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Abstract

Since F T Lewis’ pioneering work in the 1920s, a linear correlation between the average in-plane 

area of domains in a two-dimensional (2D) cellular structure and the number of neighbors of the 

domains has been empirically proposed, with many supporting and dissenting findings in the 

ensuing decades. Revisiting Lewis’ original experiment, we take a larger set of more detailed data 

on the cells in the epidermal layer of Cucumis, and analyze the data in the light of recent results on 

size–topology correlations. We find that the correlation between the number-of-neighbor 

distribution (topology) and the area distribution is altered over that of many other 2D cellular 

systems (such as foams or disc packings), and that the systematic deviation can be explained by 

the anisotropic shape of the Cucumis cells. We develop a novel theory of size–topology 

correlation taking into account the characteristic aspect ratio of the cells within the framework of a 

granocentric model, and show that both Lewis’ and our experimental data is consistent with the 

theory. In contrast to the granocentric model for isotropic domains, the new theory results in an 

approximately linear correlation consistent with Lewis’ law. These statistical effects can be 

understood from the increased number of configurations available to a plane-filling domain 

system with non-isotropic elements, for the first time providing a firm explanation of why Lewis’ 

law is valid in some systems and fails in others.

1. Introduction

Cellular matter can be loosely defined as a set of individual domains that fill space in 

typically two dimensions (2D) or three dimensions (3D), either without gaps or with a 

continuous phase between the domains that takes up only a small fraction of the volume. 

Even if the continuous phase fraction is high, as it is between packed grains or beads, there 

are ways to define a space-filling domain structure around the grains by constructing space-

filling polygons or polyhedra through Voronoi tessellation [1], Laguerre tessellation [2] or 

the navigational map [3, 4].
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The domain structure depends on the properties of the individual objects which it is made of, 

in particular on their size distribution and various properties associated with their shape. 

Moreover, the degree of order or disorder plays a crucial role: regular packings of equal-

sized grains give rise to periodic space-filling polygonal structures, but the same grains can 

also fill the space in a random fashion [5–9]. In this disordered case, information about the 

structure must be statistical in nature, but is far from random. For a long time, researchers 

have asked questions about the quantitative description of such statistics, and to what extent 

they can reflect mechanical, physical or biological properties of the individual domains or 

cells, and even the history of the formation of the structure as a whole. Of particular interest 

have been properties called ‘topological’ in the community—those associated with the 

number of neighbor domains n of individual domains. The statistics of n shows a number of 

intriguing correlations with that of the domain size—for 2D systems, the (projected) area A. 

One of the first of these observations concerned epidermal tissue of the fruit of the cucumber 

(Cucumis sp.) by the American biologist Lewis [10, 11]. The epidermis is a single columnar 

layer of cells directly under the cucumber’s skin, so that a cross-section parallel to that skin 

shows a polygonal domain pattern of cells in 2D (figure 1). Of the careful measurements of 

cell size, shape and topology Lewis published in a series of papers in the 1920s and 1930s 

[11–14], one result in particular intrigued researchers: Lewis had found [11, 14] that the 

average area of cells with the same number n of neighbors, Ān, grew approximately linearly 

with n (figure 1(b)).

While the qualitative statement of Lewis’ law is intuitive (a cell with more neighbors tends 

to be larger), its linearity is remarkable and even counterintuitive. Figure 2(a) shows a 

simple argument for guessing a Ān law by drawing ‘typical’ (i.e. average-sized) objects as 

neighbors of a central object of variable size. If we take the average-size objects to have area 

Ā = 1, each takes up a section of length L̄ = (1) of the central object’s perimeter. As there 

are n neighbors, this central object perimeter must be Ln ~ nL̄. But areas scale as the squares 

of perimeters, so the central object area would be An ~ n2, in contradiction with Lewis’ 

findings, if An from this argument is taken as representative for the average Ān. What is 

wrong about this idea? Are there neighbor correlations that make the idea of ‘average’ 

neighbors untenable? Is it important to take into account positional disorder [9]?

We revisit Lewis’ experiment to address such questions. In a broader sense, however, 

Lewis’ law is still a long-standing unsolved empirical finding, which has been reportedly 

observed not only in diverse systems of cellular matter (living and inanimate) [15–18], but 

also has been challenged a number of times over the past decades, as it was not able to 

describe correlations in many other systems (again, living and inanimate) [7, 15, 19, 20]. A 

fresh look at the issue appears promising because of our group’s recent progress in 

quantifying a variety of size–topology correlations in 2D and 3D cellular matter [7, 9] using 

a simple theoretical model.

