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The resistive or non-resistive nature of the extracellular space in the brain is still debated, and is an 

important issue for correctly modeling extracellular potentials. Here, we first show theoretically 

that if the medium is resistive, the frequency scaling should be the same for electroencephalogram 

(EEG) and magnetoencephalogram (MEG) signals at low frequencies (<10 Hz). To test this 

prediction, we analyzed the spectrum of simultaneous EEG and MEG measurements in four 

human subjects. The frequency scaling of EEG displays coherent variations across the brain, in 

general between 1/f and 1/f2. In a given region, although the variability of the frequency scaling 

exponent was higher for MEG compared to EEG, both signals consistently scale with a different 

exponent. In some cases, the scaling was similar, but only when the signal-to-noise ratio of the 

MEG was low. Several methods of noise correction for environmental and instrumental noise 

were tested, and they all increased the difference between EEG and MEG scaling. In conclusion, 

there is a significant difference in frequency scaling between EEG and MEG, which can be 

explained if the extracellular medium (including other layers such as dura matter and skull) is 

globally non-resistive.
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1 Introduction

An issue central to modeling local field potentials is whether the extracellular space around 

neurons can be considered as a resistive medium. A resistive medium is equivalent to 

replacing the medium by a simple resistance, which considerably simplifies the computation 

of local field potentials, as the equations to calculate extracellular fields are very simple and 

based on Coulomb’s law (Rall and Shepherd 1968; Nunez and Srinivasan 2005). Forward 

models of the EEG and inverse solution/source localization methods also assume that the 

medium is resistive (Sarvas 1987; Wolters and de Munck 2007; Ramirez 2008). However, if 

the medium is non-resistive, the equations governing the extracellular potential can be 

considerably more complex because the quasi-static approximation of Maxwell equations 

cannot be made (Bédard et al. 2004).

Experimental characterizations of extracellular resistivity are contradictory. Some 

experiments reported that the conductivity is strongly frequency dependent, and thus that the 

medium is non-resistive (Ranck 1963; Gabriel et al. 1996a, b, c). Other experiments reported 

that the medium was essentially resistive (Logothetis et al. 2007). However, both types of 

measurements used current intensities far larger than physiological currents, which can mask 

the filtering properties of the tissue by preventing phenomena such as ionic diffusion 

(Bédard and Destexhe 2009). Unfortunately, the issue is still open because there exists no 

measurements to date using (weak) current intensities that would be more compatible with 

biological current sources.

In the present paper, we propose an indirect method to estimate if extracellular space can be 

considered as a purely resistive medium. We start from Maxwell equations and show that if 

the medium was resistive, the frequency-scaling of electroencephalogram (EEG) and 
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magnetoencephalogram (MEG) recordings should be the same. We then test this scaling on 

simultaneous EEG and MEG measurements in humans.

2 Methods

2.1 Participants and MEG/EEG recordings

We recorded the electromagnetic field of the brain during quiet wakefulness (with alpha 

rhythm occasionally present) from four healthy adults (four males ages 20–35). Participants 

had no neurological problems including sleep disorders, epilepsy, or substance dependence, 

were taking no medications and did not consume caffeine or alcohol on the day of the 

recording. We used a whole-head MEG scanner (Neuromag Elekta) within a magnetically 

shielded room (IMEDCO, Hagendorf, Switzerland) and recorded simultaneously with 60 

channels of EEG and 306 MEG channels (Nenonen et al. 2004). MEG SQUID (super 

conducting quantum interference device) sensors are arranged as triplets at 102 locations; 

each location contains one “magnetometer” and two orthogonal planar “gradiometers” 

(GRAD1, GRAD2). Unless otherwise noted, MEG will be used here to refer to the 

magnetometer recordings. Locations of the EEG electrodes on the scalp of individual 

subjects were recorded using a 3D digitizer (Polhemus FastTrack). HPI (head position 

index) coils were used to measure the spatial relationship between the head and scanner. 

Electrode arrangements were constructed from the projection of 3D position of electrodes to 

a 2D plane in order to map the frequency scaling exponent in a topographical manner. All 

EEG recordings were monopolar with a common reference. Sampling rate was 1,000 Hz.

For all subjects, four types of consecutive recordings were obtained, in the following order: 

(1) Empty-room recording; (2) Awake “idle” recording where subjects were asked to stay 

comfortable, without movements in the scanner, and not to focus on anything specific; (3) a 

visual task; (4) sleep recordings. All idle recordings used here were made in awake subjects 

with eyes open, where the EEG was desynchronized. A few minutes of such idle time was 

recorded in the scanner. For each subject, three awake segments with duration of 60 s were 

selected from the idle recordings (see example signals in Fig. 1).

As electrocardiogram (ECG) noise often contaminates MEG recordings, Independent 

component analysis (ICA) algorithm was used to remove such contamination; either 

Infomax (Bell and Sejnowski 1995) or the “Jade algorithm” from the EEGLAB toolbox 

(Delorme and Makeig 2004) was used to achieve proper decontamination. In all recordings, 

the ECG component stood out very robustly. In order not to impose any change in the 

frequency content of the signal, we did not use the ICA to filter the data on any prominent 

independent oscillatory component and it was solely used to decontaminate the ECG noise. 

We verified that the removal of ECG did not change the scaling exponent (not shown).

In each recording session, just prior to brain recordings, we recorded a few minutes of the 

electromagnetic field present within the dewar in the magnetic shielded room. Similar to 

wake epochs, three segments of 60 s duration were selected for each of the four recordings. 

This will be referred to as “empty room” recordings and will be used in noise correction of 

the awake recordings.
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In each subject, the power spectral density (PSD) was calculated by first computing the Fast 

Fourier transform (FFT) of three awake epochs, then averaging their respective PSDs 

(square modulus of the FFT). Then the averaged PSD was computed for all EEG and MEG 

channels in order to reduce the effects of spurious peaks due to random fluctuations. The 

same procedure was also followed for empty-room signals.

2.2 Noise correction methods

Because the environmental and instrumental sources of noise are potentially high in MEG 

recordings, we took advantage of the availability of empty-room recordings to correct for 

the presence of noise in the signal. We used five different methods for noise correction, 

based on different assumptions about the nature of the noise. We describe below these 

different correction methods, while all the details are given in Supplementary methods.

A first procedure for noise correction, exponent subtraction (ES), assumes that the noise is 

intrinsic to the SQUID sensors. This is justified by the fact that the frequency scaling of 

some of the channels is identical to that of the corresponding empty-room recording (see 

Results). In such a case, the scaling is assumed to entirely result from the “filtering effects” 

of SQUID sensor, and thus the correction amounts to subtract the scaling exponents.

