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Abstract

Purpose—Neurological diseases have a devastating impact on millions of individuals and their 

families. These diseases will continue to constitute a significant research focus for this century. 

The search for effective treatments and cures requires multiple teams of experts in clinical 

neurosciences, neuroradiology, engineering and industry. Hence, the need to communicate a large 

amount of information with accuracy and precision is more necessary than ever for this specialty.

Method—In this paper, we present a distributed system that supports this vision, which we call 

the CranialVault Cloud (CranialCloud). It consists in a network of nodes, each with the capability 

to store and process data, that share the same spatial normalization processes, thus guaranteeing a 

common reference space. We detail and justify design choices, the architecture and functionality 

of individual nodes, the way these nodes interact, and how the distributed system can be used to 

support inter-institutional research.

Results—We discuss the current state of the system that gathers data for more than 1,600 

patients and how we envision it to grow.

Conclusions—We contend that the fastest way to find and develop promising treatments and 

cures is to permit teams of researchers to aggregate data, spatially normalize these data, and share 

them. The Cranialvault system is a system that supports this vision.
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Introduction

Because neurodegenerative diseases strike primarily in mid- to late-life, the incidence is 

expected to soar as the population ages. By 2030, as many as 1 in 5 Americans will be over 

the age of 65. If left unchecked 15 years from now, more than 12 million Americans will 

suffer from neurologic diseases. The urgency of finding treatments and cures for 

neurodegenerative diseases is thus increasing.

Neurodegenerative diseases require solutions that involve a broad range of expertise 

encompassing such different fields as neurology, genetics, brain imaging, drug discovery, 

neuro-electrophysiology, stereotactic neurosurgery, and computer science, all of which 

generate large data sets related to very small targets within the brain. Responding to the need 

to collect and share data, a number of research tools have been developed. The most 

successful examples focus on specific data types. In 2005, Marcus et al. [1] offered to the 

community the XNAT system whose primary objective is to support the sharing of clinical 

images and associated data. This is a goal shared by other successful initiatives such as 

NiDB [2], LORIS [3], and COINS [4]. The Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) unites researchers with study data as they work to define the progression of 

Alzheimer’s disease [5], Ascoli et al focus on sharing cell data [6] [7], Kotter [8] on cortical 

connectivity and Van Horn on fMRI [9] to give only a few examples. Another example is 

the Collaborative Research in Computational Neuroscience (CRCNS) program funded by 

the US National Institutes of Health (NIH) and National Science Foundation that focuses on 

supporting data sharing. The CRCNS provides a resource for sharing a wide variety of 

experimental data that is publically available [10]. In parallel, tools to support structured 

heterogeneous data acquisition within or across institutions have been developed such as the 

REDCap [11] system already used for more than 138,000 projects with over 188,000 users 

spanning numerous research focus areas across the REDCap consortium.

Neurodegenerative diseases such as the Parkinson’s disease have been studied through the 

prism of neuromodulation. As a result of pioneering work by Drs. Benabid and DeLong, 

deep brain stimulation is now a primary surgical technique that reduces tremors and restores 

motor function in patients with advanced Parkinson’s disease, dystonia, and essential 

tremor. Much of the future potential in precisely focused therapy such as DBS, has to do 

with understanding the exact location of delivered therapy and its impact on circuitry at a 

millimetric level of precision; and subsequently, the impact such therapy has on clinical 

outcomes. The variation in human brain anatomy is large enough that simple aggregation of 

data without accurate co-representation within a common space leads to vague 

generalization and comparisons of treatment modalities and diagnostic capabilities. The lack 

of analysis of data with the level of precision needed is a result of the complexity and 

heterogeneous nature of the data acquired during neuromodulation procedures. A system 

that can store and share data efficiently should be able to connect imaging datasets to 

electrophysiological neuronal signals, patient’s responses to stimulation to disease 

progression and follow up scores, and drug levels to neuromodulation parameters. The lack 

of widespread standards for data acquisition and processing further complicates the task. As 

a result, most neuromodulation databases still are homegrown by laboratories needing to 

manage their own data. These systems are often highly customized to a site’s particular data 
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and to the preferences of the laboratory that built the systems and do not easily permit inter-

institutional collaborations.

