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Abstract
Non-primate mammals have two deleted azoospermia (DAZ) family genes, DAZL and

Boule; genes in this family encode RNA-binding proteins essential for male fertility in di-

verse animals. Testicular DAZL transcription is regulated by epigenetic factors such as

DNA methylation. However, nothing is known about the epigenetic regulation of Boule.
Here, we explored the role of DNA methylation in the regulation of the bovine Boule
(bBoule) gene. We found that a long CpG island (CGI) in the bBoule promoter was hyper-

methylated in the testes of cattle-yak hybrids with low bBoule expression, whereas cattle
had relatively low methylation levels (P < 0.01), and there was no difference in the methyla-

tion level in the short CGI of the gene body between cattle and cattle-yak hybrids (P > 0.05).

We identified a 107 bp proximal core promoter region of bBoule. Intriguingly, the differences

in the methylation level between cattle and cattle-yak hybrids were larger in the core pro-

moter than outside the core promoter. An in vitromethylation assay showed that the core

promoter activity of bBoule decreased significantly after M.SssI methylase treatment (P <

0.01). We also observed dramatically increased bBoule transcription in bovine mammary

epithelial cells (BMECs) after treatment with the methyltransferase inhibitor 5-Aza-dC.

Taken together, our results establish that methylation status of the core promoter might be

involved in testicular bBoule transcription, and may provide new insight into the epigenetic

regulation of DAZ family genes and clinical insights regarding male infertility.

Introduction
Spermatogenesis is an extremely complex process of cell differentiation, and includes three
specific functional phases: spermatogonia proliferation, spermatocyte meiosis, and spermatid
differentiation. Spermatocyte meiosis is a key step in spermatogenesis, and defects in genes
controlling spermatocyte meiosis, such as microdeletions, mutations, and decreased expres-
sion, lead to meiotic arrest, impaired spermatogenesis, and male infertility [1–4]. The deleted
in azoospermia (DAZ) gene family is distinctly involved in meiosis during spermatogenesis,
and consists of three members, DAZ, DAZL (DAZ-Like), and Boule [5–7]. Boule is the recently
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identified ancestral “grandfather” gene in the DAZ family; it is expressed in prophase and
metaphase spermatocyte meiosis in the testis, and highly expressed in meiotic pachytene sper-
matocytes [5]. Boule is found in vertebrates and invertebrates [5, 8–10]. DAZL is regarded as
the “father” gene in the DAZ family and evolved from ancestral Boule [5]. It is expressed in
spermatogonia and spermatocytes of the testis and ovary [11]. DAZL is only detected in verte-
brates [7, 10–12]. DAZmaps to the Y chromosome, is obtained by gene transposition, duplica-
tion, and exon splicing from autosomal DAZL, and is highly expressed in meiotic prophase
germ cells in the testis. DAZ is only found in Old World monkeys and humans [13–15]. The
proteins encoded by DAZ family genes are all RNA-binding proteins with typical RNA-recog-
nition motifs (RRM) and DAZ repeats; they play an important role in spermatocyte meiosis
and are associated with male infertility [5–8, 16–17].

Boule, a recently identified member of the DAZ family, was first detected in Drosophila and
human testes [5, 18]. In Drosophila, the testes of boulemutants produce no sperm and have
germ cells that are arrested before meiosis, resulting in azoospermia and male infertility [19]. A
fly boule transgene or a human BOULE transgene can rescue the reproductive defects of boule
mutant flies [18, 19]. Testicular BOULE expression is decreased in some patients with abnor-
mal spermatogenesis, and spermatogenesis is arrested before the primary spermatocyte stage;
no BOULE expression is detected in testes of patients with complete meiotic arrest [20]. Lin
et al. [21] also found that BOULEmRNA levels are significantly decreased in azoospermic
male testes, and are progressively decreased with increasing severity of testicular failure; pa-
tients with successful sperm retrieval have significantly higher BOULE levels than patients with
failed sperm retrieval. Boule−/−mice are male sterile and azoospermic [22], similar to boulemu-
tant flies and some men with DAZ deletions [13, 18]. Li et al. [23] demonstrated that over-ex-
pression of Boule promotes the expression of meiosis-related genes such as Stra8 in goat male
germline stem cells. Thus, these results suggest that the expression of Boule is associated with
mammalian spermatocyte meiosis and male infertility, and that it may be the key regulatory
factor of spermatocyte meiosis.