A second class of noise subtraction methods assume that the noise is of ambient nature and 

is uncorrelated with the signal. This characteristics, warrants the use of spectral subtraction 

(where one subtracts the PSD of the empty-room from that of the MEG recordings), prior to 

the calculation of the scaling exponent. The simplest form of spectral subtraction, linear 

multiband spectral subtraction (LMSS), treats the sensors individually and does not use any 

spatial/frequency-based statistics in its methodology (Boll 1979). An improved version, 

nonlinear multiband spectral subtraction (NMSS), takes into account the signal-to-noise 

ratio (SNR) and its spatial and frequency characteristics (Kamath and Loizou 2002; Loizou 

2007). A third type, Wiener filtering (WF), uses a similar approach as the latter, but obtains 

an estimate of the noiseless signal from that of the noisy measurement through minimizing 

the Mean Square Error (MSE) between the desired and the measured signal (Lim and 

Oppenheim 1979; Abd El-Fattah et al. 2008).

A third type of noise correction, partial least squares (PLS) regression, combines Principal 

component analysis (PCA) methods with multiple linear regression (Abdi 2010; Garthwaite 

1994). This methods finds the spectral patterns that are common in the MEG and the empty-

room noise, and removes these patterns from the PSD.

2.3 Frequency scaling exponent estimation

The method to estimate the frequency scaling exponent was composed of steps: First, 

applying a spline to obtain a smooth FFT without losing the resolution (as can happen by 

using other spectral estimation methods); Second, using a simple polynomial fit to obtain the 

scaling exponent. To improve the slope estimation, we approximated the PSD data points 

using a spline, which is a series of piecewise polynomials with smooth transitions and where 

the break points (“knots”) are specified. We used the so-called “B-spline” (see details in de 

Boor 2001).
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The knots were first defined as linearly related to logarithm of the frequency, which 

naturally gives more resolution to low frequencies, to which our theory applies. Next, in 

each frequency window (between consecutive knots), we find the closest PSD value to the 

mean PSD of that window. Then we use the corresponding frequency as the optimized knot 

in that frequency range, leading to the final values of the knots. The resulting knots stay 

close to the initial distribution of frequency knots but are modified based on each sensor’s 

PSD data to provide the optimal knot points for that given sensor (Fig. 2(a)). We also used 

additional knots at the outer edges of the signal to avoid boundary effects (Eilers and Marx 

1996). The applied method provides a reliable and automated approach that uses our 

enforced initial frequency segments with a high emphasis in low frequency and it optimizes 

itself based on the data. After obtaining a smooth B-spline curve, a simple 1st degree 

polynomial fit was used to estimate the slope of the curve between 0.1–10 Hz (the fit was 

limited to this frequency band in order to avoid the possible effects of the visible peak at 10 

Hz on the estimated exponent).Using this method provides a reliable and robust estimate of 

the slope of the PSD in logarithmic scale, as shown in Fig. 2(b). For more details on the 

issue of automatic non-parametric fitting, and the rationale behind combining the 

polynomial with spline basis functions, we refer the reader to Magee (1998) as well as 

Royston and Altman (1994) and Katkovnik et al. (2006).

This procedure was realized on all channels automatically (102 channels for MEG, 60 

channels for EEG, for each patient). Every single fit was further visually confirmed. In the 

case of MEG, noise correction is essential to validate the results. For doing so, we used 

different methods (as described above) to reduce the noise. Next, all the mentioned steps of 

frequency scaling exponents were carried out on the corrected PSD. Results are shown in 

Fig. 4.

2.4 Region of interest (ROI)

Three ROIs were selected for statistical comparisons of the topographic plots. As shown in 

Fig. 4 (panel I), FR (Frontal) ROI refers to the frontal ellipsoid, VX (Vertex) ROI refers to 

the central disk located on vertex and PT (Parietotemporal) refers to the horseshoe ROI.

3 Theory

We start from first principles (Maxwell equations) and derive equations to describe EEG and 

MEG signals. Note that the formalism we present here is different than the one usually given 

(as in Plonsey 1969; Gulrajani 1998), because the linking equations are here considered in 

their most general expression (convolution integrals), in the case of a linear medium (see Eq. 

(77.4) in Landau and Lifchitz 1984). This generality is essential for the problem we treat 

here, because our aim is to compare EEG and MEG signals with the predictions from the 

theory, and thus the theory must be as general as possible.

3.1 General formalism

Maxwell equations can be written as
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(1)

If we suppose that the brain is linear in the electromagnetic sense (which is most likely), 

then we have the two following linking equations. The first equation links the electric 

displacement with the electric field:

(2)

where ε is a symmetric second-order tensor.

A second equation links magnetic induction and the magnetic field:

(3)

where μ is a symmetric second-order tensor.

If we neglect non-resistive effects such as diffusion (Bédard and Destexhe 2009), as well as 

any other nonlinear effects,1 then we can assume that the medium is linear. In this case, we 

can write:

(4)

where σ is a symmetric second-order tensor.2 Because the effect of electric induction 

(Faraday’s law) is negligible, we can write:

(5)

This system is much simpler compared to above, because electric field and magnetic 

induction are decoupled.

By taking the Fourier transform of Maxwell equations (Eq. (1)) and of the linking equations 

(Eqs. (2), (3), (4)), we obtain:

1Examples of nonlinear effects are variations of the macroscopic conductivity σf with the magnitude of electric field E. Such 
variations could appear due to ephaptic (electric-field) interactions for example. In addition, any type of linear reactivity of the 
medium to the electric field or magnetic induction can lead to frequency-dependent electric parameters σ, ε, μ (for a detailed 
discussion of such effects, see Bédard and Destexhe 2009).
2Note that in textbooks, these linking equations (Eqs. (2)–(4)) are often algebraic and independent of time (for example, see Eqs. (5.2–
6), (5.2–7) and (5.2–8) in Gulrajani 1998). The present formulation is more general, more in the line of Landau and Lifchitz (1984).
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(6)

where ω = 2π f and

(7)

where the relation σfEf in Eq. (7) is the current density produced by the (primary) current 

sources in the extracellular medium. Note that in this formulation, the electromagnetic 

parameters εf, μf and σf depend on frequency.3 This generalization is essential if we want the 

formalism to be valid for media that are linear but non-resistive, which can expressed with 

frequency-dependent electric parameters. It is also consistent with the Kramers–Kronig 

relations (see Landau and Lifchitz 1984; Foster and Schwan 1989).

 is the current density of these sources in Fourier frequency space. This current density is 

composed of the axial current in dendrites and axons, as well as the transmembrane current. 