Over the last decade we have developed a system designed to handle applications that 

involve images and information that can be spatially related to these images. It consists of a 

database and associated processing pipeline system that are fully integrated into the clinical 

flow. This system permits spatial normalization of the data, data sharing across institutions, 

and handles the issue of data ownership, privacy, and compliance with the Health Insurance 

Portability and Accountability Act (HIPAA).

This system called CranialVault was originally developed at Vanderbilt to store, manage and 

normalize multiple types of data acquired from patients undergoing DBS procedures[12]. 

The deep brain procedure generates a large amount of data such as microelectrode 

recordings, patient’s responses to stimulation, and neurological observation. Prior to the 

CranialVault, only minimal patient related information often not including much more than 

the final position of the implant was stored in the clinical archive. Therefore, research 

projects required the manual extraction of data from patient and imaging archive, a process 

that did not facilitate studies that required a large amount of data.

The first implementation of the CranialVault system consisted of an SQL-based architecture 

to store any deep brain stimulation related data; a set of connected clinical tools, called 

CRAVE (CranialVault Explorer) used to collect the data without disturbing the clinical 

flow; and a processing pipeline used to normalize the data acquired from each patient onto a 

common reference system, called the atlas.

The second and third iterations of the system improved performance, extended the type of 

stored data to any data acquired during the neurological stereotactic procedure, and added 

the functionality required to handle data ownership and data sharing across users and 

research groups. During the development of CranialVault, we identified several key features 

that a clinical imaging-based data normalization system needs to possess to become a 

common data-sharing resource: 1) association of all data with a particular subject, 2) clinical 

applications and/or API to interface with existing third-party application to import structured 

heterogeneous data, 3) automated data quality checks, 4) modular normalization system, 5) 

real time queries, and 6) simple export of data.

The previous iteration of the CranialVault system met these requirements. In its previous 

iteration, the CranialVault system was a centralized system in which data from any 

partnering group was stored in virtual private databases. While data is easier to manage and 

share across groups with this type of architecture, it raises concerns over data ownership, 

data security, ethics (Institutional Review Board - IRB) issues, as well as, the permanence of 

a resource supported mainly by investigator-initiated federal grants.

To address these issues, a new version of the system was developed around a cloud-based 

architecture. This new system called the CranialVault Cloud consists of a set of 

interconnected CranialVault systems with each institution owning its own CranialVault node 

called a CranialVault Box. Patient health information (PHI) data, if used, stays within the 
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institution in a separate encrypted part of the system to limit the risks of patient data 

infringement.

To foster data sharing, the infrastructure was designed to allow the creation of “social 

networks”-like research networks permitting researchers to share data only with other 

researchers they want to share data with instead of relying on an open-ended sharing 

agreement.

Additional effort was made to interact with third party databases such as RedCap, XNAT 

and PACS systems.

Finally, to connect the system to other third-party data gathering applications, we developed 

an API and present our data definition as a standard format for neuro-related data sharing 

and open it to the community as a starting point for future standard.

Method

To the best of our knowledge, the CranialVault is the only system that can be distributed and 

combines patient’s image data, data that can be localized within them such as micro-

electrode recordings, patient’s response to stimulation, implant location and any 

demographic or disease-related information. The CranialVault system normalizes the 

patient’s data onto a common reference system using the patient MRI images and 

registration algorithms. Once normalized, the data can be analyzed through various queries.

The CranialCloud consists of a set of distributed CranialVault nodes on the network, also 

called CranilVault Boxes.

Each CranialVault node uses a subject-centric model to organize data. The subject is 

considered the unique root object and all other data are dependent on it. A unique identifier 

(UID) is assigned to each subject in the database. The UID is a combination of a unique 

number that identifies a specific node (UNI) and a unique id within the node generated 

locally to make each patient unique in the entire CranialCloud domain. PHI information is 

separated from any other information and kept in a highly encrypted section of the 

CranialVault database. Only accredited medical teams can access the PHI information 

related to the patient data. Patients are enrolled in studies defined as ethically (IRB) 

approved protocols. The IRB information and accesses to the de-identified data are managed 

locally at the level of each node.