Section 2 will review this model as it was developed for isotropic objects and successfully 

applied to a wide range of systems. Section 3 shows our new experimental data and the 

quantitative characteristics of the cucumber tissue, such as the anisotropy of the cells. In 

section 4 we derive a new granocentric model (GM) for 2D anisotropic objects. Section 5 
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shows how the results from the model compare with experiments, and how they contrast 

with those from previously derived models. Conclusions are presented in section 6.

2. The granocentric model

When studying physical, geometrical, and statistical properties in a disordered medium, a 

paramount question is always whether the structure underlying the properties is the result of 

long-range spatial correlations (as are e.g. encountered near phase transitions), or whether it 

can be understood by essentially local properties of the constituting elements and their 

neighborhoods. We do not attempt to discuss this deep question here, but point out that 

many statistical features of 2D and 3D complex structures encountered in the experiments 

have been successfully explained by purely local models recently. In particular, the GM [4, 

8, 21] has been developed specifically to explain neighbor statistics in 3D packings and 

tilings of grains and droplets. In our revisiting of Lewis’ experiment, we are interested in a 

2D system and use a 2D version of the GM as a starting point, which was recently 

developed and tested in our group [7, 9, 22].

In this simplest version, individual objects are replaced by circular discs (figure 2(b)), so 

that a central disc of area Ac is surrounded by a statistical ensemble of discs drawn from a 

size distribution with probability P(A) and mean size Ā = 1. These surrounding discs are 

supposed to touch the central disc, and take up angles ϕ around it. Note that the discs can 

also be interpreted as templates for polygonal tiles (figure 2(b))—between two discs, an 

edge can be constructed by a variety of algorithms (for polydisperse discs, the Laguerre or 

navigational map constructions give unambiguous interfaces between the discs). Given 

P(A), a conditional probability P(ϕ|Ac) can be derived, and from that the probability of the 

central disc having n neighbors, P(n|Ac). If the central disc is no different than the others, the 

unconditional probability of having n neighbors then simply follows as Pn = ∫ P(n|Ac) P(Ac) 

dAc [7]. If this local computation is to be representative of the statistics of a plane-filling 

arrangement of objects (discs or polygonal tiles constructed from them), the local 

computation has to fulfill Euler’s theorem, which—for 2D polygonal tilings—states that the 

average number of neighbors in the (infinite) ensemble must be n̄ = 6. In the 2D GM, this 

condition can be fulfilled either by introducing a stand-off distance between the surfaces of 

the discs or—mathematically more elegant—by introducing a universal modification to the 

maximum available angle around each disc (see [7] for details). This theory explains a 

number of previously empirically known correlations between the P(A) and Pn distributions, 

in particular (i) the correlation between the widths of the two distributions, shown in figure 

2(c) as a relation of the coefficients of variation cA and cn, and (ii) the analog to Lewis’ law, 

i.e. Ān versus n (figure 2(d)). The latter is easily obtained from P(n|Ac) through Bayes’ 

theorem, and shows a pronouncedly nonlinear growth with n—roughly in agreement with 

the Ān ∝ n2 guess of the introduction, though closer inspection shows a somewhat more 

complicated law [7].

A large variety of experimental and simulational systems conform to the results of the disc 

model, including the results of various foam experiments, disc packings, Drosophila 

epithelial tissue or Potts model simulations [7, 20]. However, there are exceptions: 

simulations of RVP tilings do not agree with the theory, and neither do the results of Lewis’ 
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original work, see figures 2(c) and (d). Note that the deviation is of the same kind in all 

these cases: a larger width of neighbor distribution cn for a given cA, and a Lewis’ law 

correlation closer to a linear law. In [7], it was speculated that, at least for the RVP systems, 

these deviations can be explained because the domains are not isotropic, i.e. their polygonal 

outlines are considerably more elongated than those constructed around a circular disc. In 

the case of RVP tilings, this is due to the lack of any interfacial energy in the individual 

domains (which are simply mathematical constructs here). By contrast, soap bubbles are 

dominated by interfacial energy contributions and retain a strong tendency, even in a foam, 

to remain individually compact and isotropic in order to minimize the individual surface 

area and thus energy. For the Cucumis data of Lewis, it is less obvious whether such an 

explanation holds, in particular as Lewis did not include comprehensive sketches or image 

material of his samples. Thus, we decided to acquire such data ourselves.

3. Experiments

3.1. Materials and methods

English slicing cucumber cultivars of Cucumis sativus of length 10–20 cm were obtained. 

We made no attempt to distinguish between growing and mature fruit (Lewis concentrated 

on growing cucumbers in [11] and fully grown fruit in [14], but did not specify any 

particular cultivar in either case). Nevertheless, we obtained consistent results from all the 

samples, and it is likely that the fruits were not in a state of vigorous growth (see below). 

