time points t and s. The process realizations over T are 

collected into an ntimes1 vector u = (u(t1),…, u(tn))′, which follows a multivariate normal 

distribution N (0, Σu), where Σu is the n×n covariance matrix of u with (i, j) -th element 

given by C(ti, tj;θ) . From a Bayesian perspective, the Gaussian process can be regarded as a 

prior on a function. Rather than specify a function parametrically and use priors on those 

parameters, the Gaussian process provides a more flexible non-parametric alternative to 

modeling an unknown function in this case, u(t). In this sense, model 1 can be regarded as a 

semi-parametric regression model (Ruppert et al. 2003), where x(t)′ β is the parametric part 

and u(t) is the nonparametric part.

Clearly C(t, s;θ) cannot be just any function; it must ensure that the resulting Σu matrix is 

symmetric and positive definite. Such functions are known as positive definite functions and 

are characterized as precisely characteristic functions of symmetric random variables. 

Classes of such functions have been studied extensively in machine learning contexts (e.g., 

Rasmussen and Williams 2006) and in spatial statistics (e.g., Gneiting and Guttorp 2010). 

The most flexible such class is the Matérn family of covariance functions that involve both a 

process range parameter as well as a smoothness parameter. While popular in spatial 

analysis, this class is computationally more demanding and possibly more complex than 

needed for our purposes. In addition, not all of these parameters are identifiable or 

consistently estimable.

Focusing upon computational scalability and simplicity in interpretation, we specify C (t, 

s;θ) = σ2 ρ(t, s;θ φ) where θ = {σ2, φ} and ρ(·;φ) is a correlation function with the φ 

parameter controlling the rate of correlation decay. Then Var(u(t)) = σ2 represents a 

temporal variance component in model (1). Given the fixed intervals of our data, a 

convenient, yet flexible, specification of the correlation function is ρ (t, s;θ) = exp(−φ | t − s 

|), where | t − s |) is the separation between the time points. This is known as the Ornstein-

Uhlenbeck (OU) process whose realizations over t1 < t2 < … <t n yield a multivariate normal 

distribution with a tridiagonal inverse correlation matrix. To be precise, Σu = σ2 R(φ) with 

the (i, j) -th element of R−1(φ) equal to 0 whenever | i − j |>1, equal to  when | i − j |

=1 and with i-th diagonal element equal to

where ρij(φ) = exp(−φ | ti − tj |).. The tridiagonal inverse implies a Markovian structure for 

the u(ti) ’s since the (i, j) -th element of R−1(φ) equals zero if and only if u(ti) and u(tj) are 
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conditionally independent given the remaining u(tk) ’s. Therefore, the conditional 

distribution of u(ti) given the remaining variables will depend only upon its two “neighbors” 

u(ti−1) and u(ti+1). This closed form inverse of Σu (i.e., isplaystyle ) allows for 

computationally efficient evaluation of model (1)’s multivariate normal likelihood, which is 

required for parameter estimation.

As noted in Section 1, we have adopted a Bayesian approach to inference. To complete the 

Bayesian specification we assign prior (hyperprior) distributions to the model parameters 

(hyperparameters) and inference proceeds by sampling from the posterior distribution of the 

parameters (see, e.g., Gelman et al. 2004). For instance, the Gaussian process above induces 

a N (0, σ2 R(φ)) prior distribution on u. For the remaining parameters, β was assigned a 

multivariate Gaussian prior N(μβ, Σβ), which subsumes a non-informative flat prior when 

 is the matrix of zeroes. The temporal variance component σ2 and the measurement 

error variance τ2 were assigned inverse-Gamma (IG) priors. The process correlation 

parameter, φ, was assigned an informative prior uniform prior over a finite time interval. 

The proposed MCMC sampler and prediction algorithms for model (1) are detailed in 

Supplemental Material, p. 1.

