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Abstract

We previously demonstrated that transforming growth factor-β1 (TGF-β1), while having no effect 

alone, enhances nitric oxide (NO) production in primary, purified mouse astrocytes induced by 

lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) by recruiting a latent population of astrocytes 

to respond, thereby enhancing the total number of cells that express Nos2. In this investigation, we 

evaluated the molecular signaling pathway by which this occurs. We found that purified murine 

primary astrocytes express mRNA for TGFβRII as well as the TGFβRI subunit ALK5, but not 

ALK1. Immunofluorescence microscopy confirmed the expression of TGFβRII and ALK5 protein 

in astrocytes. Consistent with ALK5 signaling, Smad3 accumulated in the nucleus of astrocytes as 

early as 30 min after TGF-β1 (3ng/ml) treatment and persisted up to 32 hr after TGF-β1 

administration. Addition of ALK5 inhibitors prevented TGF-β1-mediated Smad3 nuclear 

accumulation and NO production when given prior to the Nos2 induction stimuli but not after. 

Finally, astrocyte cultures derived from Smad3 null mutant mice did not exhibit a TGF-β1-

mediated increase in iNOS expression. Overall, this data suggests that ALK5 signaling and Smad3 

nuclear accumulation is required for optimal enhancement of LPS plus IFNγ-induced NO 

production in astrocytes by TGF-β1.
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Introduction

Neuroinflammation occurs during the pathogenesis of several neurological diseases/

disorders. One of the hallmarks of neuroinflammation is reactive gliosis, which is 

characterized by hypertrophy/hyperplasia of astrocytes and microglia (Hirsch et al. 2005; 

Malhotra et al. 1990; Ridet et al. 1997; Sofroniew 2009). Both microglia and astrocytes can 

modulate the inflammatory state by secreting either pro-inflammatory or anti-inflammatory 

mediators (Chung and Benveniste 1990; Lee et al. 1993; Meeuwsen et al. 2003; Romero et 

al. 1996). These mediators can act an autocrine and/or paracrine fashion to trigger the up- or 

down-regulation of other genes including the enzyme nitric oxide synthase-2 (NOS-2 or 

iNOS) (Hamby et al. 2008b; Romero et al. 1996).
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Nos2 is the gene that encodes for the inducible isoform of NOS, the enzyme responsible for 

the catalytic conversion of L-arginine to the free radical nitric oxide (NO). Post-mortem 

brains of human patients who suffered from neurological diseases/disorders including 

Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebral ischemia and trauma 

(Fernandez-Vizarra et al. 2004; Forster et al. 1999; Katsuse et al. 2003; Liu et al. 2001; Luth 

et al. 2002; Sasaki et al. 2000; Wong et al. 2001) demonstrate iNOS immunoreactivity. 

Important to this study, immunoreactivity has been observed in astrocytes in post-mortem 

human brains from patients with neurodegenerative diseases (Katsuse et al. 2003; Liu et al. 

2001; Luth et al. 2002; Wong et al. 2001), multiple sclerosis (Cross et al. 1998; Liu et al. 

2001) and from those who suffered a acute neurological insults such as traumatic brain 

injury (Gahm et al. 2002; Luth et al. 2001). CNS tissue taken from mouse models of 

Alzheimer's diseases (Heneka et al. 2005), multiple sclerosis (Pozner et al. 2005; Tran et al. 

1997) and traumatic brain injury (Luth et al. 2001; Wallace and Bisland 1994) also 

demonstrate marked astrocytic iNOS immunoreactivity. Notably, iNOS-derived NO 

products in these models have been demonstrated to be deleterious (Medeiros et al. 2007; 

Nathan et al. 2005; Wada et al. 1998)…

Although Nos2 is subject to regulation via several means, a potent regulator of its expression 

is the pleiotropic cytokine transforming growth factor-β1 (TGF-β1) (Nelson et al. 1991; 

Perrella et al. 1996; Perrella et al. 1994; Vodovotz and Bogdan 1994; Vodovotz et al. 1993). 