The transcriptional regulation of DAZ family genes has been extensively studied [24–31].
However, little is known about the regulation of Boule [3, 23, 32], and particularly its epigenetic
regulation. Our previous study suggested that bovine Boule (bBoule) may function in bovine
spermatogenesis, and that low bBoule expression might lead to male sterility in cattle-yak hy-
brids [8, 33]. In the present study, we examined the epigenetic mechanisms of low bBoule ex-
pression in testes of cattle-yak hybrids.

Materials and Methods

Bioinformatic analysis
The genomic DNA sequence of the bBoule gene was obtained by a BLAST search of the genome
database of cattle (Bos taurus) (http://www.ncbi.nlm.nih.gov/genome/82) based on the cDNA se-
quence of bBoule (GenBank ID: EU050657) that was previously cloned by our group [8]. The pu-
tative promoter region of bBoule was predicted using Proscan software (http://www-bimas.cit.
nih.gov/molbio/proscan/). CpG islands (CGI) were searched by the online CpG Island Searcher
program (http://ccnt.hsc.usc.edu/cpgislands2/cpg.aspx). We searched the transcription factor
binding sites (TFBS) of the bBoule core promoter using the web tool TFSEARCH v1.3 (http://
www.cbrc.jp/research/db/TFSEARCH.html) using a threshold score of 85.0.

PCR and sequencing
Genomic DNA was isolated from testes using the phenol-chloroform method. Three primers
for the amplification of the bBoule promoter region were designed by Primer Premier 5.0
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software based on the genomic DNA sequence of bBoule (Table 1). The reaction mixture and
PCR program were described in Luo et al. [34]. PCR products were separated using 1.2% aga-
rose gel electrophoresis, purified using a DNA Purification Kit (Axygen, Union City, CA,
USA), and sequenced by Invitrogen (Shanghai, China).

BSPmethylation analysis
The testes were collected from healthy adult cattle (male, n = 8) and cattle-yak hybrids (male,
n = 8) provided by the Songpan Bovine Breeding Farm (Sichuan, China), and frozen in liquid
nitrogen immediately. All animal work was approved by the Animal Ethics Committee at Nan-
jing Agricultural University. Extraction and bisulfite conversion of genomic DNA and bisulfite
sequencing PCR (BSP) were performed according to the methods described by Luo et al. [34].
Primers for BSP were designed by Methyl Primer Express v1.0 software, and are shown in
Table 1.

Deletion construction
To create the deletion constructs, we designed three pairs of primers (P1–P3, Table 1) for the
amplification of three successively shorter PCR products, which were 107 bp (-172/-66), 224
bp (-289/-66), and 297 bp (-362/-66) in length. All primers used had the HindIII endonuclease
site incorporated at the 50 end and the BglII site at the 30 end, and the downstream primers
were all the same. PCR products were subcloned into the pGL3 luciferase reporter vector (Pro-
mega, Madison, WI, USA) with HindIII/BglII sites, and transformed into Escherichia coli to
generate the luciferase reporter plasmid. Recombinant plasmids were verified by sequencing
and named pbBoule-107, pbBoule-224, and pbBoule-297.

Cell lines and cell culture
Mouse spermatogonia cell line GC-1 (ATCC CRL-2053) and African Green Monkey
SV40-transformed kidney fibroblast cell line COS-7 (ATCC CRL-1651) were cultured in Dul-
becco's modified Eagle's medium (DMEM) with high glucose, supplemented with 10% (v/v)
fetal bovine serum (FBS), 100 U/mL penicillin G, and 100 μg/mL of streptomycin sulfate in a
5% CO2 incubator at 37°C.