4. Model selection and evaluation

Given L posterior samples  where Ω = { β, σ2, φ, τ2 }, we assess model performance 

using independent replicates for each observed outcome: for each ti ε T, we draw yrep(ti)(l) 

from N(x(ti)′ β(l) + u(ti)(l), τ2(l)), one for one for the posterior samples. Letting μrep,i and 

 be the posterior predictive mean and variance for each yrep(ti), we compute 

 and . The former acts as a measure of goodness of 

fit, while the latter penalizes complexity. We use D = G + P (e.g., Gelfand and Ghosh 1998) 

as a model selection criteria, with lower values of D indicating preferred models. For models 

wherein all predictor variables were statisticaly significant at a 90% credible level, we used 

a holdout set (10% of the observations selected at random) to assess predictive performance 

by computing the mean squared prediction error (MSPE), , and bias, 

, where y(t0,i) is the predicted outcome at the i-th holdout time and q is 

the number of observations withheld. Those observations comprising the holdout set are 

indicated with an open circle symbol along the x-axes in Figure 4. The MCMC sampler and 

routines for prediction and model performance criterion were implemented in R (http://

www.R-project.org).

5. Results

1. LA County trends

The yearly average of daily hospitalization rate for LA County decreased by 10.23% 

between 2001 and 2008. The year with the highest mean rate was 2003 (0.3162 per 100,000) 

and the lowest was 2007 (0.2572 per 100,000). The monthly data display a strong seasonal 

variation with peaks in winter months and valleys in summer months. The highest monthly 
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rates were December 2003, December 2005 November 2002, and February 2002 at 0.481, 

0.468, 0.427, and 0.41 (admissions per 100,000), respectively, Figure 3. Here too, the lowest 

monthly rates were August 2007, July 2007, July 2008, and August 2008 at 0.153, 0.162, 

0.164, and 0.175 (admissions per 100,000).

Figure 3 shows that monthly values of ambient levels of the two traffic-related pollutants, 

CO and NO2, also have strong seasonal cycles and a general decline in their mean yearly 

value over the study period. In general, CO and NO2 levels are highest in the cooler months 

(October February) and lowest in late spring and early summer (May August). The yearly 

mean of CO level dropped nearly half between 2001 and 2008, from 0.7621 ppm to 0.4057 

ppm. These results were consistent with strategies implemented in CA to reduce the amount 

of traffic-related pollution during this time period. Ambient levels of O3 display a strongly 

seasonal pattern with peaks in mid-late summer months and lows from November to 

January. The yearly mean values of O3 were consistent from 2001 to 2008 whereas levels 

did not fluctuate greatly and showed a small increase. Monthly levels of PM10 and PM2.5 

showed less regular seasonal oscillation than the other 3 pollutants. Generally, the levels of 

PM are higher in summer and fall months and lower in winter and spring.

Maximum monthly temperature displayed a strong seasonal oscillation, whereas relative 

humidity did not vary with a regular seasonal pattern. The annual mean of maximum 

temperature increased slightly over the study period while relative humidity generally 

decreased. The decrease in relative humidity was likely due to a persistent drought in CA 

throughout much of the study period (Keeley et al. 2007).

2. Candidate models and variable significance

Initially, all possible combinations of predictor variables were considered in forming 

potential models for evaluation, which resulted in 128 unique models. Due to high 

collinearity between predictor variables (absolute Pearson Correlation Coefficient greater 

than 0.5), 93 models were removed from consideration. Thus, 35 models were evaluated and 

listed in Supplemental Material, Table 3 (7 single variable, 15 two variable, 11 three 

variable, and 2 four variable models).