Of course, this expression is such that at any given point, there is only one of these two 

terms which is non-zero. This is a way of preserving the linearity of Maxwell equations. 

Such a procedure is legitimate because the sources are not affected by the field they 

produce.4

3.2 Expression for the electric field

From Eq. (6) (Faraday’s law in Fourier space), we can write:

(8)

From Eq. (6) (Ampère–Maxwell’s law in Fourier space), we can write:

(9)

Setting γf = σf + iωεf, one obtains:

(10)

3In textbooks, the electric parameters are sometimes considered as complex numbers, for example with the notion of phasor (see 
Section 5.3 in Gulrajani 1998), but they are usually considered frequency independent.
4If it was not the case, then the source terms would be a function of the produced field, which would result in more complicated 
equations.
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where  is a source term and γf is a symmetric second-order tensor (3 × 3). Note that 

this tensor depends on position and frequency in general, and cannot be factorized. We will 

call this expression (Eq. (10)) the “first fundamental equation” of the problem.

3.3 Expression for magnetic induction

From the mathematical identity

(11)

it is clear that this is sufficient to know the divergence and the curl of a field X, because the 

solution of ∇2X is unique with adequate boundary conditions.

As in the case of magnetic induction, the divergence is necessarily zero, it is sufficient to 

give an explicit expression of the curl as a function of the sources.

Supposing that μ = μoδ(t) is a scalar (tensor where all directions are eigenvectors), and 

taking the curl of Eq. (6) (D), multiplied by the inverse of γf, we obtain the following 

equality:

(12)

because ∇ × Ef = 0. This expression (Eq. (12)) will be named the “second fundamental 

equation”.

3.4 Boundary conditions

We consider the following boundary conditions:

1. On the skull, we assume that Vf(r) is differentiable in space, which is equivalent to 

assume that the electric field is finite.

2. On the skull, we assume that n̂ · γf∇Vf is also continuous, which is equivalent to 

assume that the flow of current is continuous. Thus, we are interested in solutions 

where the electric field is continuous.

3. Because the current is zero outside of the head, the current perpendicular to the 

surface of cortex must be zero as well. Thus, the projection of the current on the 

vector n̂ normal to the skull’s surface, must also be zero.

(13)

The latter expression can be proven by calculating the total current and apply the 

divergence theorem (not shown).

3.5 Quasi-static approximation to calculate magnetic induction

The “second fundamental equation” above implies inverting γf, which is not possible in 

general, because it would require prior knowledge of both conductivity and permittivity in 

each point outside of the sources. If the medium is purely resistive (γf = γ where γ is 
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independent of space and frequency), one can evaluate the electric field first, and next 

integrate Bf using the quasi-static approximation (Ampère–Maxwell’s law). Because for low 

frequencies, we have necessarily jf >> iωDf, we obtain

which is also known as Ampère’s law in Fourier space.

Thus, for low frequencies, one can skip the second fundamental equation. Note that in case 

this quasistatic approximation cannot be made (such as for high frequencies), then one needs 

to solve the full system using both fundamental equations. Such high frequencies are, 

however, well beyond the physiological range, so for EEG and MEG signals, the quasi-static 

approximation holds if the extracellular medium is resistive, or more generally if the 

medium satisfies ∇ × Ef = −iωBf ⋍ 0 (see Eqs. (5) and (6)).

According to the quasi-static approximation, and using the linking equation between current 

density and the electric field (Eq. (7)), we can write:

(14)

Because the divergence of magnetic induction is zero, we have from Eq. (11):

(15)

This equation can be easily integrated using Poisson integral (“Poisson equation” for each 

component in Cartesian coordinates) In Fourier space, this integral is given by the following 

expression

(16)

3.6 Consequences

If the medium is purely resistive (“ohmic”), then γ does not depend on the spatial position 

(see Bédard et al. 2004; Bédard and Destexhe 2009) nor on frequency, so that the solution 

for the magnetic induction is given by:

(17)

and does not depend on the nature of the medium.

For the electric potential, from Eq. (10), we obtain the solution:
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(18)

Thus, when the two source terms  and  are white noise, the magnetic induction 

and electric field must have the same frequency dependence. Moreover, because the spatial 

dimensions of the sources are very small (see Appendices), we can suppose that the current 

density  is given by a function of the form:

(19)

such that  and  have the same frequency dependence for low frequencies. 

Equation (19) constitutes the main assumption of this formalism.

In Appendix 1, we provide a more detailed justification of this assumption, based on the 

differential expressions of the electric field and magnetic induction in a dendritic cable. Note 

that this assumption is most likely valid for states with low correlation such as 

desynchronized-EEG states or high-conductance states, and for low-frequencies, as we 

analyze here (see details in the Appendices).

Thus, the main prediction of this formalism is that if the extracellular medium is resistive, 

then the PSD of the magnetic induction and of the electric potential must have the same 

frequency dependence. In the next section, we will examine if this is the case for 

simultaneously recorded MEG and EEG signals.

4 Test on experimental data

A total of four subjects were used for the analysis. Figure 1 shows sample MEG and EEG 

channels from one of the subjects, during quiet wakefulness. Although the subjects had eyes 

open, a low-amplitude alpha rhythm was occasionally present (as visible in Fig. 1). There 

were also oscillations present in the empty-room signal, but these oscillations are evidently 

different from the alpha rhythm because of their low amplitude and the fact that they do not 

appear in gradiometers (see Suppl. Fig. S1).

In the next sections, we start by briefly presenting the method that was used to estimate the 

frequency scaling of the PSDs. Then we report the scaling exponents for 0.1–10 Hz 

frequency bands and their differences in EEG and MEG recordings.

4.1 Frequency scaling exponent estimation

Because of the large number of signals in the EEG and MEG recordings, we used an 

automatic non-parametric procedure to estimate the frequency scaling (see Section 2). We 

used a B-spline approximation by interpolation with boundary conditions to find a curve 

which best represents the data (see Section 2). A high density of knots was given to the low-

frequency band (0.1–10 Hz), to have an accurate representation of the PSD in this band, and 

calculate the frequency scaling. An example of optimized knots to an individual sensor is 

shown in Fig. 2(a); note that this distribution of knots is specific to this particular sensor. 
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The resulting B-spline curves were used to estimate the frequency scaling exponent using a 

1st degree polynomial fit. Figure 2(b) shows the result of the B-spline analysis with 

optimized knots (in green) capturing the essence of the data better than the usual 

approximation of the slope using polynomials (in red). The goodness of fit showed a robust 

estimation of the slope using B-spline method. Residuals were −0.01 ± 0.6 for empty-room, 

0.2 ± 0.65 for MEG awake, 0.05 ± 0.6 for LMSS, 0.005 ± 0.64 for NMSS, 0.08 ± 0.5 for 

WF, 0.001 ± 0.02 for PLS, and −0.02 ± 0.28 for EEG B-spline (all numbers to be multiplied 

by 10−14).