Thin sections of the epidermis were prepared parallel to the outer surface of the cucumber, 

so that the columnar cells appeared as polygons under an inverted microscope (Olympus 

IX71). Soaking in diluted acetic acid for 48 h removed the green chlorophyll color without 

changing cell morphology. For enhanced contrast of cell walls, the tissue was stained with 

Toluidine Blue (Carolina Biological), exposing it to the dye for about 30 min before rinsing. 

We did not attempt to fix the tissue, which might have distorted or shrunk the cell shapes. 

Micrographs (figure 1(a)) were taken at 20× or 40× magnification and the resulting images 

analyzed with CellProfiler [25, 26]. Data was processed from ten samples of nine different 

cucumbers, with each sample containing between 250 and 800 entire cells in the field of 

view (i.e. cells whose neighbor number n could be determined). The total number of cells 

analyzed was 4243. The samples were generally taken near the stem end of the cucumber, 

because there the density of stomatal cells [27] was low. In other sections of the fruit, 

stomata disrupt the uniform pattern of the epidermis and need to be either analyzed 

separately or excluded from the sample (Lewis does not mention this difficulty in any of his 

publications). We did not observe unambiguous examples of cells undergoing divisions, and 

conclude that dividing cells are a very rare occurrence in our samples (i.e. the fruit is 

growing slowly or not at all, and the cells can be interpreted as resting or quiescent [14, 28]).

3.2. Image analysis

CellProfiler provides data such as the number and identity of neighbors, the cross-sectional 

area A, and the eccentricity ε of the cells, the latter being defined as the eccentricity of an 

ellipse that has the same area and same second area moment as the actual cell [25]. For the 

purposes of the theory developed later, we translate the eccentricity into an aspect ratio α, 

defining it as the ratio of minor and major axes of this ellipse, so that . 
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Figures 3(a) and (b) show the probability distributions of the areas P(A) and the aspect ratios 

P(α), respectively. The P(A) distributions of the individual cucumber samples differ 

significantly, though not greatly, from each other, but all are well approximated by a gamma 

distribution

(1)

where the mean has been set to Ā = 1, and the experimental coefficients of variation cA for 

the different samples range between 0.36 and 0.45. The overall distribution in figure 3(a) is 

described by an average value of cA ≈ 0.38. The P(α) distribution (figure 3(b)) is strongly 

peaked around the mean value ᾱ ≈ 0.7. This confirms the visual observation (cf figure 1(a)) 

that the cucumber cells are pronouncedly anisotropic and elongated. This makes them 

qualitatively similar to the domains of RVP tilings, though less extreme in shape: translating 

second-moment data of Poisson RVP domains [1, 29] into aspect ratios leads to a mean of 

about ᾱRVP ≈ 0.44.

Figure 3(c) demonstrates that the aspect ratio does not strongly correlate with the number of 

neighbors. While cells with larger n tend to be slightly more anisotropic, this effect only 

appears pronounced for neighbor numbers n ≥ 9, where the rareness of these cells (less than 

1% of the total) causes large error bars. Assuming a uniform aspect ratio α = ᾱ for all cells 

will be our zeroth-order assumption in the model described in the next section. From the 

neighbor data, the probabilities Pn are determined, again with slight variations from sample 

to sample, the coefficient of variation cn ranging from 0.168 to 0.194. The overall average 

number of neighbors is n̄ ≈ 5.9995 which is in very good agreement with Euler’s theorem.

When plotting the (cA, cn) data points from the experiments in the correlation graph figure 

2(c), we notice that they fall between the GM predictions and the RVP data—which is 

intuitive if the larger cn values are correlated with larger α (anisotropy) of the domains. Note 

that Lewis’ original publications [11, 14] contain the Pn distribution, but not the full P( A) 

distribution, and thus did not include a value for cA. In order to be able to present this data in 

the same graph, we estimate Lewis’ cA as follows: the original paper [11, 14] reports a 

‘range’ of areas for cells with a given n, together with the average area of these cells. 

Assuming a normal distribution for the areas of each n-neighbor class of cells, we can 

determine how likely it is that the number of cells in Lewis’ sample (e.g. he took into 

account the size of N5 = 100 resting cells with five neighbors in the corresponding range) 

will all fall within the given range, if we assume cA to have a given value. Increasing cA 

from zero, this probability goes from 1 (certainty) to 0 (almost certainly at least one cell will 

be outside the range). Demanding all neighbor classes of cells to have at least a 50% 

probability of obeying the range, we obtain  as the most likely estimate. This is 

considerably smaller than our samples, but Lewis’ neighbor distribution width is also 

significantly smaller (cn ≈ 0.145). These values are the result of averaging data from [11, 

14], but the individual values from the two publications differ very little from each other. 