To explore what benefits, if any, the addition of temporal random effects might fetch, both 

the full model (1) and its counterpart with the temporal random effects removed are 

considered. Within the subsequent tables and figures, the results from the full model (1) and 

its non-temporal counterpart are identified as the temporal effects and non-temporal effects 

models respectively. Because of the large number of models evaluated, we initially report 

only a summary of the results. Table 1 contains an overview of the directionality and 

significance of the regression coefficients for each of the predictor variables in all 35 

models. The predictor variables CO, NO2, and PM2.5 were positive and significantly 

associated with asthma hospitalizations in all models, whereas PM10 was positive and 

significant in 2 of 12 models, relative humidity was positive and significant in 6 of 14 

temporal effects models and all non-temporal effects models, and maximum temperature 

was negative and significant in 2 of 14 models. O3 was not a significant predictor of asthma 

hospitalizations in any of the models evaluated.
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3. Model evaluation

Fit scores for all models evaluated can be found in Supplemental Material Table 3. Of these 

35 models, 7 models produced results wherein all predictor variables were statistically 

significant at the 0.1 level. These models along with corresponding fit scores, MSPE, and 

bias are listed in Table 2. Here, the consistently lower D scores suggest that the addition of 

the temporal random effects improve model fit in all cases. Although the addition of the 

temporal random effects result in only marginal improvement of MSPE, they do increase the 

precision of the posterior predictive distributions. This precision is summarized by 

calculating the holdout set’s mean 90% posterior predictive credible interval (C.I.) width, 

which is given in Table 2. Here too, we included the coverage rate, which is the number of 

times the true holdout value is within the 90% posterior predictive C.I., divided by the 

number of observations in the holdout set. Despite the temporal models’ marginally 

narrower mean posterior predictive C.I. widths, their coverage rates are comparable to those 

of the non-temporal models. This is a desirable quality and can be more clearly seen in a 

graphical representation of the models’ fitted and predicted values. For example, Figure 4 

illustrates the accuracy and precision of the fitted and predicted estimate for the temporal 

and non-temporal NO2 + Tmax models. Here, comparison between the two subplots clearly 

shows that the addition of the temporal effects results in a more accurate and precise 

representation of hospitalization rates. These same advantages, afforded by the addition of 

the temporal random effects, can be seen in all of the other candidate models.

The parameter estimate for those model listed in Table 2 are detailed in Tables 3 and 4. 

Specifically, Table 3 provides the parameter summaries for the single variable temporal 

random effects models. Here, CO, NO2, and PM2.5 were positively associated with asthma 

hospitalizations and statistically significant at a 0.1 level, i.e., the 90% C.I. do not include 

zero. Although a number of individual variables were statistically significant in the 

multivariable models, only the 4 models detailed in Table 4 produced results in which all 

predictor variables were statistically significant. Comparing Tables 3 and 4, we see that the 

regression coefficients in the single and multi-variable models were consistent in 

significance and sign. Here too, we can see the addition of temporal random effects 

apportions the total residual variance nearly equally between the temporal and non-temporal 

components, i.e., σ2 / τ2 ≈ 1. Finally, the temporal decay parameter φ estimates suggest an 

effective temporal range of at least 1 month for any given model. We define the effective 

temporal range as the period of time beyond which the temporal correlation drops below 

0.05. For instance, from Table 3, the median and 90% CI for in φ the CO single variable 

model is 1.46 (0.54, 2.69) and is equivalent to an effective temporal range of 2.05 (1.11, 

5.56) months.

The apportioning of the residual variances and substantial effective temporal ranges further 

support the use of the temporal random effects and suggests that models that do not 

accommodate residual dependence, e.g., the non-temporal models in Tables 2 and 

Supplemental Material Table 3, violate the assumption of independent and identically 

distributed residuals and could, as a result, produced erroneous inference.
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6. Discussion

