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Abstract

Purpose—Neurological diseases have a devastating impact on millions of individuals and their
families. These diseases will continue to constitute a significant research focus for this century.
The search for effective treatments and cures requires multiple teams of experts in clinical
neurosciences, neuroradiology, engineering and industry. Hence, the need to communicate a large
amount of information with accuracy and precision is more necessary than ever for this specialty.

Method—In this paper, we present a distributed system that supports this vision, which we call
the CranialVVault Cloud (CranialCloud). It consists in a network of nodes, each with the capability
to store and process data, that share the same spatial normalization processes, thus guaranteeing a
common reference space. We detail and justify design choices, the architecture and functionality
of individual nodes, the way these nodes interact, and how the distributed system can be used to
support inter-institutional research.

Results—We discuss the current state of the system that gathers data for more than 1,600
patients and how we envision it to grow.

Conclusions—We contend that the fastest way to find and develop promising treatments and
cures is to permit teams of researchers to aggregate data, spatially normalize these data, and share
them. The Cranialvault system is a system that supports this vision.
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Introduction

Because neurodegenerative diseases strike primarily in mid- to late-life, the incidence is
expected to soar as the population ages. By 2030, as many as 1 in 5 Americans will be over
the age of 65. If left unchecked 15 years from now, more than 12 million Americans will
suffer from neurologic diseases. The urgency of finding treatments and cures for
neurodegenerative diseases is thus increasing.

Neurodegenerative diseases require solutions that involve a broad range of expertise
encompassing such different fields as neurology, genetics, brain imaging, drug discovery,
neuro-electrophysiology, stereotactic neurosurgery, and computer science, all of which
generate large data sets related to very small targets within the brain. Responding to the need
to collect and share data, a number of research tools have been developed. The most
successful examples focus on specific data types. In 2005, Marcus et al. [1] offered to the
community the XNAT system whose primary objective is to support the sharing of clinical
images and associated data. This is a goal shared by other successful initiatives such as
NiDB [2], LORIS [3], and COINS [4]. The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) unites researchers with study data as they work to define the progression of
Alzheimer’s disease [5], Ascoli et al focus on sharing cell data [6] [7], Kotter [8] on cortical
connectivity and Van Horn on fMRI [9] to give only a few examples. Another example is
the Collaborative Research in Computational Neuroscience (CRCNS) program funded by
the US National Institutes of Health (NIH) and National Science Foundation that focuses on
supporting data sharing. The CRCNS provides a resource for sharing a wide variety of
experimental data that is publically available [10]. In parallel, tools to support structured
heterogeneous data acquisition within or across institutions have been developed such as the
REDCap [11] system already used for more than 138,000 projects with over 188,000 users
spanning numerous research focus areas across the REDCap consortium.

Neurodegenerative diseases such as the Parkinson’s disease have been studied through the
prism of neuromodulation. As a result of pioneering work by Drs. Benabid and DelL.ong,
deep brain stimulation is now a primary surgical technique that reduces tremors and restores
motor function in patients with advanced Parkinson’s disease, dystonia, and essential
tremor. Much of the future potential in precisely focused therapy such as DBS, has to do
with understanding the exact location of delivered therapy and its impact on circuitry at a
millimetric level of precision; and subsequently, the impact such therapy has on clinical
outcomes. The variation in human brain anatomy is large enough that simple aggregation of
data without accurate co-representation within a common space leads to vague
generalization and comparisons of treatment modalities and diagnostic capabilities. The lack
of analysis of data with the level of precision needed is a result of the complexity and
heterogeneous nature of the data acquired during neuromodulation procedures. A system
that can store and share data efficiently should be able to connect imaging datasets to
electrophysiological neuronal signals, patient’s responses to stimulation to disease
progression and follow up scores, and drug levels to neuromodulation parameters. The lack
of widespread standards for data acquisition and processing further complicates the task. As
a result, most neuromodulation databases still are homegrown by laboratories needing to
manage their own data. These systems are often highly customized to a site’s particular data
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and to the preferences of the laboratory that built the systems and do not easily permit inter-
institutional collaborations.