4.2 MEG and EEG have different frequency scaling exponents

Figure 3 shows the results of the B-spline curve fits to the log-log PSD vs frequency for all 

sensors of all subjects. In this figure, and only for the ease of visual comparison, these 

curves were normalized to the value of the log(PSD) of the highest frequency. As can be 

appreciated, all MEG sensors (in red) show a different slope than that of the EEG sensors (in 

blue). The frequency scaling exponent of the EEG is close to 1 (1/f scaling), while MEG 

seems to scale differently. Thus, this representation already shows clear differences of 

scaling between EEG and MEG signals.

However, MEG signals may be affected by ambient or instrumental noise. To check for this, 

we have analyzed the empty-room signals using the same representation and techniques as 

for MEG, and the results are represented in Fig. 3 (insets). Empty-room recordings often 

scale very closely to the MEG signal, and thus the scaling observed in MEG may be due in 

part to environmental noise or noise intrinsic to the detectors. This emphasizes that it is 

essential to use empty-room recordings made during the same experiment to correct the 

frequency scaling exponent of MEG recordings.

To correct for this bias, we have used five different procedures (see Section 2). The first 

class of procedure (ES) considers that the scaling of the MEG is entirely due to filtering by 

the sensors, which would explain the similar scaling between MEG and empty-room 

recordings. In this case, however, nearly all the scaling would be abolished, and the 

corrected MEG signal would be similar to white noise (scaling exponent close to zero). 

Because the similar scaling may be coincidental, we have used two other classes of noise 

correction procedures to comply with different assumptions about the nature of the noise. 

The second class, is composed of spectral subtraction (LMSS and NMSS) or Wiener 

filtering (see Section 2). These methods are well-established in other fields such as 

acoustics. The third class, uses statistical patterns of noise to enhance PSD (PLS method, for 

details see Section 2).

4.3 Spatial variability of the frequency scaling exponent

We applied the above methods to all channels and represented the scaling exponents in 

topographic plots in Fig. 4. This figure portrays that both MEG and EEG do not show a 

homogenous pattern of the scaling exponent, confirming the differences of scaling seen in 

Fig. 3. The EEG (Fig. 4(a)) shows that areas in the midline have values closer to 1, while 

those at the margin can deviate from 1/f scaling. MEG on the other hand shows higher 

values of the exponent in the frontal area and a horseshoe pattern of low value exponents in 
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parietotemporal regions (Fig. 4(b)). As anticipated above, empty-room recordings scale 

more or less uniformly with values close to 1/f (Fig. 4(c)), thus necessitating the correction 

for this phenomena to estimate the correct MEG frequency scaling exponent. Different 

methods for noise reduction are shown in Fig. 4: spectral subtraction methods, such as 

LMSS (Fig. 4(d)), NMSS (Fig. 4(e)), WF enhancement (Fig. 4(f)). These corrections 

preserve the pattern seen in Fig. 4(b), but tend to increase the difference with EEG scaling: 

one method (LMSS) yields minimal correction while the other two (NMSS and WF) use 

band-specific SNR information in order to cancel the effects of background colored-noise 

(see Suppl. Fig. S2), and achieve higher degree of correction (see Supplementary methods 

for details). Figure 4(g) portrays the use of PLS to obtain a noiseless signal based on the 

noise measurements. The degree of correction achieved by this method is higher than what 

is achieved by spectral subtraction and WF methods. Exponent subtraction is shown in Fig. 

4(h). This correction supposes that the scaling is due to the frequency response of the 

sensors, and nearly abolishes all the frequency scaling (see also Suppl. Fig. S3 for a 

comparison of different methods of noise subtraction).

4.4 Statistical comparison of EEG and MEG frequency scaling

Based on the patterns in Fig. 4, we created three ROIs covering Vertex (FR), Vertex (VX) 

and the horseshoe pattern (PT). These masks are shown in Fig. 4(i).

Figure 5(a) represents the overall pattern providing evidence on the general difference and 

the wider variability in MEG recordings. The next three panels relate to the individual ROIs. 

Of the spectral subtraction methods, NMSS achieves a higher degree of correction in 

comparison with LMSS (see Figs. 4(c), (d) as well as Suppl. Fig. S3). Because NMSS takes 

into account the effects of the background colored-noise (Suppl. Fig. S2), it is certainly more 

relevant to the type of signals analyzed here. The results of NMSS and WF are almost 

identical and confirm one another (see Fig. 4(e), as well as Suppl. Fig. S3). Therefore, of 

this family of noise correction, only NMSS is portrayed here. Of the methods dealing with 

different assumptions about the nature of the noise, the “Exponent subtraction” almost 

abolishes the frequency scaling (Also see in Fig. 4(h), as well as Suppl. Fig. S3). Applying 

PLS yields values in between “Exponent subtraction” and that of NMSS and is portrayed in 

Fig. 5.

In the Frontal region (Fig. 5(b)), the EEG scaling exponents show higher variance by 

comparison to MEG. Also, EEG shows some overlaps with the distribution curve of non-

corrected MEG; this overlap becomes limited to the tail end of the NMSS correction and is 

abolished in the case of PLS correction. As can be appreciated, VX (Fig. 5(c)) shows both 

similar values and similar distribution for EEG and non-corrected MEG. These similarities, 

in terms of regional overall values and distribution curve, are further enhanced after NMSS 

correction. It is to be noted that, in contrast to these similarities, the one-to-one correlation 

of NMSS and EEG at VX ROI are very low (see below, Table 1(B), (C)). The values of PLS 

noise correction are very different from that of EEG and have a similar, but narrower, 

distribution curve shape. Two other ROIs show distinctively different values and 

distribution in comparing EEG and MEG. Both NMSS and PLS agree on this with PLS 

showing more extreme cases. Figure 5(d) reveals a bimodal distribution of MEG exponents 
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in the parietotemporal region (PT ROI). This region has also the highest variance (in MEG 

scaling exponents) compared to other ROIS. The distinction between EEG and MEG is 

enhanced in PLS estimates; however, the variance of PT is reduced in comparison to NMSS 

while the bimodality is still preserved but weakened. The values of mean and standard 

deviation for these ROIs’ exponents are provided in Table 1(A) (mean ± standard deviation).