The findings presented here are similar to those reported by Linn et al. (2000) in a study of 

metropolitan Los Angeles using daily time-series data. In single pollutant models, the 

authors found significant associations between asthma hospital admissions and CO, NO2, 

and PM10 levels and a non-significant association with O3 (PM2.5 was not included in their 

study). Recent studies exploring asthma and air pollution in southern California have 

focused largely on children’s health outcomes. Willhelm et al. (2008) found that children 

living in areas with higher levels of O3 and PM10 experienced more frequent asthma 

symptoms while children living near to heavy traffic experienced a higher amount of 

emergency department visits and hospitalizations. In Moore et al. (2008), a time series 

analysis showed that increased O3 levels were associated with a higher number of asthma 

hospitalizations for children. Although O3 was not a significant predictor of asthma 

hospitalizations in any single or multivariable models in this analysis, the previously 

mentioned studies do lend credence to an association between O3 levels and asthma 

exacerbation and symptoms in southern California. However, doubt exists to whether O3 

causes asthma exacerbation (e.g., Donnay 2004; Giovannini et al. 2010). The results 

presented here suggest that O3 is not associated with asthma hospitalizations at this scale of 

analysis. Sun et al. (2006) also showed that the relationship between asthma-related 

emergency department visits and air pollution may be quite different for adults and children. 

Because the entire population of LA County was evaluated simultaneously, these age-

specific relationships may have not been detected. Our decision to conduct the analysis at a 

monthly time scale, rather than daily, was guided by two considerations. First, in a similar 

study conducted by Moore et al. (2008), that looked at the relationship between childhood 

asthma and ozone in Southern California, they point out that given the variation in time 

spent outdoors in a large population, such as that in LA County, monthly aggregation (or in 

their study three month aggregation) could “provide a more stable population-level estimate 

than would be the case for shorter time intervals, such as days or weeks.” Similar rational 

for analysis of monthly asthma hospitalizations were used in recent studies in Greece (Priftis 

et al. 2006) and Taiwan (Chen et al. 2006; Sun et al. 2006). Second, in our initial 

exploratory analysis of the asthma data we created autocorrelation function plots that 

showed a strong temporal correlation at a 30 day lag (i.e., a correlation of 0.5), and even at a 

60 day lag the correlation was m 0.3. Therefore we felt there would not be a substantial loss 

of information by working at a monthly time scale.

Many studies examining the effects of air pollutants and health outcomes observe high 

correlation between the pollutants measurements themselves and are often highly temporally 

correlated with seasonal changes and/or climatic variables (e.g., Cao et al. 2009). We 

attempted to account for these correlations by using both traditional methods (moving 

average seasonal adjustment) and a flexible Bayesian modeling framework to accommodate 

residual temporal dependence. High correlation between predictor variables was accounted 

for using the seasonal adjustment, while the temporal dependence was addressed within the 

models using temporal random effects. Accounting for these correlations allow for 

confidence that the resulting relationships between asthma hospitalizations, pollutants, and 

weather conditions did not result from temporal dependence between observations.
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Of the 7 models with all statistically significant variables, D scores were best for single 

variable models CO and NO2 and multi-variable model NO2 + relative humidity. However, 

the model with the lowest MSPE and bias, thus the most accurate predictor of asthma 

hospitalizations, was NO2 + Tmax. Interestingly, this model had the largest average C.I. 

width of the 7 models evaluated. We do note, however, that given the relatively small 

holdout set only 10 observations the ordering of the models based on MSPE could change, 

perhaps significantly, if other holdout sets were considered.

Associations between health outcomes and air pollution have, in many cases, relied on 

pollution data gathered at a single monitoring station or an average value from multiple 

monitoring stations (Chen et al. 2007). When using regional or aggregated data, calculating 

the arithmetic mean of station measurements has been the prevailing approach for assigning 

a single pollution measurement to the area under study (Lee and Shaddick 2010; Wilson et 

al. 2006). In these methods, the spatial variability of air pollution is often addressed by 

incorporating a buffer distance from the monitoring station or a simple distance-weighted 

measure between the monitoring station and observation. Although these methods have 

produced significant results in the past, their use may lead to exposure assignment errors and 

possible weakening of the observed relationship between health outcomes and air pollution 

exposure (Beelen et al. 2009). We believe that efforts to incorporate the spatial variability of 

air pollution within a study area are necessary, even in cases where the data is summarized 

over the study area. Chen et al (2007) compared the results of non-spatial and spatial 

methods of linking air pollution data (PM10) to health outcome data (respiratory hospital 

admissions) in a metropolitan area and found that the non-spatial method underestimated the 

relative risk of hospitalization compared to the spatial method. County-level air pollution 

predictors were generated using surfaces of pollutants predicted using spatial Bayesian 

regression models and the monitoring station locations and observations.