Over the last decade we have developed a system designed to handle applications that
involve images and information that can be spatially related to these images. It consists of a
database and associated processing pipeline system that are fully integrated into the clinical
flow. This system permits spatial normalization of the data, data sharing across institutions,
and handles the issue of data ownership, privacy, and compliance with the Health Insurance
Portability and Accountability Act (HIPAA).

This system called CranialVault was originally developed at VVanderbilt to store, manage and
normalize multiple types of data acquired from patients undergoing DBS procedures[12].
The deep brain procedure generates a large amount of data such as microelectrode
recordings, patient’s responses to stimulation, and neurological observation. Prior to the
CranialVault, only minimal patient related information often not including much more than
the final position of the implant was stored in the clinical archive. Therefore, research
projects required the manual extraction of data from patient and imaging archive, a process
that did not facilitate studies that required a large amount of data.

The first implementation of the CranialVVault system consisted of an SQL-based architecture
to store any deep brain stimulation related data; a set of connected clinical tools, called
CRAVE (CranialVault Explorer) used to collect the data without disturbing the clinical
flow; and a processing pipeline used to normalize the data acquired from each patient onto a
common reference system, called the atlas.

The second and third iterations of the system improved performance, extended the type of
stored data to any data acquired during the neurological stereotactic procedure, and added
the functionality required to handle data ownership and data sharing across users and
research groups. During the development of CranialVVault, we identified several key features
that a clinical imaging-based data normalization system needs to possess to become a
common data-sharing resource: 1) association of all data with a particular subject, 2) clinical
applications and/or API to interface with existing third-party application to import structured
heterogeneous data, 3) automated data quality checks, 4) modular normalization system, 5)
real time queries, and 6) simple export of data.

The previous iteration of the CranialVault system met these requirements. In its previous
iteration, the CranialVault system was a centralized system in which data from any
partnering group was stored in virtual private databases. While data is easier to manage and
share across groups with this type of architecture, it raises concerns over data ownership,
data security, ethics (Institutional Review Board - IRB) issues, as well as, the permanence of
a resource supported mainly by investigator-initiated federal grants.

To address these issues, a new version of the system was developed around a cloud-based
architecture. This new system called the CranialVVault Cloud consists of a set of
interconnected CranialVault systems with each institution owning its own CranialVVault node
called a CranialVVault Box. Patient health information (PHI) data, if used, stays within the
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institution in a separate encrypted part of the system to limit the risks of patient data
infringement.

To foster data sharing, the infrastructure was designed to allow the creation of “social
networks”-like research networks permitting researchers to share data only with other
researchers they want to share data with instead of relying on an open-ended sharing
agreement.

Additional effort was made to interact with third party databases such as RedCap, XNAT
and PACS systems.

Finally, to connect the system to other third-party data gathering applications, we developed
an API and present our data definition as a standard format for neuro-related data sharing
and open it to the community as a starting point for future standard.

To the best of our knowledge, the CranialVault is the only system that can be distributed and
combines patient’s image data, data that can be localized within them such as micro-
electrode recordings, patient’s response to stimulation, implant location and any
demographic or disease-related information. The CranialVault system normalizes the
patient’s data onto a common reference system using the patient MRI images and
registration algorithms. Once normalized, the data can be analyzed through various queries.

The CranialCloud consists of a set of distributed CranialVVault nodes on the network, also
called CranilVault Boxes.

Each CranialVault node uses a subject-centric model to organize data. The subject is
considered the unique root object and all other data are dependent on it. A unique identifier
(UID) is assigned to each subject in the database. The UID is a combination of a unique
number that identifies a specific node (UNI) and a unique id within the node generated
locally to make each patient unique in the entire CranialCloud domain. PHI information is
separated from any other information and kept in a highly encrypted section of the
CranialVault database. Only accredited medical teams can access the PHI information
related to the patient data. Patients are enrolled in studies defined as ethically (IRB)
approved protocols. The IRB information and accesses to the de-identified data are managed
locally at the level of each node.