The box-plots of Fig. 5-plots further show the difference between the medians, lower/upper 

quartile and interquartile range. The overall difference is that the uncorrected MEG has 

much wider variance compared to EEG and corrected MEG (in case of PLS correction); the 

absolute value of the median of MEG (uncorrected, or corrected with either NMSS or PLS) 

is always smaller than that of EEG. The VX region is an exception to the above rules; 

interestingly, the one-to-one correlation of VX happens to be the lowest of all (see below). 

In the case of NMSS-corrected MEG, the shape of the pdf is preserved. However, PLS 

narrows the distribution curve of MEG but further enhances the differences between MEG 

and EEG. Therefore, median and lower/upper quartiles will have different value than that of 

EEG.

Correlation values (Table 1(B), (C)) show that, although VX ROI has the closest similarity 

in terms of its central tendency and probability distribution, it provides the lowest 

correlation in a pairwise fashion. P-values (for testing the hypothesis of no correlation 

against the alternative that there is a nonzero correlation) for Pearson’s correlation were 

calculated using a Student’s t-distribution for a transformation of the correlation and they 

were all significant (less than 10−15 for α = 0.05). Similarly, a non-parametric statistic 

Kendall tau rank correlation was used to measure the degree of correspondence between two 

rankings and assessing the significance of this correspondence between MEG and EEG in 

the selected ROIs (Table 1(C)). P-values for Kendall’s tau and Spearman’s rho calculate 

using the exact permutation distributions were all significant (less than 10−15 for α = 0.05). 

Kendall tau shows that the rank correlation for all areas considered together as well as for 

PT, show a lesser correlation than that is shown by Pearson linear correlation. Furthermore, 

we carried out a Kruskal–Wallis nonparametric version of one-way analysis of variance. We 

used this test to avoid bias in ANOVA (KruskalWallis assumes that the measurements come 

from a continuous distribution, but not necessarily a normal distribution as is assumed in 

ANOVA). KruskalWallis uses analysis of variance on the ranks of the data values, not the 

data values themselves and therefore is an appropriate test for comparison of the 

homogeneity of pattern between ROIs of two image as well as their statistical median. As 

shown in Table 1(D), all p-values were significant emphasizing the difference between the 

spatial aspect of the spectral nature of MEG and EEG. Note that the difference of scaling 

exponent of EEG and MEG was also confirmed by nonlinear spatial Kendall correlation 

analysis, independently of the ROIs classification (not shown).

4.5 Relation of scaling exponent to signal-to-noise ratio

Noise correction does not affect all the sensors in a same fashion. As presented in Suppl. 

Fig. S3, the simple linear spectral subtraction (LMSS) may lead to an increment or 

decrement of the scaling exponent. In any case, the correction achieved by this method is 

minimal. This is due to the fact that LMSS ignores the complex non-linear patterns of the 
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SNR in different channels (Suppl. Fig. S2). We show that for all subjects, as the frequency 

goes up, the SNR goes down. It is also noticeable that in each defined frequency band, i.e. 

0–10 Hz (Slow, Delta and Theta), 11–30 Hz (Beta), 30–80 Hz (Gamma), 80–200 Hz (Fast 

oscillation), 200–500 Hz (Ultra-fast oscillation), there is an observable sensor-to-sensor 

SNR variability. This variability is at its maximum in the band with the highest SNR (i.e. 1–

10 Hz). All together, the non-linear nature of MEG SNR shows that a linear spectral 

subtraction could behave non-optimally, leading to minimal correction. This also conveys 

that the optimal spectral correction can be achieved only by non-linear methods that 

explicitly take into account the SNR information of the data. Therefore the correction 

achieved by NMSS and WF have higher validity, in agreement with the fact that both 

methods yield similar results in terms of values and spatial distribution (Fig. 4(e), (f)).

5 Discussion

In this paper, we have used a combination of theoretical and experimental analyses to 

investigate the spectral structure of EEG and MEG signals. In the first part of the paper, we 

presented a theoretical investigation showing that if the extracellular medium is purely 

resistive, the equations of the frequency dependence of electric field and magnetic induction 

take a simple form, because the admittance tensor does not depend on spatial coordinates. 

Thus, the macroscopic magnetic induction does not depend on the electric field outside the 

neuronal sources, but only depends on currents inside neurons. In this case, the frequency 

scaling of the PSD should be the same for EEG and MEG signals. This conclusion is only 

valid in the linear regime, and for low frequencies.

An assumption behind this formalism is that the spatial and frequency dependence of the 

current density factorize (Eq. (19)). We have shown in the Appendices that this is equivalent 

to consider the different current sources as independent. Thus, the formalism will best apply 

to states where the activity of synapses is intense and of very low correlation. This is the 

case for desynchronized-EEG states or more generally “high-conductance states”, in which 

the activity of neurons is intense, of low correlation, and the neuronal membrane is 

dominated by synaptic conductances (Destexhe et al. 2003). In such conditions, the 

dendrites are bombarded by intense synaptic inputs which are essentially uncorrelated, and 

one can consider the current sources as independent (Bédard et al. 2010). In the present 

paper, we analyzed EEG and MEG recordings in such desynchronized states, where this 

formalism best applies.

Note that the above reasoning neglects the possible effect of abrupt variations of impedances 

between different media (e.g., between dura matter and cerebrospinal fluid). However, there 

is evidence that this may not be influential. First, our previous modeling work (Bédard et al. 

2004) showed that abrupt variations of impedance have a negligible effect on low 

frequencies, suggesting that even in the presence of such abrupt variations should not play a 

role at low frequencies. Second, in the frequency range considered here, the skull and the 

skin are very close to be resistive at low frequencies (Gabriel et al. 1996b), so it is very 

unlikely that they play a role in the frequency scaling in EEG and MEG power spectra even 

at high frequencies.
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In the second part of the paper, we have analyzed simultaneous EEG and MEG signals 

recorded in four healthy human subjects while awake and eyes open (with desynchronized 

EEG). Because of the large num ber of channels involved, we used an automatic procedure 

(B-splines analysis) to calculate the frequency scaling. As found in previous studies 

(Pritchard 1992; Freeman et al. 2000; Bédard et al. 2006a), we confirm here that the EEG 

displays frequency scaling close to 1/f at low frequencies.5 However, this 1/f scaling was 

most typical of the midline channels, while temporal and frontal leads tended to scale with 

slightly larger exponents, up to 1/f2 (see Fig. 4(a)). The same pattern was observed in all 

four patients.