Table 1. The primers used in this study.

Gene GenBank ID Primer sequence (5'-3') Size/
bp

Tm/
°C

Usage

P1 bBoule NW_001494657 F: TTTAGATCTCTCGATCCGCTCACCTCA R:
GGGAATCTTCACCCAGGAAGCAACACC

297 60.5 vector
construction

P2 bBoule NW_001494657 F: TTTAGATCTACGGGCCACGACCGAAACCT R:
GGGAATCTTCACCCAGGAAGCAACACC

224 59.8 vector
construction

P3 bBoule NW_001494657 F: TTTAGATCTAGGTTCAGGCCCTGGGTT R:
GGGAATCTTCACCCAGGAAGCAACACC

107 56.7 vector
construction

P4 bBoule NW_001494657 F: GAGAGTGGTTTGAGAATAGAGTATT R: TTCACACCCAAAAAACAACA 324 50.6 BSP for long
CGI

P5 bBoule NW_001494657 F: GAGGGAGGGATGTTGTAAATAA R: TAATTTTAAAAAAATATTATTT 444 56.0 BSP for short
CGI

P6 bBoule NM_001102115 F:CAAGTGCCATTGCTATGCCTGC R: GGTTCATTGAAGCTGGATCTCGG 157 60.0 qRT-PCR

P7 β-actin NM_173979 F:TCCAGCCTTCCTTCCTGGGCAT R: GGACAGCACCGTGTTGGCGTAGA 116 56.0 qRT-PCR

BSP, bisulfite sequencing PCR. CGI, CpG island.

doi:10.1371/journal.pone.0128250.t001
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Transfection and luciferase assay
The cells were seeded in 48-well culture plates, and transfected with 1 μg/well of promoter-re-
porter plasmids or empty vector along with 10 ng/well of Renilla luciferase expression vector
pRT-TK as an internal control using Lipofectamine 2000 reagent (Invitrogen). After 24 h, lucif-
erase activity was measured using the Dual-Luciferase Reporter Assay Kit (Promega) with a
Modulus Single Tube Multimode Reader (Turner Biosystems, Sunnyvale, CA, USA) according
to the manufacturer's protocol. Results are expressed as Renilla/firefly luciferase activities.

M.SssI treatments
The core promoter fragment of bBoule was methylated with 2 μL of M.SssI methylase (NEB,
Ipswich, MA, USA) at 37°C for 16 h. The completion of the methylation reaction was con-
firmed by digestion of the fragment with methylation-sensitive HpaII restriction endonucleases
(NEB), which cannot cleave DNA if their cognate restriction sites are methylated. The methyl-
ated core promoter fragment was then ligated to the same sites of the pGL3 vector (Promega),
and transfected into GC-1 and COS-7 cells. Luciferase assays were performed 36 h after
transfection.

5-Aza-dC treatments
Bovine mammary epithelial cells (BMECs) that do not express bBoule were isolated from the
mammary tissues of Holstein cows collected during lactation. Cells were seeded in 96-well
plates and grown to 80% confluence, then treated with various concentrations (0, 0.05, and
0.5 μmol/L) of fresh 5-aza-20-deoxycytidine (5-Aza-dC) (Sigma, St. Louis, MO, USA) for 48 h.
After 48 h with or without 5-Aza-dC, cells were washed twice with phosphate-buffered saline
and harvested. Total RNA was isolated, and the mRNA levels of bBoule were measured by
qRT-PCR with P6 primers (Table 1) according to the ΔΔCT method; β-actin was used as the
internal control for normalization.