The CranialVault system requires at least one reference image for each subject to that is 

used for normalization purposes (see [12] for details). Therefore, each patient is attached to 

a primary reference image and multiple additional imaging studies.

Each data point, localized in patient-space, is identified by a unique point ID. During the 

normalization process, the coordinates from all the points are projected using the 

transformation computed by the registration algorithms in the pipeline module and the 

results are stored in specific tables. The ID of the point is associated with its normalized 

coordinates. Meta-data can therefore be easily analyzed in any reference system.

D’Haese et al. Page 4

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2015 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Subject Uniqueness

Following the DICOM format for generating unique identifiers, each subject UID is 

composed of two parts, an <org root> and a <suffix> (UID = <org root>.<suffix>). The <org 

root> portion of the UID uniquely identifies a CranialVault Node, and is composed of a 

number of numeric components as defined by ISO 8824. The <suffix> portion of the UID is 

also composed of a number of numeric components, and is unique within the scope of the 

<org root>. Subjects are unique within a node based on name, medical record number, date 

of birth, and gender. While there is a risk of creating two entries within the CranialCloud for 

a patient that would register in two different CranialVault nodes, in most instances, these 

criteria will ensure data integrity with limited chance for error because of duplication.

CranialVault Node System Architecture

Each CranialVault system node uses a multi-tier architecture. Figure 2 illustrates the flow. 

The client applications layer such as the CRAVE (CRAnialVault Explorer) modules[12], 

communicate with the database through the middleware layer that consists of a PHP-Apache 

interface that prepare the data for and from the database. The data (A-D) is then de-

identified and stored within the database. The data are then normalized in the processing tier 

(F) before being stored and prepared for data sharing (H). While historically, the database 

system has been an Oracle Enterprise database (currently running Oracle 12c), another 

version of the system has been developed using MySQL essentially to offer an alternative to 

expensive licenses costs. With minor changes MySQL could be exchanged for any other 

RDBMS. While the system has been designed in a way that does not depend on the database 

system used, Oracle offers additional options and advanced security that MySQL does not. 

To that extent, we have decided to keep both versions.

PHP is used as the client–server based language to handle the communication between the 

client applications and the database. Using a web-based approach as the front end helps 

transferring data through very secure institutions without the need to open new ports into 

firewalls, thus facilitating deployment.

Processing is done through the use of the pipeline module and an asynchronous queuing 

model. Once patient’s data is added to the database, a processing order is added to the 

Processing Queue. When first run, a pipeline instance checks for any unprocessed order in 

the queue and consumes the next order. The system can scale easily by adding processing 

pipelines that can all subscribe to the processing queue and process orders simultaneously. 

The processing pipeline runs a sequence of registrations algorithms to normalize patient’s 

data onto a common reference system as described in details in [12]. In order to maintain the 

best normalization service, the CranialVault architecture has been designed to permit 

replacing current algorithms with better, more efficient ones as they are developed. 

Algorithms are stored with a definition of their parameters in a specific database table and 

can be called automatically through a generic procedure.

Data organization

As introduce before the Cranialvault handles 1) “non-localized” patient data, including 

historical or current clinical data, such as demographics, drugs, disease state, imaging, or 
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longitudinal observations through scores of pre-defined rating scales such as the unified 

Parkinson’s disease rating scale (UPDRS); 2) “localized” data or data that can be associated 

with a specific location in the brain, such as the recording of the neuronal activity at a 

specific location or the response of the patient to intra-cranial stimulation; and 3) multiple 

data normalization algorithms and atlases. Moreover, the Cranialvault should also permit to 

access identified or de-identified patient data depending on the credentials and applications.