The resulting data point again lies between disc and RVP predictions in figure 2(c). The 

discrepancy between Lewis’ Cucumis data and ours could be due to a number of potential 
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differences between the samples (unfortunately, no detailed information is available in 

Lewis’ papers): (i) the fruits could be from different species of Cucumis; (ii) if of the same 

species, they could be different cultivars; (iii) at least some of Lewis’ tissue samples were 

growing and proliferating, while ours is practically quiescent; and (iv) Lewis may have 

included stomatal tissue in his samples, which we discarded. Nevertheless, the general 

finding of a 2D tissue with a relatively larger neighbor distribution width than an equally 

polydisperse isotropic domain system is common to all samples and results. In order to test 

our hypothesis, that this effect is due to the anisotropy of the domains, we developed a novel 

modeling approach.

4. A model for anisotropic cellular systems

The key idea of the present modeling is that anisotropic (elongated) domains, for a given 

polydispersity of areas, allow for a greater variety of neighbor configurations, as a 

neighboring cell of given area can take up varying portions of the perimeter of the central 

cell, depending on relative orientation. In particular, short edges shared by neighboring cells 

are more common in this situation, specifically for cells that touch in regions of strong 

curvature (figure 4(a)). A description of neighbor relations depending on the full relative 

positioning and orientation of the domains quickly becomes unnecessarily complicated, even 

if simple ellipses are chosen as templates. Instead, we propose a model that captures the gist 

of the short-edge neighbor occurrences and preserves the aspect ratio α as the main 

governing parameter.

In this approach, we replace the domains with rectangles of uniform α, with edge lengths ℓ1 

and ℓ2, where  (figure 4(b)). Neighboring domains are assumed to have sides 

parallel to the central rectangle, and the short edges are now a consequence of neighboring 

domains extending beyond the end point of a central edge (figure 4(b)). Within this 

framework, and with a given area distribution P(A) (figure 3(a)), we now have to evaluate 

the probability of a central cell, with the area Ac, to have n neighbors.

The number of neighbors n of the central cell is merely the sum of the number of neighbors 

ni of the four individual edges. Hence, the conditional probability P(n|Ac) can be calculated 

from that of an individual edge, P(ni|lc). Denoting general edge lengths by s, the probability 

distribution f (s) can be derived from P(A) by assuming that the orientation of the 

neighboring domain is equally likely; i.e. for a given neighboring cell, there is 50% chance 

of s = l1 for the neighboring edge and 50% chance of s = l2. It then follows that 

 (figure 4(c)). In general, f (s) is of bimodal shape where the peak 

values occur near  and ; this is qualitatively different from the unimodal 

angular distribution f (ϕ) of the isotropic disc model.

4.1. Edge neighbor configurations

As Euler’s theorem requires n̄ = 6, the average edge of any rectangle must have 1.5 

neighbors. However, even disregarding differences in edge length, not all edges of the 

central cell are the same with respect to neighbor patterns. Figure 4(b) shows that there are 

three different types of edges in a rectangular tiling, depending on whether the lengths of 
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neighboring rectangles precisely add up to that of the edge in question (denoted as a ‘blue 

edge’ B in the figure), whether only one end of the central edge is flush with the rectangular 

neighbor, while the last neighbor at the other end overshoots the central edge (‘green edge’, 

G), or whether an overshoot occurs at both ends of the central edge (‘red edge’, R). In a 

tiling of rectangles, these types of edges will all be encountered, and their relative frequency 

will depend on how the tiling is constructed (e.g. by successive agglomeration or growth of 

separated nuclei). We do not know the details of how the pattern of elongated cells in 

Cucumis is formed, nor does it correspond directly to a rectangular tiling. We have tried 

different relative statistical weights of the three types of edges, but found that the final 

results reported below change little (neighbor probabilities Pn change by less than 1%). It is 

easy to see that, in the limit of monodisperse rectangles (cA → 0), the expected average 

number of neighbors is ni = 2 for R edges, ni = 1.5 for G edges and ni = 1 for B edges.

The following model was adopted as the most realistic within the framework of rectangular 

tilings: the occurrence of neighbors ‘flush’ with a corner of the central rectangle is not 

generic if there is freedom of neighbor placement. Therefore, we assume that one central 

edge must be an R edge, with overshoots at both ends, granting the most freedom of 

configuration. One of the other three edges is then chosen with equal probability; if it is the 

opposite edge to the first, it is also designated an R edge—the two others are then 

necessarily B edges, and the edge pattern is RBRB. If the second edge is one of the adjacent 

edges to the first, it is designated a G edge (most freedom of neighbor placement, as R is not 

possible). The other two edges must then be one G and one B edge; we have to distinguish, 

however, between the configuration RGBG, where the two G edges are opposite each other 

(and thus of the same length), and RGGB, where they are of unequal length. Overall, the 

three patterns RBRB, RGBG and RGGB then occur with equal probability of 1/3.