Statistical analysis
All data are expressed as means ± SEM. The statistical analysis was performed using SPSS
v11.0 software (SPSS Inc., Chicago, IL, USA). A two-tailed Student’s t-test and ANOVA were
used to evaluate the statistical significance of the differences in our experiment data, and Dun-
can's multiple comparisons test was used for ANOVA. A value of P< 0.05 was considered
statistically significant.

Results

Differential methylation of testicular bBoule promoter CGI between cattle
and cattle-yak
We detected two CGIs within the 70 kb genome sequence of bBoule consists of a 3 kb of the 5'
proximal flanking region and a 2 kb of the 3' proximal flanking region. The long CGI was locat-
ed between nt -2,074 and nt +225 (2229 bp), and included the 5' proximal flanking region,
exon 1, and intron 1, with an observed/expected ratio of 0.807 and C+G content of 60.6%. The
short CGI was located from nt +20,565 to nt +21,348 (784 bp) in intron 5, with an observed/ex-
pected ratio of 0.719 and C+G content of 60.2%.

At present, studies of the regulation of gene expression by methylation mainly focus on pro-
moter CGI regions [34–36]. Our previous study demonstrated that bBoule is expressed at low
levels in testes of cattle-yak hybrids with male sterility [8]. To examine whether low bBoule
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expression was associated with methylation in promoter CGIs, we first determined the methyl-
ation status of the promoter CGIs (Fig 1A and 1B) by BSP using genomic DNA isolated from
cattle-yak testes (the males have meiotic arrest and are sterile) and their male parent cattle
(with normal meiosis and spermatogenesis). An analysis of the long CGI within the promoter
region revealed differences in the methylation profile of the CpG sites between testicular tissue
samples of the two bovine populations (Fig 1C). The methylation level of the long CGI in cat-
tle-yak testes with male sterility (17.78%, 64/360) was significantly higher than in cattle (6.94%,
25/360) (P< 0.01). These data indicate that hypomethylation of promoter CGIs may be associ-
ated with low bBoule expression in cattle-yak testes.

Similar methylation profiles for cattle and cattle-yak testicular bBoule intragenic
CGIs. Recent studies demonstrated that intragenic CGIs play an important role in regulating
gene expression [37–39]. To assess the methylation status of short intragenic CGIs in cattle
and cattle-yak testes, a 444 bp DNA fragment was amplified from the +20580/+21023 region
of bBoule intron 5 with the P5 primers (Fig 2A). The amplified fragment contained 25 CpG
sites (Fig 2B). Unlike the methylation of promoter CGIs, the bBoule short intragenic CGI
methylation pattern was similar in cattle and cattle-yak testes (Fig 2C), and the difference be-
tween the methylation level of short intragenic CGI in cattle (52.0%, 130/250) and cattle-yak
(51.6%, 129/250) was not significant (P> 0.05). These data indicate that methylation of short
intragenic CGI is likely not associated with low bBoule expression in cattle-yak testes.

Core promoter methylation level differed more in cattle and cattle-yak
testes
To explore whether DNAmethylation of the long CGI within the 5' flanking region contributes
to the regulation of bBoule, we identified the core promoter region of bBoule by dual-luciferase
reporter experiments. First, we predicted the 5' proximal flanking sequence from nt -408 to nt
-158 as a potential core promoter region of bBoule. A series of deletion constructs (pbBoule-
107, pbBoule-224, and pbBoule-297) were generated in the predicted promoter region (Fig 3),
and GC-1 and COS-7 cells were transiently transfected. A luciferase activity analysis revealed
that the pbBoule-107 construct is important for bBoule transcriptional activity, indicating that

Fig 1. Themethylation profile of the long CpG island in the bBoule 5' flanking region. (A) Schematic
diagram of the long CGI within the bBoule promoter. (B) Schematic depiction of the CpG sites for methylation
analysis. Nucleotide numbering is relative to +1 at the initiating ATG codon. The short vertical bars represent
the CpG dinucleotides. (C) Methylation status of the bBoule promoter in the testes of cattle and cattle-yak
hybrids. Each line represents an individual bacterial clone that was sequenced. Open circles indicate
unmethylated CpG sites. Black circles indicate methylated CpG sites.