The patient data is organized in a relational model where the patient ID data is isolated from 

all other information by means of a specific table. A virtual private database (VPD) masks 

data from that table so that only a subset of the data appears to exist depending on the user’s 

credentials. This prevents HIPAA sensitive data to be accessed by everyone but also allows 

more privileged users to access the whole table.

Non-localized data are then stored by type in different tables: the images table will store all 

information pertaining to data acquisition as well as a pointer to raw image data, the 

demographics table will contain any static information about the patient (gender, 

handedness, …), scores from user-defined or global rating scales are stored in a third tables 

system. Each of these tables is structured in a very scalable way to allow users of the 

CranialVault to store any similar data without the need to define new columns or tables.

Localized data follows the following scheme. Each data point is kept in a records table that 

stores x, y, z coordinates in patient-space and assign a unique record id. The associated 

recorded data is then split through different tables based on the type of information. While 

designing the database we split records into very general types to avoid being limited to 

DBS procedures. These are for instance response to stimulation, signals (micro-electrode 

recordings, SEEG, …) or implants.

Because multiple algorithms exists that can normalize data onto multiple atlases, the 

database stores algorithms within the database in a specific table and store the output 

transformations they create in another. Each algorithm can be associated with one or more 

set of parameters. Today, the Cranialvault has the following algorithms: ABA[13], SyN[14], 

F3D[15] and ART[16] as they are among the most efficient and robust ones [17].

Once normalized onto one or more atlases, coordinates of the records are stored in an 

atlas_record table. One benefit of this approach is that patient data can be accessed either in 

patient or atlas space.

CranialCloud and Data security

Nodes can either be hosted physically within a specific medical or research institution or 

deployed in a public cloud such as the Amazon or Google Cloud. As opposed to 

CranialVault boxes that are physically deployed in the IT architecture of a medical center, a 

CranialVault box deployed in a public cloud such as the Amazon Cloud is exposed to usual 

cloud risks including hacking, rogue administrators, accidents, complicit service provides, 

and snooping governments. Client-side cryptography is a good solution to these issues as it 

allows users to protect their own data with individual, per-file encryption and protect access 

to that data with user-controlled keys. The system uses an AES-256 encryption mechanism. 
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The encryption, decryption and key management are all done on the end user’s computer or 

device, meaning the data in the cloud only exists in its encrypted state.

As explained earlier, the CranialVault database stores two kind of data: data that contains 

patient identifier to give clinician providing care to the patient access to the patient 

information, and de-identified patient data that could be shared after normalization with 

specific users. The CranialVault Cloud system uses a mix of shared and unshared keys: a 

unique key that is generated for each CranialVault node and is kept within the client 

institution to provide access to the patient data, while another key is shared among all 

CranialVault nodes to allow the decryption of de-identified data.

Data Sharing

All nodes within the CranialCloud consist of CranialVault Boxes. All boxes are self-

sufficient and have the same functionality. In addition, each node has the capability to 

connect to others to enable data sharing of de-identified and normalized data.

Sharing normalized data is a concept different than sharing raw data: it involves 1) 

normalization of the data and, 2) a common reference system. Sharing a common and 

unique normalization method and a common reference system are thus crucial for this 

project. In order to maintain the capability to compare data generated from different 

CranialVault nodes, all nodes have to stay in sync, i.e., the same normalization protocol 

needs to be used by each box.

In order to achieve this, each node is registered to a central node, called the CranialVault 

Core. Its role is to update the node periodically with database structural changes, new 

processing algorithms and to update the list of existing nodes with their addresses in order 

for the node to stay connected with the complete CranialCloud network. While the 

CranialVault Core is based on the same 251722752architecture as a node, its purpose is not 

to store any data but only to maintain other nodes centrally.

A decentralized model is used for data sharing. Once connected to the CranialVault Core 

node, each individual site has access to information about other nodes on the network and 

can share data without interacting with a central repository.