4.2. Edge neighbor probabilities

We now calculate the probability of having ni neighbors for each edge type separately. For a 

G edge of length lc, tiling can be started at one vertex so the conditional probability PG(ni|lc) 

is the probability that the sum of n − 1 neighboring edges is less than lc but longer than lc for 

n neighboring edges, in a full analogy to the angular distribution of disc neighbors in [7]. 

Therefore using the notations  and 

, we obtain

(2)

(3)

Calculating the conditional probability for R edges, PR(ni|lc), involves integration over an 

additional degree of freedom. After the length of the first neighboring edge, s1, is chosen, we 

also need to choose its location relative to the central edge, which we call s̃ here (measured 

from the starting point of the central edge). We assume that s̃ is uniformly distributed in the 
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allowed range 0 ≤ s̃ ≤ s1. When ni = 1, the length of the first neighboring edge should be 

larger than lc and lc ≤ s̃ ≤ s1, so P(1|lc) is written as follows:

(4)

When ni > 1, the first neighboring edge can be any length, but the allowed range of s̃ is now 

0 ≤ s̃ ≤ s1 for s1 < lc, and 0 ≤ s̃ ≤ lc for s1 > lc. After placing the first cell, the conditional 

probability of ni − 1 neighbors for the remaining length lc − s̃ is the same as for a G edge, 

PG(ni − 1|lc − s̃). Hence, PR(ni|lc) can be written in the following double integral form:

(5)

The conditional probability of a B edge cannot rely on the neighboring edge lengths exactly 

adding up to the central edge length (this would be a probability of zero). In reality, too-

large neighboring cells would be ‘squeezed’ into a gap of length lc and thus made to 

conform to the given edge length. At the same time, this squeezing cannot be assumed to 

work for arbitrarily large neighboring edges: If the neighboring edge is larger than βlc, 

where β > 1 is a constant, we take squeezing to be impossible, and do not count a further 

neighbor (the gap left would instead be interpreted as closed by the remaining neighbors, see 

figure 4(d); note that this mechanism provides for a—very small—probability of a cell 

having less than four neighbors, which does occur in our experiments for less than 0.1% of 

all cells). In summary, we assign probabilities as follows:

(6)

(7)

(8)

To wit, this means that a B edge of length lc is counted as having ni = 0 if the (first) 

neighboring edge is longer than βlc. It has ni = 1 if the situation is equivalent to fitting two 

neighbors at a G edge (PG(2|lc)) or if a single neighbor fits by squeezing (PG(1|lc) − PB(0|

lc)). For ni ≥ 2, the B edge is exactly like a G edge except the last neighbor is not counted. It 

remains to determine the coefficient β. Rather than choosing it arbitrarily, we can make use 

of Euler’s theorem: when evaluating the average number of neighbors from adding 

contributions to all edges, we obtain a value that (weakly) depends on β—but we know that 

n̄ = 6 must hold. Thus, the relation specifies a certain β(α, cA), of which we report the value 

below.

Figure 5(a) shows that the conditional probabilities of each type of edge are indeed 

substantially different, especially for ni = 1, while the dependence on cA is not very 

pronounced.
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4.3. Conditional and unconditional cell neighbor probabilities

To obtain P(n|Ac), we now take the sum of the products of the conditional probabilities of 

the corresponding edges for all possible combinations such that , where ni is the 

number of neighbors of the ith edge, and also taking into account the equal probabilities of 

configurations RBRB, RGGB and RGBG (see section 4.1). The explicit formulas for this 

tedious but finite exercise in combinatorics are given in the appendix. We present the sample 

results in (b) for n = 4, 6 and 8. P(n|Ac) has a bell shape curve that is well approximated by a 

normal distribution. The width of the curve becomes larger as n increases (figure 5(b)), 

because there is a larger number of combinations that obtain  for a larger value 

of n.

Finally, we compute the unconditional probabilities of having n neighbors as Pn = ∫ P(n|Ac) 

P(Ac) dAc, as well as the average n̄ = Σn n Pn. From the requirement n̄ = 6, we can find a 

value of β for each cA and α. Although there is variation of β values as cA and α change, the 

range of β is between 1.3 and 1.9 even for extreme cases outside the range of our present 

experimental data (we explored α as small as 0.44, and cA as large as 0.6). For the Cucumis 

cell samples relevant here, β only varies between 1.75 and 1.88.