This approach differs from previous studies in two aspects. First, in contrast to prior studies 

(such as Novikov et al. 1997; Linkenkaer-Hansen et al. 2001), we calculated the frequency 

scaling of all the sensors and did not confine our analysis to a specific region. Second, 

unlike other investigators (such as Hwa and Ferree 2002a, b), we did not limit our 

evaluations to either EEG or MEG alone, but rather analyzed the scaling of both type of 

signals simultaneously. Such a strategy enables us to provide an extended spatial analysis of 

the frequency scaling. It also provides a chance to compare the scaling properties of these 

signals in relation to their physical differences.

For the MEG recordings, the frequency scaling at low frequencies was significantly lower 

compared to the EEG (see Fig. 3). This difference in frequency scaling was also 

accompanied by spatial variability patterns (see Fig. 4) showing three distinct regions: 1) a 

frontal area where the exponents had their highest values in the case of MEG; 2) a central 

area where the values of exponents of EEG and MEG get closer to each other and 3) a 

parietotemporal horseshoe region showing the lowest exponents for MEG with bimodal 

characteristics (Fig. 5). In some cases, the scaling of the uncorrected and corrected MEG 

signal was also close to 1/f, as reported previously (Novikov et al. 1997). In the frontal area 

(FR mask), the scaling exponent of the EEG was generally larger. At Vertex (VX mask), 

EEG and MEG had similar values and at the Parietotemporal region (PT mask), MEG 

showed a bimodal property with a much broader range of scaling exponent in comparison to 

EEG (see Fig. 4). Note that to avoid the effect of spurious peaks, Novikov et al. used the 

spectrum of signal differences and argued for the existence of a local similarity regime in 

brain activity. This approach fundamentally changes the spectral characteristics of 

Magnetometers (which measure the absolute magnitude of the magnetic induction) into a 

measure that only for the neighboring sensors approximates the behavior of the gradiometers 

(which measures the gradient of the magnetic induction). So it is not clear how to relate their 

values to the ones obtained here.

To make sure that the differences of frequency scaling between EEG and MEG were not due 

to environmental or instrumental noise, we have used five different methods to remove the 

effect of noise. These methods are based on different assumptions about the nature and 

effect of the noise. A first possibility is to correct for the noise induced by the MEG sensors. 

5Note that to compare scaling exponents between studies one must take into account that the electrode montage may influence the 
scaling. For example, in bipolar (differential) EEG recordings, if two leads are scaling as 1/(A + f) and 1/(B + f), the difference will 
have regions scaling as 1/f2.
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It is known that the SQUID detectors used in MEG recordings are very sensitive to 

environmental noise and they can produce 1/f noise (Hämäläinen et al. 1993). Under this 

assumption, part of the scaling of the MEG could be due to “filtering” by the sensors 

themselves, which justifies a simple subtraction of scaling exponents to remove the effects 

of this filtering. Note that such empty-room recordings were not possible for the EEG, 

although the noise from the recording setup could be estimated (see Miller et al. 2009 for 

example). Because in some cases both MEG and emptyroom signals have similar scaling, a 

simple correction by subtracting the exponents would almost entirely abolish the frequency 

scaling while in other cases it may even revert the sign of the scaling exponent (see Fig. 

4(h), Suppl. Fig. S3).

However, if noise is not due to the sensors but is of additive uncorrelated nature, then 

another method for noise correction must be used. For this reason, we have used a second 

class of well-established methods consisting of spectral subtraction (Boll 1979; Sim et al. 

1998). Using three of such methods (LMSS, NMSS and WF) changed the scaling exponent, 

without fundamentally changing its spatial pattern (Fig. 4(d)–(f)). The largest correction was 

obtained by non-linear methods which take into account the SNR information in the MEG 

signal. We also applied another class of method which uses the collective characteristics of 

all frequencies in noise correction (PLS). Similar to exponent subtraction, this method 

nearly abolished all the scaling of the MEG (Fig. 4(g)). In conclusion, although different 

methods for noise subtraction give rise to different predictions about frequency scaling, all 

of the used methods enhanced the difference between EEG and MEG scaling. Thus, we 

conclude that the difference of EEG and MEG scaling cannot be attributed to noise, but is 

significant, therefore reinforcing the conclusion that the medium must be non-resistive.

An alternative method to investigate this is the “Detrended Fluctuation Analysis” (DFA; see 

Kantelhardt et al. 2001; Linkenkaer-Hansen et al. 2001; Hwa and Ferree 2002a, b). Like 

many nonlinear approaches, DFA results are very vulnerable to the selection of certain 

parameters. Different filters severely affect the scaling properties of the electromagnetic 

signals to different extents, and therefore the parameters estimated through the DFA analysis 

could be false or lead to distorted interpretations of real phenomena (Valencia et al. 2008), 

and these effects are especially prominent for lower frequencies, which are precisely our 

focus of investigation here. One of the fields for which DFA can provide robust results is to 

analyze surrogate data with known characteristics. Although the use of DFA to evaluate the 

scaling exponents of EEG was vigorously criticized (Valencia et al. 2008), a previous 

analysis (Hwa and Ferree 2002a, b) reported two different regions, a central and a more 

frontal, which somehow correlate with the FR and VX regions identified in our analysis. 

Similarly, a study by Buiatti et al. (2007) using DFA provided evidence for topographical 

differences in scaling exponents of EEG recordings. They report that scaling exponents were 

homogeneous over the posterior half of the scalp and became more pronounced toward the 

frontal areas. In contrast to Linkenkaer-Hansen et al. (2001) (where envelope of alpha 

oscillations was used for DFA estimation), this study uses the raw signal in its DFA analysis 

and yields values closer to those reported here.

Both uncorrected signals and empty-room correction show that there is a fundamentally 

different frequency scaling between EEG and MEG signals, with near-1/f scaling in EEG, 
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while MEG shows a wider range at low frequencies. Although it is possible that 

nonneuronal sources affect the lower end (<1Hz) of the evaluated frequency domain (Voipio 

et al. 2003), the solution to avoid these possible effects remain limited to invasive methods 

such as inserting the electrode into the scalp (Ferree et al. 2001) or using intracranial EEG 

recordings (similar to Miller et al. 2009). This approach would render wide range spatial 

recording as well as simultaneous invasive EEG and MEG recordings technically 

demanding or impractical. However, if technically feasible, such methods could provide a 

way to bypass non-neuronal effects at very low frequency. It could also provide a chance to 

evaluate the effects of spatial correlation on spectral structure at a multiscale level.