TGF-β1 belongs to the TGFβ superfamily. It signals by binding to TGFβRII which then 

heterodimerizes and transphosphorylates the TGFβ signaling receptor activin-like kinase 

(ALK) 5 or 1 – the expression of which is cell-type specific – initiating an intracellular 

serine/threonine kinase signaling cascade (de Caestecker 2004; Konig et al. 2005; Lux et al. 

2006; Miyazawa et al. 2002) (Moustakas et al. 2001) (Attisano and Wrana 2002) Whereas 

ALK1 phosphorylates Smad1/5/8, ALK5 phosphorylates Smad2/3, each resulting in nuclear 

translocation of distinct signaling complexes producing disparate changes in gene 

expression (Miyazawa et al. 2002). Like iNOS, TGF-β1 is upregulated under 

neuropathological conditions (Finch et al. 1993; Flanders et al. 1998; Grammas and Ovase 

2002; Huang et al. 1997; Krupinski et al. 1996; Krupinski et al. 1998; Lehrmann et al. 1998; 

Lehrmann et al. 1995; Logan et al. 1994; Morganti-Kossman et al. 1997; Morganti-

Kossmann et al. 1999; Peress and Perillo 1995; Tanuma et al. 1997; Wang et al. 1995; 

Zetterberg et al. 2004). While it is traditionally thought of as having anti-inflammatory and 

neuroprotective functions (Buisson et al. 2003; Dhandapani and Brann 2003; Flanders et al. 

1998; Kim et al. 2004), several recent studies reveal a pro-inflammatory role for TGF-β1 in 

the brain (Burton et al. 2002; Grammas and Ovase 2002; Lesne et al. 2003; Wyss-Coray et 

al. 1997a; Wyss-Coray et al. 1995; Wyss-Coray et al. 1997b). Recently, we've demonstrated 

that in a pure population of astrocytes – i.e., cultures devoid of microglia – that TGF-β1 

potentiates NO production and iNOS expression induced by various pro-inflammatory 

stimuli (Hamby et al. 2006a; Hamby et al. 2008b). Interestingly, this enhancement occurs 

specifically by increasing the population of astrocytes that expressed the protein (Hamby et 

al. 2008a; Hamby et al. 2006a; Hamby et al. 2008b). Herein, we demonstrate that this TGF-

β1-mediated enhancement in the pool of astrocytes expressing iNOS requires signaling of 

ALK5 and nuclear translocation of Smad3. Portions of this work have been published in 

abstract form (Hamby et al., 2007).
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Materials and Methods

Primary Astrocyte Culture

Primary astrocytes were cultured from pooled cerebral cortices of CD1 pups (Charles River) 

or from single pups derived from Smad3 heterozygous [(+/-) × (+/-)] breeding pairs 

maintained congenic on a C57Bl/6 background (Ashcroft et al. 1999; Yang et al. 1999). Tail 

snips from individual pups were used to assess the genotype via PCR as described (Yang et 

al., 1999). An aseptic dissection of the cerebral cortices of postnatal day 1-3 mice was 

performed and cells mechanically and enzymatically dissociated prior to plating (Hamby et 

al. 2006a). Plating medium consisted of a media stock (MS) containing 10% fetal bovine 

serum (FBS; Hyclone), 10% iron-supplemented calf serum (CS; Hyclone), 10ng/ml 

epidermal growth factor (Invitrogen), 2mM L-glutamine (Mediatech), 50IU/ml penicillin 

and 50μg/ml streptomycin (Mediatech). MS was comprised of modified Eagle's medium 

(Earle's salt; Mediatech) supplemented with glucose and sodium bicarbonate to a final 

concentration of 25.7mM and 28.2mM, respectively. In most protocols, cells were plated at 

a density of 1-1.5 hemispheres/24-well plate or 1.2-1.6 hemispheres/6-well plate (both from 

Falcon Primaria, BD Biosciences). In experiments involving assessment of SMAD3 nuclear 

translocation, cells were first grown in T25 flasks, removed and then replated onto 8-well 

glass chamberslides (LabTek). Upon reaching confluence, astrocyte monolayers were 

treated with 8μM cytosine β-D-arabinofuranoside (Ara-C; Sigma-Aldrich) once for 5-6 days 

to eliminate the growth of any rapidly dividing cells such as microglia. Cultures were 

subsequently maintained in growth medium consisting of MS containing 10% CS, 2mM L-

glutamine, 50IU/ml penicillin and 50μg/ml streptomycin. One day prior to experimentation, 

astrocyte cultures were treated with 75mM L-leucine methyl ester (LME; 1hr) to remove 

any residual microglia (Hamby et al. 2006a; Hamby et al. 2006b). Cells were grown, 

maintained, and stimulated at 37°C in a humidified atmosphere containing 6% CO2. All 

studies were performed on purified monolayers between 14-31 days in vitro (DIV).