Data is shared between nodes using a three-step process: 1) the sharing site creates a 

research study associated with the data to be shared, 2) the sharing site selects the node(s) 

and user(s) with whom to share the data, 3) views are automatically created from queries 

generated to fetch the shared data from each node and results are only available to the 

members of the study across institution. Sharing can be done in two ways (Figures 3 & 4): 

either unidirectionnally, i.e., a group shares its findings with others on a read-only mode; or, 

bidirectionally, i.e., multiple groups collaborate on a specific study, each bringing data that 

can be aggregated with data brought in by the other members.

Advantages of a decentralized system are: 1) data sharing is the responsibility of the group 

sharing the data 2) no PHI or image data is shared, only de-identified patient information 

normalized in a common reference system 3) connections between groups are only known 

by the nodes involved.
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Querying normalized data onto the Cranialvault atlas

Data can be queried using several criteria regrouping subject, study or any specific patient 

information. By default, all searches are cross-projects, with the only limitation being access 

permissions.

Analyzing neurodegenerative disease-related data often consists of comparing regions or 

locations within the patient’s brain that correspond to an observation. While the 

normalization of the data allows comparing points located in brains with different anatomies 

through the use of a common reference atlas, multiple references currently exist without a 

single one being recognized as the universal reference. Research in the area of data 

normalization also suggests that the use of multiple atlases improves the results of data 

normalization. The CranialVault system has been designed to handle multiple atlases that 

can be updated through the use of the CranialVault Core. At the time of writing, the 

CranialVault system uses 10 atlases built from the brain of 5 male and 5 female individual 

subjects ranging form 30 to 55 y/o. Each atlas consists of multiple MRI sequences acquired 

both on 3T and high-field 7T scanners. To provide anatomical and white matter tracts 

information, each atlas has been segmented carefully following a similar method as 

described in [18]. Major fiber tracts such as the corticospinal tract were extracted by experts 

using DTI studio and following approaches described in [19], [20].

While the results of each query can be exported for statistical analysis in system such as R, 

excel or MATLAB, the visualization of the results is done using the CRAVE Atlas module. 

The CRAVE Atlas module is a graphical user interface that allows each user to create 

his/her own database requests, set up the access and privileges, and visualize the results. An 

interface lets the user create new queries, save them as Reports and manage access to the 

data. Depending on access, these reports will fetch data from the local node or the 

CranialCloud.

Data returned from the queries are then shown as points as illustrated in Figure 6, or 

statistical maps on top of the atlas MRI and the atlas anatomical structures. Multiple reports 

can be shown simultaneously for data comparison. To illustrate this by means of an 

example, a user could create two reports showing the normalized lead positions for patients 

suffering from Parkinson’s disease, one for good and the other for bad responders. While 

this example is trivial, queries can be as complex as the data will support. Once a report is 

created, it can be automatically updated with new patients added in the CranialCloud.

CranialCloud Governance

It is reasonable that most of the services managed by the Cranialvault Core, including 

updates of algorithms and database structural changes should be provided by a small core 

team of theoretical neuroscientists, imaging scientists, and image processors. Thus core 

services are being developed to implement and administer standardized procedures that can 

be used across resources that are shared through the CranialCloud. Further, for steering and 

evaluation of the activities a governance board will be established. The board will include 

noninvolved experts in the field, engineers, database experts, experimental and theoretical 

neuroscientists, some active resource contributors, representatives of related activities and 
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other experts. The board’s responsibilities will be to guide important decisions concerning 

the core services. Conversely, the experience gathered in this data-sharing project will be 

brought back to the relevant communities in workshops and publications.

Results

Vanderbilt University has been the primary site for the CranialVault development and has 

been converted into a CranialVault node recently. Ohio State University Medical Center, 

Wake Forest University Medical Center, the VA in Richmond, which were part of the initial 

CranialVault consortium now have their individual node. Some of them are still hosted at 

Vanderbilt University while waiting to be transferred inside the institution. While historical 

the Cranialvault focused on DBS-related data, we have started to broaden the spectrum of 

use of the Cranialvault to other disorders such as epilepsy.