The CranialVault system requires at least one reference image for each subject to that is
used for normalization purposes (see [12] for details). Therefore, each patient is attached to
a primary reference image and multiple additional imaging studies.

Each data point, localized in patient-space, is identified by a unique point ID. During the
normalization process, the coordinates from all the points are projected using the
transformation computed by the registration algorithms in the pipeline module and the
results are stored in specific tables. The ID of the point is associated with its normalized
coordinates. Meta-data can therefore be easily analyzed in any reference system.
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Subject Uniqueness

Following the DICOM format for generating unique identifiers, each subject UID is
composed of two parts, an <org root> and a <suffix> (UID = <org root>.<suffix>). The <org
root> portion of the UID uniquely identifies a CranialVVault Node, and is composed of a
number of numeric components as defined by 1SO 8824. The <suffix> portion of the UID is
also composed of a number of numeric components, and is unique within the scope of the
<org root>. Subjects are unique within a node based on name, medical record number, date
of birth, and gender. While there is a risk of creating two entries within the CranialCloud for
a patient that would register in two different CranialVVault nodes, in most instances, these
criteria will ensure data integrity with limited chance for error because of duplication.

CranialVault Node System Architecture

Each CranialVault system node uses a multi-tier architecture. Figure 2 illustrates the flow.
The client applications layer such as the CRAVE (CRAnialVault Explorer) modules[12],
communicate with the database through the middleware layer that consists of a PHP-Apache
interface that prepare the data for and from the database. The data (A-D) is then de-
identified and stored within the database. The data are then normalized in the processing tier
(F) before being stored and prepared for data sharing (H). While historically, the database
system has been an Oracle Enterprise database (currently running Oracle 12c), another
version of the system has been developed using MySQL essentially to offer an alternative to
expensive licenses costs. With minor changes MySQL could be exchanged for any other
RDBMS. While the system has been designed in a way that does not depend on the database
system used, Oracle offers additional options and advanced security that MySQL does not.
To that extent, we have decided to keep both versions.

PHP is used as the client—server based language to handle the communication between the
client applications and the database. Using a web-based approach as the front end helps
transferring data through very secure institutions without the need to open new ports into
firewalls, thus facilitating deployment.

Processing is done through the use of the pipeline module and an asynchronous queuing
model. Once patient’s data is added to the database, a processing order is added to the
Processing Queue. When first run, a pipeline instance checks for any unprocessed order in
the queue and consumes the next order. The system can scale easily by adding processing
pipelines that can all subscribe to the processing queue and process orders simultaneously.
The processing pipeline runs a sequence of registrations algorithms to normalize patient’s
data onto a common reference system as described in details in [12]. In order to maintain the
best normalization service, the CranialVault architecture has been designed to permit
replacing current algorithms with better, more efficient ones as they are developed.
Algorithms are stored with a definition of their parameters in a specific database table and
can be called automatically through a generic procedure.

Data organization

As introduce before the Cranialvault handles 1) “non-localized” patient data, including
historical or current clinical data, such as demographics, drugs, disease state, imaging, or
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longitudinal observations through scores of pre-defined rating scales such as the unified
Parkinson’s disease rating scale (UPDRS); 2) “localized” data or data that can be associated
with a specific location in the brain, such as the recording of the neuronal activity at a
specific location or the response of the patient to intra-cranial stimulation; and 3) multiple
data normalization algorithms and atlases. Moreover, the Cranialvault should also permit to
access identified or de-identified patient data depending on the credentials and applications.

The patient data is organized in a relational model where the patient ID data is isolated from
all other information by means of a specific table. A virtual private database (VPD) masks
data from that table so that only a subset of the data appears to exist depending on the user’s
credentials. This prevents HIPAA sensitive data to be accessed by everyone but also allows
more privileged users to access the whole table.