Cytokine, Endotoxin and Drug Exposure

Cultures were treated with recombinant human TGF-β1 (R&D Systems; 3ng/ml) or its 

vehicle in DMEM supplemented with 5% CS, 2mM L-glutamine, 50IU/ml penicillin and 

50μg/ml streptomycin. To induce Nos2, cells were stimulated with lipopolysaccharide (LPS; 

0127:B8; 2μg/ml) plus recombinant mouse interferon-γ (IFNγ; R&D Systems; 3ng/ml). 

These concentrations were chosen as they provide a saturating response with respect to 

astrocytic NO production (Hamby et al., 2006a). In cultures derived from CD-1 mice, this 

combination of LPS plus IFNγ induces iNOS expression in roughly 5-10% of mouse pure 

primary astrocytes, which increases to 30-35% with TGF-β1 exposure (Hamby et al. 2008a; 

Hamby et al. 2006a). Similar results are found when IL-1β or TNF-α are used in lieu of LPS 

(Hamby et al., 2008a). In experiments assessing the effect of ALK5 activation, stock 

solutions of the ALK5 kinase inhibitors SB431542 or SB525334 (both from Tocris) were 

prepared in DMSO and diluted in incubation medium to their final concentration. All 

experimental conditions contained identical concentrations of DMSO, which never exceeded 

0.15%.
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NO Production

Production of nitric oxide (NO) was assessed indirectly by measurement of nitrite, an 

oxidative breakdown product of NO (Green et al. 1982; Hamby et al., 2006a,b). Nitrite 

accumulation was measured spectrophotometrically at 550nm in a microtiter plate reader 

(Thermolabs) and in most cases NO production was expressed as mean nitrite accumulation 

± SEM. In the experiments involving single pup dissections, this normalization followed 

correction to the mean mg protein for each individual culture. This correction controlled for 

the variability in plating density between culture wells that unavoidably occurs with single 

pup dissections.

TGFβ Receptor mRNA Expression

mRNA expression was assessed via RT-PCR as previously described (Hamby et al. 2006b). 

cDNA samples (1μl) were amplified for 28 (ALK1, ALK5, TGFβRII) or 23 (β-actin) cycles 

in a Biorad iCycler using Taq DNA polymerase, PCR reagents (Invitrogen) and primers 

specific for either β-actin, ALK1, ALK5, or TGFβRII in a total reaction volume of 25μL. 

PCR amplimer pairs for analysis were as follows: ALK1, 5′-

CTATGACATGGTACCCATGACC-3′ (sense) and 5′-ACACACTTTAGGCAGAG 

GAAGC-3′ (antisense); ALK5, 5′-ATCTTGTACCTTCTGATCCATCG-3′ (sense) and 5′-

AGGAGCAGATATGAAGAGAGCAG-3′ (antisense); TGFβRII, 5′ACTTCACTT 

CCGGGTCATCATC-3′ (sense) and 5′-CATGAATATGGCCGAAGTGTTC-3′ (antisense); 

β-actin, 5′-GTGGGCCGCTCTAGGCACCAA-3′ (sense) and 5′-

CTCTTTGATGTCACGCACGATTTC-3′ (antisense). PCR products were separated in a 

2% agarose gel containing ethidium bromide (0.5μg/ml) and visualized with a UV 

transilluminator (UVP, Kodak). Ethidium bromide fluorescence was imaged using the 

Kodak Electrophoresis Documentation and Analysis System 120 and images processed 

using Adobe Photoshop.