The CranialCloud has normalized data related to more than 1600 patients, generating 32,000 

registrations and 5 terabytes of raw data. The CranialCloud manages more than 51,000 intra-

operative records related to observations such as patient’s responses to stimulation, micro-

electrode recordings that can be correlated to patient demographics, motor and/or cognitive 

scores to answer specific questions. The DBS application generates on average 32 new 

subjects each months resulting in 900 Gb of results generated in 16 hours of CPU time.

Conclusion

In recent years, scientists have made great strides in understanding the underlying causes of 

neurodegenerative diseases. As we uncover more details about these diseases, we hope that, 

in time, we will be able to better treat and possibly prevent them. As in most major 

endeavors, the greater the resources we bring to bear, the faster the progress toward our 

goal. If we want to avoid the looming and dramatic impact of these diseases on our 

increasingly elderly population, we need as a research community to share data to reach 

statistical significance within our analyses in the hope of finding solutions. In the process of 

creating a database that satisfies our local needs, we were able to create a system that we 

believe will satisfy the needs of many other researchers and research groups, and solve many 

of the challenges related to data sharing for neurodegenerative diseases. While we hope that 

the CranialCloud will speed the process of scientific discovery by making data available 

across institution, this system could also be used by any images or signals processors, to test 

and compare their algorithms on data of variable quality acquired with different protocols 

from all around the world. The governance board could then decide to upgrade the 

processing algorithms of the CranialCloud to the best preforming ones. We are currently 

working on the design to make this possible without the need to transfer image or signal data 

from each institution to the testing one. Tests we have done so far allow us to automatically 

run algorithms on a large set of data using Vanderbilt’s ACCRE (Advanced Computing 

Center for Research and Education) high performance computing cluster and we are 

exploring options to run algorithms in the Cloud.

Today, the system has been deployed at a limited number of sites because its installation still 

requires technical expertise and resources; it is currently done by the Vanderbilt team with 

the local IT team. Each site manages its own ethics requirements and patients’ consents, 
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through its local ethics board. Each group is also added onto the main IRB managed by 

Vanderbilt University. Until now, we have worked with teams and institutions that are 

willing to invested some IT resources and who had or were willing to use the CRAVE tools 

in their clinical flow for non-disruptively acquire the data. We will continue to work with 

new group who are willing to do the same as our resources permit. Our goal is to reach a 

point at which our system can be installed and managed with minimum local technical 

expertise, thus permitting its wide dissemination.
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Figure 1. 
CranialVault system: any data that can be related to a location within the patient’s MRI is 

normalized into a common reference system called the atlas for statistical analysis and 3D 

visualization.
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Figure 2. 
The data is captured from the clinical flow with applications compatible with the 

CranialVault such as the CRAVE modules. The applications communicate with the 

CranialVault Box through secure channels to a middleware layer (Apache/PHP) to send data 

to the database and storage. PHI information is separated from the rest of the clinical data 

and stored in a secure location, patient de-identified data is then processed through a 

pipeline module to be normalized onto the CranialVault Atlas.
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Figure 3. 
Unidirectional sharing. A single node, with proper privileges, can query the CranialCloud 

with a specific request. Data will then be fetched through the Cloud and returned to the 

instance initiating the query.
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Figure 4. 
Bidirectional sharing. Multiple instances share data. Each node can query the Cloud with a 

specific request. Data is fetched across each participating node transparently.
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Figure 5. 
Each Cranialvault Box/Node acquires the data from the clinical flow, de-identifies and 

normalizes to prepare it for sharing with other nodes. Each node shares common processing 

algorithms and reference system that can be updated simultaneously from the Cranialvault 

Core node.
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Figure 6. 
CranialVault Atlas module visualization interface. This particular set of data represents 

normalized intra-operative stimulations. Each sphere is color coded to reflect how well the 

symptoms of the patient are controlled by the stimulation: from blue: no control on 

symptoms to red: full control of the symptoms. The data are shown as cluster of points on 

top of the atlas high field MRI and anatomical structures segmentations.
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Figure 7. 
Evolution of the number of subjects in the Cranialvault system
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Figure 8. 
Evolution of the data stored in the CranialVault system in GB.
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