Non-localized data are then stored by type in different tables: the images table will store all
information pertaining to data acquisition as well as a pointer to raw image data, the
demographics table will contain any static information about the patient (gender,
handedness, ...), scores from user-defined or global rating scales are stored in a third tables
system. Each of these tables is structured in a very scalable way to allow users of the
CranialVault to store any similar data without the need to define new columns or tables.

Localized data follows the following scheme. Each data point is kept in a records table that
stores X, y, z coordinates in patient-space and assign a unique record id. The associated
recorded data is then split through different tables based on the type of information. While
designing the database we split records into very general types to avoid being limited to
DBS procedures. These are for instance response to stimulation, signals (micro-electrode
recordings, SEEG, ...) or implants.

Because multiple algorithms exists that can normalize data onto multiple atlases, the
database stores algorithms within the database in a specific table and store the output
transformations they create in another. Each algorithm can be associated with one or more
set of parameters. Today, the Cranialvault has the following algorithms: ABA[13], SyN[14],
F3D[15] and ART[16] as they are among the most efficient and robust ones [17].

Once normalized onto one or more atlases, coordinates of the records are stored in an
atlas_record table. One benefit of this approach is that patient data can be accessed either in
patient or atlas space.

CranialCloud and Data security

Nodes can either be hosted physically within a specific medical or research institution or
deployed in a public cloud such as the Amazon or Google Cloud. As opposed to
CranialVVault boxes that are physically deployed in the IT architecture of a medical center, a
CranialVault box deployed in a public cloud such as the Amazon Cloud is exposed to usual
cloud risks including hacking, rogue administrators, accidents, complicit service provides,
and snooping governments. Client-side cryptography is a good solution to these issues as it
allows users to protect their own data with individual, per-file encryption and protect access
to that data with user-controlled keys. The system uses an AES-256 encryption mechanism.
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The encryption, decryption and key management are all done on the end user’s computer or
device, meaning the data in the cloud only exists in its encrypted state.

As explained earlier, the CranialVault database stores two kind of data: data that contains
patient identifier to give clinician providing care to the patient access to the patient
information, and de-identified patient data that could be shared after normalization with
specific users. The CranialVault Cloud system uses a mix of shared and unshared keys: a
unique key that is generated for each CranialVault node and is kept within the client
institution to provide access to the patient data, while another key is shared among all
CranialVault nodes to allow the decryption of de-identified data.

Data Sharing

All nodes within the CranialCloud consist of CranialVault Boxes. All boxes are self-
sufficient and have the same functionality. In addition, each node has the capability to
connect to others to enable data sharing of de-identified and normalized data.

Sharing normalized data is a concept different than sharing raw data: it involves 1)
normalization of the data and, 2) a common reference system. Sharing a common and
unigue normalization method and a common reference system are thus crucial for this
project. In order to maintain the capability to compare data generated from different
CranialVault nodes, all nodes have to stay in sync, i.e., the same normalization protocol
needs to be used by each box.

In order to achieve this, each node is registered to a central node, called the CranialVault
Core. Its role is to update the node periodically with database structural changes, new
processing algorithms and to update the list of existing nodes with their addresses in order
for the node to stay connected with the complete CranialCloud network. While the
CranialVault Core is based on the same 251722752architecture as a node, its purpose is not
to store any data but only to maintain other nodes centrally.

A decentralized model is used for data sharing. Once connected to the CranialVVault Core
node, each individual site has access to information about other nodes on the network and
can share data without interacting with a central repository.

Data is shared between nodes using a three-step process: 1) the sharing site creates a
research study associated with the data to be shared, 2) the sharing site selects the node(s)
and user(s) with whom to share the data, 3) views are automatically created from queries
generated to fetch the shared data from each node and results are only available to the
members of the study across institution. Sharing can be done in two ways (Figures 3 & 4):
either unidirectionnally, i.e., a group shares its findings with others on a read-only mode; or,
bidirectionally, i.e., multiple groups collaborate on a specific study, each bringing data that
can be aggregated with data brought in by the other members.