7. Limitations

Ecological and time series studies have well known limitations and are subject to a number 

of biases. Due to the spatial resolution of the asthma hospitalization data and its lack of 

patient demographic and residential location information, we were compelled to make 

assumptions that potentially influenced the results of our study.

Hospitalization data are a measure of confirmed cases that can be tethered spatially and 

temporally to a specific location and time, allowing them to be linked to measures of air 

pollution. However, we acknowledge the possibility that residents from another county 

visited a hospital in LA county (and vice versa) allowing for over- or under-representation 

of cases when using hospitalizations as a outcome variable. Because we do not possess the 

residential locations of the individuals hospitalized, we assume that the number of 

nonresidents of LA county admitted to LA county hospitals equal the number of residents of 

LA county admitted to non-LA county hospitals.

Time-series studies are generally limited by lack of individual data, which can greatly 

influence personal exposure to pollutants (Mar and Koenig 2009). However, measuring 

personal exposures is not feasible in large populations over long study periods and therefore 
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exposure estimates are necessary (Rose et al. 2009; Vienneau et al. 2009). The use of 

ambient pollution measurements as a surrogate for exposure data limits the ability to 

establish a causal link between air pollution and asthma outcomes. Also, utilizing ambient 

levels likely results in some misclassification of air pollution exposure as it does not account 

for the presence of confounding factors such as time spent outdoors, second hand smoke 

presence, indoor air pollution, or avoidance behavior. Neidell (2009; 2004) studied 

avoidance behavior due to air quality warnings in southern California and showed that 

omitting the responses to air quality warnings could lead to underestimated effects of 

pollution on asthma outcomes. Accounting for this factor could potentially strengthen the 

observed relationships between pollutant levels and hospitalizations in this study, however 

measuring and/or describing the avoidance behavior of an aggregated population over a long 

study period could prove difficult in practice.

Although we accounted for changes in the overall population of LA county, we did not 

account for changes in the demographic structure of the population or other risk factors for 

asthma exacerbation. By restricting the study area to one county, we attempted to control for 

the confounding effects of demographic variation present in regional or state-wide studies 

and allow for testing of our methods in a initial, manageable setting. Mar and Koenig (2009) 

note that for time-series studies, these variations need no control as they remain relatively 

constant throughout the study period.

This study utilized the 24-hour mean concentration in lieu of the EPA regulated measures of 

8 hour and 1 hour O3 concentration. Although recent research supports the use of EPA 

regulated measures for O3 (Darrow et al. 2011), others report high correlation between 24-

hour and 8-hour measurements (Akinbami et al. 2010; Woodruff et al 2008). Because of the 

large study area, long time series, and lack of exposure data, we believe this measure 

introduced less potential for exposure misclassification. The use of 24-hour mean also 

ensured consistency in the temporal scales for all pollutants included.

8. Conclusions

We explored the relationship between asthma morbidity, ambient levels of air pollutants, 

and weather conditions at a county level using a monthly time series analysis. In LA County, 

we found that asthma hospitalizations were significantly associated with CO, NO2, and 

PM2.5 levels in single variable regression models and NO2 + relative humidity, PM2.5 + 

relative humidity, PM10 + relative humidity, and NO2 + maximum temperature in multi-

variable models. Although ecological and time series studies are subject to a number of 

potential shortcomings, they allow for associations to be revealed at a population level. 

Understanding the relationship between air pollution levels, weather conditions, and asthma 

hospitalization rates for the entire county population over a long study period may help to 

inform future policy decisions aimed at reducing LA County’s total asthma burden. Using 

Bayesian linear regression with temporal random effects, we accounted for residual 

dependence between observations that was not removed by the seasonal adjustment or 

predictor variables. These temporal random effects models were compared to their non-

temporal counterparts using objective measures of model fit and predictive performance. 