The power spectral structure we observe here is consistent with a scenario proposed 

previously (Bédard et al. 2006a): the 1/f structure of the EEG and LFP signals is essentially 

due to a frequency-filtering effect of the signal through extracellular space; this type of 

scaling can be explained by ionic diffusion and its associated Warburg impedance6 (see 

Bédard and Destexhe 2009). It is also consistent with the matching of LFPs with multi-unit 

extracellular recordings, which can be reconciled only assuming a 1/f filter (Bédard et al. 

2006a). Finally, it is also consistent with the recent evidence from the transfer function 

calculated from intracellular and LFP recordings, which also showed that the extracellular 

medium is well described by a Warburg impedance (Bédard et al. 2010, this issue). If this 

non-resistive aspect of extracellular media is confirmed, it may influence the results of 

models of source localization, which may need to be reformulated by including more 

realistic extracellular impedances.

In conclusion, the present theoretical and experimental analysis suggests that the scaling of 

EEG and MEG signals cannot be reconciled using a resistive extracellular medium. The 1/f 

structure of EEG with smaller scaling exponents for MEG is consistent with non-resistive 

extracellular impedances, such as capacitive media or diffusion (Warburg) impedances. 

Including such impedances in the formalism is non trivial because these impedances are 

strongly frequency dependent. The Poisson integral (the solution of Poisson’s law ∇ · D = 

−∇ · ε∇V = ρ) would not apply anymore (see Bédard et al. 2004; Bédard and Destexhe 

2009). Work is under way to generalize the formalism and include frequency-dependent 

impedances.

Finally, it is arguable that the scaling could also be influenced by the cancellation and the 

extent of spatial averaging of microscopic signals, which are different in EEG and MEG (for 

more details on cancellation see Ahlfors et al. 2010; for details on spatial sensitivity profile 

see Cuffin and Cohen 1979). Such a possible role of the complex geometrical arrangement 

of underlying current sources should be investigated by 3D models which could test specific 

assumptions about the geometry of the current sources and dipoles, and their possible effect 

on frequency scaling. Such a scenario constitutes another possible extension of the present 

study.

6Ionic diffusion can create an impedance known as the “Warburg impedance”, which scales as , giving 1/f scaling in the 
power spectra (Taylor and Gileadi 1995; Diard et al. 1999).
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Appendices

Appendix 1: Frequency dependence of electric field and magnetic 

induction

To compare the frequency dependence of magnetic induction and electric field, we evaluate 

them in a dendritic cable, expressed differentially. For a differential element of dendrite, in 

Fourier space, the current produced by a magnetic field (Ampère–Laplace law) is given by 

the following expression (see Appendix 2):

(20)

when the extracellular medium is resistive. Note that the source of magnetic induction is 

essentially given by the component of  along the axial direction  within each 

differential element of dendrite because the perpendicular (membrane) current does not 

participate to producing the magnetic induction if we assume a cylindrical symmetry.

For the electric potential, we have the following differential expression for a resistive 

medium (see Appendix 3):

(21)

where  is the transmembrane current per unit of surface.

If we consider the differential expressions for the magnetic induction (Eq. (20)) and electric 

potential (Eq. (21)), one can see that the frequency dependence of the ratio of their modulus 

is completely determined by the frequency dependence of the ratio of current density  and 

. In Appendix 4, we show that this ratio is quasi-independent of frequency for a resistive 

medium, for low frequencies (smaller that ~10 Hz), and if the current sources are of very 

low correlation.

Thus, magnetic induction and electric potential can be very well approximated by:
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(22)

for sufficiently small differential dendritic elements (N/l large).

Because the functions of spatial and frequency are statistically independent, we can write the 

following expressions for the square modulus of the fields (see Eqs. (20) and (21)):

(23)

where , Vl(r) =< Vl(r) > and W(r) =< Bl(r) >. Thus, the scaling of the 

PSDs of the electric potential and magnetic induction must be the same for low frequencies 

(smaller than ~10 Hz) if the medium is resistive and when the current sources have very low 

correlation.

Appendix 2: Differential expression for the magnetic induction

According to Maxwell equations, the magnetic induction is given by:

(24)

where dυ′ = dx′1dx′2dx′3 and

for a perfectly resistive medium.

We now show that this expression is equivalent to Ampere–Laplace law.

From the identity ∇′ × (gA) = g(∇′ × A) + ∇′g × A, where , we 

can write:
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(25)

Moreover, we also have the following identity

(26)

where n̂ is a unitary vector perpendicular to the integration surface and going outwards from 

that surface. Extending the volume integral outside the head, the surface integral is certainly 

zero because the current is zero outside of the head. It follows that:

(27)

where dυ′ = dx′1dx′2dx′3 because

Equation (27) is called the Ampère–Laplace law (see Eq. (13) in Hämäläinen et al. 1993). It 

is important to note that this expression for the magnetic induction is not valid when the 

medium is not resistive.

Finally, from the last expression, the magnetic induction for a differential element of 

dendrite can be written as:

(28)

Appendix 3: Differential expression of the electric field and electric 

potential

In this appendix, we derive the differential expression for the electric field. Starting from Eq. 

(10), we obtain the solution for the electric potential:

(29)

It follows that the electric field produced by the ensemble of sources can be expressed as:

(30)
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such that every differential element of dendrite produces the following electric field:

(31)

The transmembrane current  obeys  because we are in a quasi-

stationary regime in a differential dendritic element. Taking into account the differential law 

of charge conservation ∇ · jf(r′) = −iωρf(r′), we have:

(32)

where  is the density of transmembrane current per unit surface and δS′ is the surface area 

of a differential dendritic element. This approximation is certainly valid for frequencies 

lower than 1,000 Hz because the Maxwell–Wagner time (see Bédard et al. 2006b) of the 

cytoplasm . is much smaller than the typical membrane time constant of 

a neuron (τm ~ 5 − 20 ms).

Finally the contribution of a differential element of dendrite to the electric potential at 

position r is given by

(33)

We note that the expressions for the electric field and potential produced by each differential 

element of dendrite have the same frequency dependence because it is directly proportional 

to  for the two expressions. Also note that if the medium is resistive, then γf = γ and the 

frequency dependence of the electric field and potential are solely determined by that of the 

transmembrane current .

Appendix 4: Frequency dependence of the ratio jfi(x)/jfm(x)

For each differential element of dendrite, we consider the standard cable model, in which the 

impedance of the medium is usually neglected (it is usually considered negligible compared 

to the membrane impedance). In this case, we have:

(34)

where , cm, rm et ri are respectively the membrane potential, the current density in 

the axial direction, the transmembrane current density, the specific capacitance (F/m2), the 

specific membrane resistance (Ω․m2) and the cytoplasm resistivity (Ω․m).