doi:10.1371/journal.pone.0128250.g001
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the basal promoter was located in the region from nt -172 to nt -66 (Fig 3). Further analysis
showed that the core promoter of bBoule was located in the long CGI, and overlapped with the
region examined in our methylation analysis. The core promoter included nine CpG sites, and

Fig 2. Themethylation profile of the short CpG island in the bBoule gene body. (A) Schematic diagram of the short CGI within the bBoule gene body.
(B) Schematic depiction of the CpG sites for methylation analysis. Nucleotide numbering is relative to +1 at the initiating ATG codon. The short vertical bars
represent the CpG dinucleotides. (C) Methylation statuses of bBoule in testes of cattle and cattle-yak hybrids. Each line represents an individual bacterial
clone that was sequenced. Open circles indicate unmethylated CpG sites. Black circles indicate methylated CpG sites.

doi:10.1371/journal.pone.0128250.g002

Fig 3. Identification of the core promoter in the bBoule gene. Left panel, functional deletion constructs of
the bBoule 5' flanking region. Right panel, the luciferase activity of each deletion construct of the bBoule 5'
flanking region. The deletion constructs were transiently transfected into GC-1 and COS-7 cell lines.
Normalized luciferase activities are expressed as mean ± SEM of duplicates for a minimum of three
experiments. All data were compared with the control group (pGL3-basic). ** indicates a significant difference
(P < 0.01).

doi:10.1371/journal.pone.0128250.g003
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the methylation level (45.56%, 41/90) of the core promoter region in the testes of cattle-yak
was significantly higher than that of cattle (16.67%, 15/90) (P< 0.00001). However, among the
27 CpG sites outside the core promoter, the difference in methylation level between the testes
of cattle-yak (8.52%, 23/270) and cattle (3.70%, 10/270) was small (P< 0.05). These data indi-
cated that there was a greater difference in the methylation level between cattle and cattle-yak
for the core promoter CGI than for the CGI outside the core promoter, and hypomethylation
of core promoter CGI may be involved in low bBoule expression in cattle-yak testes.

In vitromethylation represses bBoule promoter activity
To further determine where bBoule promoter activity was regulated by methylation of the core
promoter, we performed an in vitro DNAmethylation assay using the DNA methylase M.SssI.
The core promoter pbBoule-107 construct was treated with M.SssI methylase, then the methyl-
ated (mpbBoule-107) or unmethylated plasmids (pbBoule-107) were transfected into GC-1
and COS-7 cell lines. Luciferase assays showed that the activity of the bBoule core promoter in
both GC-1 and COS-7 cells decreased significantly after DNA methylase M.SssI treatment (all
P< 0.01) (Fig 4), suggesting that promoter methylation is important in repressing bBoule
transcriptional activity.

Demethylation increases bBoule expression
To verify the association between promoter methylation and bBoule transcriptional activity, we
treated BMECs that do not express bBoule with 5-Aza-dC, an inhibitor of DNA methyltrans-
ferase. bBoulemRNA expression was significantly higher in the 5-Aza-dC-treated group than
the control group (Fig 5) (P< 0.01). Furthermore, the increased expression was dose-depen-
dent (P< 0.05). These results further indicated that the transcription of bBoule was regulated
by DNAmethylation.