The addition of temporal random effects resulted in improved model fit, more accurate and 
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precise prediction, and reduced potential for violating the basic model assumption of 

independent and identically distributed residuals.

Because hospitalization for asthma generally only occurs in situations where a person 

experiences a severe asthmatic event, asthma hospitalizations only measure a portion of the 

total asthma burden. However, the size of LA County’s population (estimated at nearly 10 

million by the US Census Bureau (2010)) and large number of hospitalizations highlight the 

importance of the results presented here.

The general decline in average levels of NO2, CO, and PM2.5 in LA county were consistent 

with the aforementioned strategies implemented to reduce traffic related and other air 

pollution in California. However, LA County continues to be classified as a “maintenance 

area” by the EPA for each of these pollutants. Considering the results of our analysis, we 

believe that further reduction would lead to fewer asthma hospitalizations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Asthma hospitalization rates in Los Angeles County, CA, decreased between 

2001 and 2008.

• CO, NO2, PM2.5, were significant and positively correlated with asthma 

hospitalizations.

• O3, PM10, relative humidity, and maximum temperature produced mixed results.

• Inclusion of temporal random effects met model assumptions, improves fit and 

predictive ability.
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Figure 1. 
Los Angeles County, Califoria with larger study area bounds (dashed line) and ambient 

pollution measurement locations (black circles) collecting data between 2001 and 2009. 1cm 

(ppm). 1cm
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Figure 2. 
Example of predicted daily pollution surface for NO2
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Figure 3. 
Monthly (black) and yearly (gray) trends for all variables prior to seasonal de-trending. 1cm
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Figure 4. 
Predicted values (solid line), actual values (dashed line), and 90% credible intervals (gray 

region) for NO2 + maximum temperature. The open circle symbols along the x-axes indicate 

those dates included in the holdout set.
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Table 3

Parameter credible intervals, 50 (5, 95) percentiles, for single variable temporal effects models.

Coefficient CO NO2 PM2.5

β0 −12.67 (−12.72, −12.61) −11.37 (−11.96, −10.81) −13.09 (−13.35, −12.82)

βCO 0.22 (0.13, 0.31)

β NO2 0.37 (0.22, 0.52)

β PM2.5 0.11 (0.01, 0.21)

φ 1.46 (0.54, 2.69) 1.60 (0.53, 2.79) 0.94 (0.09, 2.4)

σ2 0.007 (0.001, 0.013) 0.008 (0.001, 0.013) 0.007 (0.001, 0.014)

τ2 0.004 (0.001, 0.015) 0.004 (0.001, 0.016) 0.006 (0.001, 0.013)
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Table 4

Parameter credible intervals, 50 (5, 95) percentiles, for multi-variable temporal effects models.

Coefficient NO2 + RH PM2.5 + RH PM10 + RH NO2 + Tmax

beta;0 −12.25 (−13.14, −11.36) −13.9 (−14.62, −13.11) −14.38 (−15.37, −13.25) −8.98 (−11.13, −6.83)

βNO2 0.36 (0.21, 0.5) 0.44 (0.28, 0.6)

βPM2.5 0.12 (0.02, 0.21)

βPM10 0.12 (0.01, 0.23)

βRH 0.21 (0.05, 0.37) 0.20 (0.01, 0.38) 0.30 (0.07, 0.49)

βTmax −0.28 (−0.52, −0.04)

φ 1.65 (0.51, 2.8) 1.49 (0.41, 2.74) 1.28 (0.16, 2.7) 1.46 (0.37, 2.75)

σ2 0.006 (0.001, 0.012) 0.007 (0.001, 0.014) 0.008 (0.001, 0.014) 0.005 (0.001, 0.012)

τ2 0.005 (0.001, 0.012) 0.005 (0.001, 0.013) 0.005 (0.001, 0.013) 0.006 (0.001, 0.012)
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