It follows that
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(35)

where τm = rmcm.

Under in vivo-like conditions, the activity of neurons is intense and of very low correlation. 

This is the case for desynchronized-EEG states, such as awake eyes-open conditions, where 

the activity of neurons is characterized by very low levels of correlations. There is also 

evidence that in such conditions, neurons are in “high-conductance states” (Destexhe et al. 

2003), in which the synaptic activity dominates the conductance of the membrane and 

primes over intrinsic currents. In such conditions, we can assume that the synaptic current 

sources are essentially uncorrelated and dominant, such that the deterministic link between 

current sources will be small and can be neglected (see Bédard et al. 2010). Further 

assuming that the electric properties of extracellular medium are homogeneous, then each 

differential element of dendrite can be considered as independent and the voltages Vm have 

similar power spectra.

In such conditions, we have:

(36)

Note that this expression implies that we have in general for each differential element of 

dendrite:

(37)

according to Eq. (34).

It follows that

(38)

Thus, for frequencies smaller than 1/(ωτm) (about 10 to 30 Hz for τm of 5–20 ms), the ratio 

 will be frequency independent, and for each differential element of dendrite, we have:

(39)

for frequencies smaller than ~10 Hz.
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Fig. 1. 
Simultaneous EEG and MEG recordings in an awake human subject. This example shows a 

sample of channels from MEG/EEG after ECG noise removal. Labels refer to ROIs as 

defined in methods (also see Fig. 4). FR frontal, VX vertex, PT parietotemporal. These 

sample channels were selected to represent both right and left hemispheres in a symmetrical 

fashion. Inset: magnification of the MEG (red) and “empty-room” (green) signals 

superimposed from four sample channels. All traces are before any noise correction, but 

after ECG decontamination
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Fig. 2. 
a log–log scale of the PSD vs frequency of a sample MEG sensor along with the 

corresponding log(PSD) values (shown as circles) at optimized knots in log-scale. b 1st 

degree Polynomial fit on B-spline curve effectively captures properties of the signal better 

than simple polynomial fit and avoids the 10 Hz peak. The fit was limited between 0.1 to 10 

Hz excluding the boundaries. This limits the fit approximation to the next limiting optimized 

knots (between 0.1 and 0.2 to between 9 and 10 Hz) to avoid the peaks at alpha and low 

frequencies (shown by vertical dotted lines)
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Fig. 3. 
B-spline fits of EEG awake and MEG awake (prior to noise correction) recordings from all 

four subjects. Each line refers to the fit of one sensor in log(PSD)-log(frequency) scale. For 

the ease of visual comparison of the frequency scaling exponent, log(PSD) values are 

normalized to their value at the maximum frequency. Each panel represents the data related 

to one of our four subjects. These plots show a clear distinction between the frequency 

scaling of EEG and MEG. Insets show the comparison between MEG awake (prior to noise 

correction) and MEG empty-room recordings (not normalized). Note that the empty-room 

scales similar to the MEG signal, but in general EEG and MEG scale differently
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Fig. 4. 
Topographical representation of frequency scaling exponent averaged across four subjects. 

(a) EEG awake. (b) MEG awake. (c) MEG empty-room. (d), (e) MEG after spectral 

subtraction of the empty-room noise using linear (LMSS) and non-linear (NMSS) methods 

respectively. (f) MEG spectral enhancement using Wiener filtering (WF). (g) MEG, partial 

least square (PLS) approximation of non-noisy spectrum. (h) Exponent subtraction (the 

exponent represented is the value of the frequency scaling exponent calculated for MEG 

signals, subtracted from the scaling exponent calculated from the corresponding emptyroom 
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signals). (i) Spatial location of ROI masks (shown in yellow). FR covers the Frontal, VX 

covers Vertex and PT spans Parietotemporal. Dots show spatial arrangement of 102 MEG 

SQUID sensor triplets. The background gray-scale figure is same as the one in panel (b). 

Note that panels (a) through (h) use the same color scaling
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Fig. 5. 
Statistical comparison of EEG vs.MEG frequency scaling exponent for all regions (a) and 

different ROI masks (b, c & d). In each panel, a box-plot on top is accompanied by a 

nonparametric distribution function in the bottom. In the top graph, the box has lines at the 

lower quartile, median (red), and upper quartile values. Smallest and biggest non-outlier 

observations (1.5 times the interquartile range IRQ) are shown as whiskers. Outliers are data 

with values beyond the ends of the whiskers and are displayed with a red plus sign. In the 

bottom graph, a Nonparametric density function shows the distribution of EEG, MEG and 
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empty-room-corrected MEG frequency scaling exponents (note that LMSS and WF are not 

shown here; see the text for description.). Thick and thin vertical lines show the mean and 

mean ± std for each probability density function (pdf)
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Table 1

ROI statistical comparison

(A) Mean and standard deviation

EEG MEG (awake) NMSS

All −1.33 ± 0.19 −1.24 ± 0.26 −1.06 ± 0.29

FR ROI −1.36 ± 0.25 −0.97 ± 0.10 −0.76 ± 0.09

VX ROI −1.21 ± 0.13 −1.36 ± 0.10 −1.14 ± 0.11

PT ROI −1.36 ± 0.12 −1.30 ± 0.29 −1.16 ± 0.32

(B) Pearson correlation

EEG vs. MEG EEG vs. Corrected
MEG (NMSS)

All 0.29 0.32

FR ROI 0.41 0.32

VX ROI −0.17 −0.15

PT ROI 0.35 0.38

(C) Kendall rank corr

EEG vs. MEG EEG vs Corrected
MEG (NMSS)

All 0.21 0.24

FR ROI 0.29 0.21

VX ROI −0.03 −0.04

PT ROI 0.23 0.26

(D) KruskalWallis

p value Chi-square df Error

All < 10−15 1.53 103 34,838

All noise-corrected < 10−15 8.03 103 34,838

FR ROI < 10−15 3.30 103 5,008

FR ROI noise-corrected < 10−15 3.72 103 5,008

VX ROI < 10−15 1.72 103 5,452

VX ROI noise-corrected < 10−15 0.23 103 5,452

PT ROI < 10−15 0.21 103 13,010

PT ROI noise-corrected < 10−15 1.18 103 13,010

(A)Mean and std of frequency scale exponent for all regions and individual ROI. (B) Numerical values of linear Pearson correlation. (C) Rank-
based Kendall correlation. (D) Non-parametric test of analysis of variance (KruskalWallis). Corrected MEG refers to spectral subtraction using 
NMSS. The full table is provided in Supplementary information
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