The neighbor distributions Pn themselves are strikingly dissimilar from the isotropic (disc) 

case. Figure 6(a) shows that, for the same polydispersity (value of cA), Pn is much wider in 

the anisotropic case. Plotting the Pn(cA) dependence in full (figure 6(b)), we also see that the 

anisotropic model fails to show the typical crystallization-threshold effect of the isotropic 

case [7, 22]. While monodisperse discs will be strictly hexagonally ordered (P6 → 1), this is 

not true for the anisotropic objects, where the orientation of the rectangles always provides a 

variety of possible neighbor configurations. In this sense, anisotropic shape has to be 

accounted for as a third source of disorder: apart from size disorder and positional disorder 

[9], there is also orientational disorder, and its effect is clearly seen in the present study.

5. Results and discussion

We are now in a position to compute the main variables of size–topology correlation. Taking 

the aspect ratio α and the width cA of the gamma distribution (1) as inputs, the conditional 

probabilities P(n|A) and unconditional Pn are computed as outlined above, with the 

integrations performed numerically. The neighbor distribution coefficient of variation cn 

then follows directly from

(9)

The average area of cells having n neighbors Ān, on the other hand, is computed using 

Bayes’ theorem to obtain P(Ac|n) from P(n|Ac). Explicitly, we get
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(10)

The resulting cn value of our model significantly deviates from that of the disc model for a 

given cA and the simulation results show a good match with our experimental data of 

cucumbers (figure 7(a)). Incorporating significant anisotropy into the model indeed leads to 

larger cn at given cA, and quantitatively explains the observed deviations from the isotropic 

(disc) theory. Size disorder and orientational disorder cooperate to push cn to larger values. 

Note that the rectangular model does not revert to the disc results as the aspect ratio α 

approaches one (figure 7(a)), as the nature and importance of short-edge neighbors like 

those depicted in figures 4(a) and (b) does not diminish in this limit. Larger α does decrease 

cn, but not to the extent of disc isotropy. The model’s relative insensitivity to changes of α 

confirms that using one universal value ᾱ is a reasonable approximation.

As was observed above when discussing the Pn distributions, crystallization does not happen 

in the anisotropic tilings, so that cn does not approach zero as cA → 0. The orientational 

disorder is sufficient to maintain a finite cn in all cases.

Finally, let us discuss the results for Lewis’ law, Ān(n). Figure 7(b) shows that the values 

obtained from the model agree very well with both sets of experiments for the 

experimentally established range of 4 ≤ n ≤ 9, with no free parameters (note β was fixed by 

Euler’s theorem). Comparisons outside that range must await more extensive experimental 

data: among the over 4200 cells of our study, only four had n = 3 and only three had n = 10. 

The shape of Lewis’ law, however, is less universal than the analogous relation in the 

isotropic model: For the disc model, it was shown that Ān has almost no cA dependence and 

thus provides a universal size law for both small and large polydispersities. For the rectangle 

model, we see significant variation of the shape of Ān with cA (figure 7(b)). While the 

relation stays approximately linear, its slope decreases with decreasing cA.

How closely does our result approach the assumption of a linear Lewis law? If a linear law 

is assumed a priori, experimental or theoretical data conform to a one-parameter fit, as the 

constraint Σn Pn Ān = 1 must be observed. The resulting relation can e.g. be written as [15]

(11)

with the single parameter n0, translating into a slope k = 1/(6 − n0). The simplest argument 

then postulates that A2 = 0 (arguing that, as two-edged cells are not observed, they should 

have zero area), resulting in n0 = 2, which gives the linear law a slope of k = 0.25. This 

comes quite close to the best fit of our experimental data to (11), which results in kexp = 

0.235 (R2 ≈ 0.987). The model with cA = 0.38 obtains ktheo = 0.265. Not only does the 

model agree well with experimental data (dashed line in figure 7(b)) but it is also close to a 

straight line (R2 ≈ 0.962). Thus, our result mimics closely a law obtained when linearity is 

assumed, but does not itself assume linearity (and in fact, produces significant nonlinearities 

for larger cA values).
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We have checked for further modeling dependences by replacing the Gamma distribution of 

(1) by a normal distribution of the same mean and variance. Such a replacement changed Ān 

very little for the disc model [7]; in the present anisotropic model, deviations show up, but 

only for high n ≥ 10. If better statistics from experiment could be obtained, it is conceivable 

that such deviations could be used to probe the large-area tail of the P(A) distribution. For 

our present sample sizes, however, we do not have sufficient statistics to say whether the 

decay of P(A) at A ≫ 1 is better described by a Gamma or normal distribution. For the core 

range of the Lewis law (n between 4 and 9), in any event, our theory reproduces the 

experimental data robustly and quantitatively. The linearity of this part of Ān may simply be 

a result of the adjustments made by the presence of orientational disorder in the system. 

Compared to the isotropic case, a large number n > 6 of neighbors can be accommodated in 

a larger number of situations, in particular those with smaller A, and thus higher probability. 