Advantages of a decentralized system are: 1) data sharing is the responsibility of the group
sharing the data 2) no PHI or image data is shared, only de-identified patient information
normalized in a common reference system 3) connections between groups are only known
by the nodes involved.
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Querying normalized data onto the Cranialvault atlas

Data can be queried using several criteria regrouping subject, study or any specific patient
information. By default, all searches are cross-projects, with the only limitation being access
permissions.

Analyzing neurodegenerative disease-related data often consists of comparing regions or
locations within the patient’s brain that correspond to an observation. While the
normalization of the data allows comparing points located in brains with different anatomies
through the use of a common reference atlas, multiple references currently exist without a
single one being recognized as the universal reference. Research in the area of data
normalization also suggests that the use of multiple atlases improves the results of data
normalization. The CranialVault system has been designed to handle multiple atlases that
can be updated through the use of the CranialVVault Core. At the time of writing, the
CranialVault system uses 10 atlases built from the brain of 5 male and 5 female individual
subjects ranging form 30 to 55 y/o. Each atlas consists of multiple MRI sequences acquired
both on 3T and high-field 7T scanners. To provide anatomical and white matter tracts
information, each atlas has been segmented carefully following a similar method as
described in [18]. Major fiber tracts such as the corticospinal tract were extracted by experts
using DTI studio and following approaches described in [19], [20].

While the results of each query can be exported for statistical analysis in system such as R,
excel or MATLAB, the visualization of the results is done using the CRAVE Atlas module.
The CRAVE Atlas module is a graphical user interface that allows each user to create
his/her own database requests, set up the access and privileges, and visualize the results. An
interface lets the user create new queries, save them as Reports and manage access to the
data. Depending on access, these reports will fetch data from the local node or the
CranialCloud.

Data returned from the queries are then shown as points as illustrated in Figure 6, or
statistical maps on top of the atlas MRI and the atlas anatomical structures. Multiple reports
can be shown simultaneously for data comparison. To illustrate this by means of an
example, a user could create two reports showing the normalized lead positions for patients
suffering from Parkinson’s disease, one for good and the other for bad responders. While
this example is trivial, queries can be as complex as the data will support. Once a report is
created, it can be automatically updated with new patients added in the CranialCloud.

CranialCloud Governance

It is reasonable that most of the services managed by the Cranialvault Core, including
updates of algorithms and database structural changes should be provided by a small core
team of theoretical neuroscientists, imaging scientists, and image processors. Thus core
services are being developed to implement and administer standardized procedures that can
be used across resources that are shared through the CranialCloud. Further, for steering and
evaluation of the activities a governance board will be established. The board will include
noninvolved experts in the field, engineers, database experts, experimental and theoretical
neuroscientists, some active resource contributors, representatives of related activities and
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other experts. The board’s responsibilities will be to guide important decisions concerning
the core services. Conversely, the experience gathered in this data-sharing project will be
brought back to the relevant communities in workshops and publications.

Vanderbilt University has been the primary site for the CranialVault development and has
been converted into a CranialVVault node recently. Ohio State University Medical Center,
Wake Forest University Medical Center, the VA in Richmond, which were part of the initial
CranialVault consortium now have their individual node. Some of them are still hosted at
Vanderbilt University while waiting to be transferred inside the institution. While historical
the Cranialvault focused on DBS-related data, we have started to broaden the spectrum of
use of the Cranialvault to other disorders such as epilepsy.

The CranialCloud has normalized data related to more than 1600 patients, generating 32,000
registrations and 5 terabytes of raw data. The CranialCloud manages more than 51,000 intra-
operative records related to observations such as patient’s responses to stimulation, micro-
electrode recordings that can be correlated to patient demographics, motor and/or cognitive
scores to answer specific questions. The DBS application generates on average 32 new
subjects each months resulting in 900 Gb of results generated in 16 hours of CPU time.