Discussion
Boule is one of only two genes (Boule and Nanos3) that was directly shown to function in
germ-cell development across diverse species including flies, worms, frogs, mice, and humans
[5, 40]. Nanos3 belongs to the Nanos gene family, and is expressed in the primordial germ cells

Fig 4. In vitromethylation assay of the bBoule promoter. The bBoule core promoter construct pbBoule-
107 was treated with M.SssI methylase, and then methylated (mpbBoule-107) or unmethylated (pbBoule-
107) plasmids were transiently transfected into GC-1 and COS-7 cell lines. Normalized luciferase activities
are expressed as mean ± SEM of at least three independent experiments. The bar above the histogram
indicates the SEM. ** indicate a significant difference (P < 0.01).

doi:10.1371/journal.pone.0128250.g004
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of mammals; Nanos3 knockout mice have smaller gonads and infertility in both male and fe-
male mice [40, 41]. Boule is a member of the DAZ family and is expressed in germ cells during
the first meiotic division of mammalian spermatogenesis, and loss of function of mammalian
Boule results in male-specific infertility [5, 42]. Our previous study found that bBoule is ex-
pressed at low levels in the testes of cattle-yak, a hybrid offspring of cattle and yaks, with male
cattle-yak infertility caused by meiotic arrest [8, 33]. However, the epigenetic regulation mech-
anism of low bBoule expression is not known. DNA methylation is one of the most common
epigenetic modifications in vertebrates; it regulates gene expression and thus affects gene func-
tion by influencing chromatin structure, DNA conformation, chromosome stability, and the
interaction between DNA and proteins [37, 43–44]. In this study, we demonstrated a higher
methylation level of the bBoule 5' region in cattle-yak testes with low bBoule expression and
male infertility than in cattle with normal spermatogenesis (P< 0.01). Thus, methylation of
the long CGI in the promoter may contribute to testicular bBoule transcription and male infer-
tility. In fact, methylation in the promoter regions of many spermatogenic cell-specific genes is
associated with male sterility, such as PIWIL1 [35, 45–46], PIWIL2 [46–47], DAZL [26, 28, 48],
SNRPN [6, 49],MEST [6, 50], VASA [34, 51], andMTHFR [51–52]. Therefore, in the DAZ
family, the methylation of two members, which exist in all mammals, DAZL and Boule, is asso-
ciated with male sterility [28, 48], while the methylation of DAZ, another DAZ family member
only found in primates, is not associated with male sterility [53].

In vertebrates, cytosine methylation is predominantly restricted to CpG dinucleotides and
stably distributed across the genome, and regions with a high frequency of CpG sites are con-
sidered CGIs. CGIs are distributed throughout the genome, including in 5' promoter regions,
gene bodies (coding regions and introns), 3' regions, and intergenic regions. In the past two de-
cades, many experiments showed that CGI hypermethylation in 5' promoter regions represses
gene transcription [34, 38, 54]. However, it was only recently discovered that CGI methylation
in gene bodies is also distinctly involved in gene expression [37, 55–56]. Maunakea et al. [37]
demonstrated a major role for intragenic methylation in regulating cell context-specific alter-
native promoters in gene bodies, and methylation of CGIs is more common in intragenic

Fig 5. mRNA expression of bBoule in BMECs treated with 5-Aza-dC.mRNA expression was detected in
treated cells but not in untreated cells by qRT-PCR. All experiments were performed three times. The bar
above the histogram indicates the SEM. Different uppercase letters denote significant differences between
different groups with a significance level of P < 0.01. Different lowercase letters denote significant differences
between different groups with a significance level of P < 0.05.

doi:10.1371/journal.pone.0128250.g005
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regions than in 50 promoter regions in the human brain. A recent study showed that DNAmeth-
ylation is not the key determinant in the regulation of most promoters in human HCT116 cells,
but demethylation has a major effect on promoter-distal regulatory regions, uncovering intragen-
ic enhancers within genes whose expression increases in the absence of DNAmethylation [56].
This indicates that DNAmethylation plays a distinct role in the silencing of regulatory elements
within gene bodies. However, the methylation status of the short intragenic CGI in intron 5 of
bBoule in the testis did not differ between cattle and cattle-yak. Similarly, methylation of a CGI in
intron 1 of GNA11 does not show a clear correlation with its decreased expression in human
breast cancers [57]. Zhu et al. [58] reported that the methylation status of intragenic CpG is-
lands-1 in SHANK3 is not changed in brain tissues of patients with autism spectrum disorders.
These observations suggested that the methylation level of intragenic CGI was not associated
with low bBoule expression in the testes of cattle-yak hybrids or with male infertility.