This tends to decrease Ān for n > 6 over the disc case. Conversely, a small number of 

neighbors can occur now for larger central cells (if neighbor orientation is favorable), and 

this tends to increase Ān for n < 6. This answers the questions concerning naive neighbor 

counting raised in the introduction: orientational disorder ensures that the assumption of 

‘average’ neighbors is not valid, and the dependence of central cell area on n is less than 

quadratic.

In the isotropic disc model, it was possible to derive simple analytical expressions for the 

main results of the computation, largely because a formalism that replaced all distributions 

with normal distributions of equal mean and width proved accurate. For the present 

anisotropic model, such an approach may be less appropriate for reasons explained above. It 

would also result in considerably more complicated formulae, as there is no compact way of 

writing the combinatorial expressions that lead from the ni probabilities to the n 

probabilities. However, it is worthwhile mentioning here that accurate analytical 

representations using normal distributions can be obtained for all Pξ (ni|lc) (ξ = R, G and B), 

by approximating Rn(s) by a normal distribution and f (s) by the sum of two normal 

distributions, preserving first and second moments in all cases. This can speed up 

computations for large-scale parameter scans.

6. Conclusions

We have shown that the fundamental correlations of domain size and neighbor number 

statistics are significantly different for anisotropic objects compared to isotropic domains in 

2D tilings. Experimentally, this is confirmed by revisiting Lewis’ experiments with 

cucumber epidermis tissue and recognizing that the cells have a typical degree of anisotropy. 

Developing a new model for such anisotropic elements, we approximate the individual cell 

domains by rectangles and take into account the varying degrees of freedom in the 

placement of neighboring cells covering edges of a central cell. Like the disc model of 

isotropic domains, this new approach has only one parameter, which is fixed by the 

application of Euler’s theorem, ensuring that this local model of a single central cell and its 

neighbors has statistics compatible with plane-filling tilings.

The results show that anisotropy of the type and magnitude observed in experiment is a 

sufficient ingredient to explain both the differences in the cn – cA correlation curve and in 

Kim et al. Page 11

New J Phys. Author manuscript; available in PMC 2015 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the Lewis law plot, including the approximately linear shape of Ān in the anisotropic case, in 

striking contrast to the nonlinear Lewis law expected and confirmed for systems of isotropic 

elements. It can be conjectured that there is a range of ‘Lewis laws’ interpolating between 

linear and nonlinear depending on the shape of tiling elements, and comprising the many 

examples found in experiment and simulation [15, 16, 20, 24, 30].

As the anisotropy parameter (aspect ratio) of the individual cells shows a pronounced peak 

at a certain value in our Cucumis system, we have simplified the model assuming all cells 

have the same aspect ratio. The approach could be refined by introducing a continuous 

aspect ratio distribution according to experimental data, adding one more integration 

variable for the averaging. Even in its present form, however, the model demonstrates the 

importance of orientational disorder in addition to size and positional disorder, and once 

again emphasizes that many statistical properties of a plane-filling ensemble can be 

understood from a local template of neighboring cells. The combination of anisotropy and 

size disorder is sufficient to explain the present (cucumber) data, without the need to 

explicitly evaluate positional disorder.

In our approach, we have not attempted to explain the physical or biological causes of the 

cell anisotropy. In [7], it was argued that the disc model is a good approximation for any 2D 

cellular system with prominent interfacial energy, where the individual domains are 

compelled by energy minimization to assume compact (isotropic) shapes of aspect ratios 

near one and without favored directions. Foams are a prime example of this type of system 

[31–37]. In the case of cucumber tissue, it stands to reason that a different energy 

contribution favors the anisotropic shape and partially compensates for interfacial elasticity 

that, by itself, would lead to roughly circular cells. Forces of the cytoskeletal bulk [38], cell 

wall stiffness [39], placement of cell organelles [40], differential adhesion forces [41–43] or 

overall morphological dynamics of the tissue [44] could be factors causing anisotropy in this 

way. Concerning the latter speculation, we did test for correlations of anisotropy in our cell 

samples (i.e. are the directions of the long axes of neighboring cells correlated?), but did not 

find conclusive signatures of large-scale organization. The exploration of causes of cell 

anisotropy is left to future investigation, which can now complement the link of cell shape 

and neighbor statistics established in the present work.
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Appendix. Calculation of the conditional neighbor probabilities

In section 4.2, we give closed expressions for the single-edge probabilities Pξ(n|lc), where ξ 

= R, G and B. From these, we first compute Pξη(n|lc), which is the conditional probability 

that two parallel edges of the central rectangle have n neighbors in total. Of these, there are 

six different types, i.e. ξη = RR, GG, BB, RG, RB and BG. Elementary combinatorics gives

(A.1)

In the next step, we construct the probabilities that a particular rectangle has n neighbors, 

Pξεηψ(n|Ac), from these Pξη(n|lc) by taking into account all cases for which the sum of the 

neighbors of the two long parallel edges and that of the two short parallel edges is equal to n. 