Conclusion

In recent years, scientists have made great strides in understanding the underlying causes of
neurodegenerative diseases. As we uncover more details about these diseases, we hope that,
in time, we will be able to better treat and possibly prevent them. As in most major
endeavors, the greater the resources we bring to bear, the faster the progress toward our

goal. If we want to avoid the looming and dramatic impact of these diseases on our
increasingly elderly population, we need as a research community to share data to reach
statistical significance within our analyses in the hope of finding solutions. In the process of
creating a database that satisfies our local needs, we were able to create a system that we
believe will satisfy the needs of many other researchers and research groups, and solve many
of the challenges related to data sharing for neurodegenerative diseases. While we hope that
the CranialCloud will speed the process of scientific discovery by making data available
across institution, this system could also be used by any images or signals processors, to test
and compare their algorithms on data of variable quality acquired with different protocols
from all around the world. The governance board could then decide to upgrade the
processing algorithms of the CranialCloud to the best preforming ones. We are currently
working on the design to make this possible without the need to transfer image or signal data
from each institution to the testing one. Tests we have done so far allow us to automatically
run algorithms on a large set of data using Vanderbilt’s ACCRE (Advanced Computing
Center for Research and Education) high performance computing cluster and we are
exploring options to run algorithms in the Cloud.

Today, the system has been deployed at a limited number of sites because its installation still
requires technical expertise and resources; it is currently done by the Vanderbilt team with
the local IT team. Each site manages its own ethics requirements and patients’ consents,
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through its local ethics board. Each group is also added onto the main IRB managed by
Vanderbilt University. Until now, we have worked with teams and institutions that are
willing to invested some IT resources and who had or were willing to use the CRAVE tools
in their clinical flow for non-disruptively acquire the data. We will continue to work with
new group who are willing to do the same as our resources permit. Our goal is to reach a
point at which our system can be installed and managed with minimum local technical
expertise, thus permitting its wide dissemination.
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Figurel.
CranialVault system: any data that can be related to a location within the patient’s MRI is

normalized into a common reference system called the atlas for statistical analysis and 3D
visualization.

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2015 June 02.



1duosnuepy soyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuep Joyiny

D’Haese et al.

Page 13

Processing

Clinical / Raw data

MIDDLEWARE ( Al;‘ACHE-PHP )

Figure 2.
The data is captured from the clinical flow with applications compatible with the

CranialVault such as the CRAVE modules. The applications communicate with the
CranialVault Box through secure channels to a middleware layer (Apache/PHP) to send data
to the database and storage. PHI information is separated from the rest of the clinical data
and stored in a secure location, patient de-identified data is then processed through a
pipeline module to be normalized onto the CranialVault Atlas.
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Unidirectional sharing. A single node, with proper privileges, can query the CranialCloud
with a specific request. Data will then be fetched through the Cloud and returned to the
instance initiating the query.
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Figure4.
Bidirectional sharing. Multiple instances share data. Each node can query the Cloud with a

specific request. Data is fetched across each participating node transparently.
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Figure5.
Each Cranialvault Box/Node acquires the data from the clinical flow, de-identifies and

normalizes to prepare it for sharing with other nodes. Each node shares common processing
algorithms and reference system that can be updated simultaneously from the Cranialvault
Core node.
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Figure6.
CranialVault Atlas module visualization interface. This particular set of data represents

normalized intra-operative stimulations. Each sphere is color coded to reflect how well the
symptoms of the patient are controlled by the stimulation: from blue: no control on
symptoms to red: full control of the symptoms. The data are shown as cluster of points on
top of the atlas high field MRI and anatomical structures segmentations.
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Figure7.
Evolution of the number of subjects in the Cranialvault system
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Figure8.
Evolution of the data stored in the CranialVault system in GB.
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