In mammals, CGIs were found in or near approximately 40% of gene promoters [59]. Cur-
rently, studies of DNAmethylation regulation of the expression of single genes mostly focus on
methylation of CGIs in promoter regions, and hypermethylation generally inhibits promoter ac-
tivity, whereas hypomethylation activates gene transcription [35, 52, 56, 60]. Here, we found that
the difference in methylation level between the testicular tissue of cattle and cattle-yak hybrids
was bigger for the core promoter CGIs than for those outside of the core promoter, indicating
that high methylation of CpG sites in the core promoter was strongly associated with low bBoule
expression in cattle-yak testes. The treatments with DNAmethyltransferase (M.SssI) and the in-
hibitor of DNAmethyltransferase (5-aza-dC) are the main direct in vitromethods to confirm
that promoter DNAmethylation regulates gene expression [61–65]. We further found that the
activity of the bBoule core promoter decreased significantly after DNAmethylase M.SssI treat-
ment in GC-1 and COS-7 cells, while inhibition of DNAmethylation with 5-aza-dC resulted in
an approximately 2.5-fold induction of bBoulemRNA expression in BMECs. Our study provides
strong support that DNAmethylation inactivates the endogenous bBoule promoter, and exerts a
negative effect on mRNA expression of bBoule in cattle-yak testes.

DNA promoter methylation could inhibit gene expression through direct interference with
transcription factor binding to promoters, direct binding of specific transcriptional repressors,
or alterations of the chromatin structure [35, 66–67]. To explore the molecular mechanism of
DNAmethylation inhibiting bBoule expression, we analyzed the methylation level of all CpG
sites in the core promoter and found three differentially methylated CpG sites (-117CpG,
-97CpG, and -94CpG). We next identified putative TFBS associated with the differentially
methylated CpG sites using TFSEARCH v1.3 software (http://www.cbrc.jp/research/db/
TFSEARCH.html), and found that -117CpG and -97CpG are located in the binding site for the
transcription factors activator protein (AP)-2 and alcohol dehydrogenase gene regulator 1
(ADR1), respectively, while no known TFBS was predicted for the -94CpG region (Fig 6). AP-

Fig 6. The predicated TFBS of differentially methylated CpG sites within the bBoule promoter. Arrows indicate differentially methylated CpG sites. The
TFBS is underlined.

doi:10.1371/journal.pone.0128250.g006
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2 is a sequence-specific DNA-binding protein family including AP-2α, AP-2β, AP-2γ, AP-2δ,
and AP-2ε, each of which binds to a GC-rich recognition sequence present in promoter and
enhancer sequences, forming a vital link between cis-regulatory DNA elements and the general
transcription machinery [68–70]. Bennett et al. [71] found that AP-2α expression is associated
with target gene methylation and decreased expression in HNSCC cell lines, and demonstrated
that AP-2α acts as a suppressor for certain “tumor suppressive” genes by targeting promoter
methylation and/or deacetylation via HDAC recruitment. Adr1 is a transcription factor from
Saccharomyces cerevisiae that belongs to the family of Cys2His2-type zinc finger proteins and
regulates ADH2 expression through a 22 bp palindromic sequence [72–74]. However, there are
no reports about the relationship between Adr1 and methylation of target genes in mammals.
Therefore, hypermethylation of the AP-2 binding site (-117CpG site) in the bBoule promoter
in cattle-yak testes probably causes reduced bBoule expression. Taken together, we speculate
that methylation of the -117CpG site likely prevents AP-2 binding via disruption of its target
sequence, which in turn hinders the recruitment of epigenetic factors, such as HDACs to the
bBoule promoter, and results in bBoule repression; however, further experimental verification
is needed.
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