As explained in the main text, only three different ways of tiling the central cell exist, 

namely ξεηψ = RBRB, RGGB and RGBG. For any central rectangle, the short and long 

edge lengths are  and , respectively, so the explicit formula can be 

written as follows:

(A.

2)

Finally, P(n|Ac) can be calculated from Pξεηψ(n|Ac) with the assumption that each of the 

three types of tiling occurs with equal probability (see the discussion in the text),

(A.3)

With this conditional probability, the unconditional probabilities Pn are obtained by 

convolution with P(A), as described in the main text.
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Figure 1. 
(a) Experimental image of a cross-section of cucumber epidermal tissue. This sample 

contains about 360 cells of which the neighbor relations can be determined. The image 

demonstrates both the significant polydispersity of the sample and the elongated shape of 

most cells. (b) Experimental data for the average area Ān of cells with n neighbors (Lewis’ 

law) from the original publications by Lewis [11, 14] (diamonds) and the present results 

(triangles down). The results from Lewis’ two publications [11, 14] are essentially 

indistinguishable, so the average of the two results is plotted here. Error bars are 95% 

confidence intervals.
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Figure 2. 
(a) A central disc surrounded by average-sized discs, supporting a nonlinear Ān(n) law [7, 9]. 

(b) GM model for polydisperse discs taking up angles ϕ around a central disc. (c) Relation 

between neighbor distribution width cn and area distribution width cA for various 

experimental, simulational and theoretical systems. Potts model simulation data adopted 

from [20]; sheared foam experiments from [20]; Drosophila tissue data from [23], analysis 

from [7]; and simulations of random Voronoi tilings with hard-core exclusion radii from 

[24]. Value of cA for Lewis’ cucumber data [11, 14] estimated, see text. Note that neither the 

random Voronoi polygon (RVP) data nor the cucumber experiments conform to the results 

of the isotropic disc theory (solid line). (d) Different systems show significantly different 

Ān(n) curves. The linear Lewis’ law is observed for the present cucumber data as well as 

those of Lewis [11, 14], and also for some RVP simulations (rectangles correspond to the 

data set of [24] with cA ≈ 0.49). By contrast, the nonlinear size–topology relation 

established from the disc model (solid line, [7]) is seen in other experiments, e.g. photo 

emulsion data from Lewis [14] (squares) and sheared foams [20] (triangles up).
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Figure 3. 
(a) Binned experimental data of area probability distribution (symbols) and gamma 

distribution fit (solid line), with a coefficient of variation cA = 0.38. (b) Binned experimental 

data of probability distribution of cell aspect ratios. (c) Dependence of aspect ratio on 

number of neighbors; error bars are 95% confidence intervals.
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Figure 4. 
(a) Illustration of the occurrence of short-edge neighbors as a consequence of elongated 

(anisotropic) cell shape. (b) Schematic representation of the rectangular-cell model, with the 

three different types of edges (R, G and B) indicated by colors. The cells are polydisperse, 

but have the same aspect ratio. Short edges are highlighted in (a) and (b). (c) Probability 

distributions f (s) of edge lengths for area (gamma) distributions of different cA. (d) Example 

of a rare cell with n = 3 neighbors, corresponding to a modeling situation with one short B 

edge with ni = 0.
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Figure 5. 
(a) Conditional probability of a central edge having one neighbor (ni = 1), given lc, for the R, 

G and B edges. The results differ little for significantly different cA. (b) Conditional 

probability of a cell of area Ac having n = 4, 6 or 8 neighbors. In both figures, solid lines: cA 

= 0.2, dashed lines: cA = 0.45.
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Figure 6. 
(a) Comparison of neighbor probabilities Pn from experiment (solid symbols), the present 

anisotropic theory (open symbols, solid line), and the isotropic disc theory (open symbols, 

dashed line). Agreement with the anisotropic model at the experimentally observed cA = 

0.38 is very good. (b) Dependence of Pn on cA for the anisotropic and isotropic models. The 

former shows none of the crystallization features of the latter.
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Figure 7. 
(a) Graph of cn – cA size–topology correlation with data and isotropic theory as in figure 

2(c). The results from the present anisotropic theory (solid line) are consistent with both the 

current and Lewis’ data on Cucumis. (b) Lewis’ law Ān(n) from the anisotropic theory 

(dashed lines) agrees with the experimental results when the experimental polydispersity cA 

= 0.38 is used in the theory. The curve changes significantly as cA is increased or decreased. 

Error bars are 95% confidence intervals.
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