TGFβ Receptors, Smad3 and iNOS Protein Analyses

Cultures were fixed with 4% paraformaldehyde (15 min) and then permeabilized using 

0.25% Triton X-100 (PBS) for 7 min. Non-specific binding sites were then blocked via 

incubation with 10% normal goat serum (NGS) in PBS (25°C, 1 hr). TGF-β1 Receptors: A 

rabbit polyclonal TGFβRI (ALK5) antibody (8μg/ml, Santa Cruz Biotechnology) or 

TGFβRII antibody (2μg/ml, Santa Cruz Biotechnology) was added in PBS containing 5% 

NGS (4°C overnight) and the binding visualized with a Cy3-conjugated secondary antibody 

directed against rabbit IgG (7.5μg/ml; Jackson ImmunoResearch). DAPI (2μg/ml) was used 

to visualize nuclei. Images (40× magnification) were captured using a CRX digital camera 

(Digital Video Camera Co) mounted on an Olympus IX50 inverted microscope outfitted 

with epifluorescence and processed identically using Adobe Photoshop software. Smad3 and 

iNOS: For Smad3 single labeling, a rabbit polyclonal Smad3 antibody (2μg/ml, Santa Cruz 

Biotechnology) was added in PBS containing 5% NGS (4°C overnight) and its binding was 

visualized using either a Cy3-conjugated (7.5μg/ml; Jackson ImmunoResearch) or 

Alexa488-conjugated (10μg/ml; Molecular Probes) secondary antibody directed against 

rabbit IgG. For Smad3 and iNOS co-labeling experiments, a mouse monoclonal iNOS 

antibody (2.5μg/ml, BD Transduction Labs) and the aforementioned Smad3 antibody were 
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added simultaneously in PBS containing 5% NGS (4°C overnight) and their binding 

visualized using Cy3-conjugated (7.5μg/ml; Jackson ImmunoResearch) and an Alexa488-

conjugated (10μg/ml; Molecular Probes) secondary antibodies directed against mouse and 

rabbit IgG, respectively. Control experiments demonstrated that secondary antibodies 

showed no non-antigen cross-reactivity. DAPI (2μg/ml) was used to visualize nuclei. Images 

were captured using an AxioCam MR digital camera (Zeiss) mounted on an Axiovert 200 

inverted microscope (Zeiss) and processed identically using Adobe Photoshop software.

Quantification of Smad3 nuclear accumulation

Images from five microscopic fields (40× magnification) were acquired. For each image, the 

total number of DAPI positive nuclei was automatically calculated using Scion NIH Image 

software while the number of cells exhibiting Smad3 nuclear accumulation was manually 

counted. The percentage of cells exhibiting Smad3 nuclear accumulation per image was 

calculated by dividing the number of cells exhibiting Smad3 nuclear accumulation by the 

total number of cells in each field (i.e., DAPI-labeled nuclei) followed by averaging the 

percentages from 5 fields/well. Data are expressed as the mean % cells with Smad3 nuclear 

accumulation + SEM. For statistical analyses, data were transformed prior to post-hoc 

analyses (Steel and Torrie 1980).

Statistical Analyses

All statistical analyses were performed using GraphPad Prism (Version 4.03, GraphPad 

Software, Inc.) as described in each figure legend. In all experiments, significance was 

assessed at p < 0.05.

Results

Astrocytes express mRNA for TGFβRII and the TGFβRI subunit ALK5 but not ALK1 as 

indicated via RT-PCR analyses (Fig. 1). Immunocytochemical analyses of TGFβRII and 

ALK5 expression reveals that astrocytes also homogeneously express both TGFβRII and 

ALK5 protein (∼100% of cells) staining (Fig. 2). No qualitative change in TGFβRII and 

ALK5 mRNA or protein expression levels was observed following a 24hr exposure to TGF-

β1 (Fig. 1, data not shown, respectively). Consistent with its expression, the TGF-β1-

mediated enhancement in LPS plus IFNγ-induced NO production required ALK5 signaling 

as evidenced by the concentration-dependent diminution in NO production that occurred in 

the presence of the ALK5 kinase inhibitors SB431542 and SB525334 (Figure 3).

Signaling via ALK5 often, but not always, involves downstream Smads (Smad2/3) (Dai et 

al. 2003; Engel et al. 1999; Yu et al. 2002). To examine whether Smad3 was activated in 

primary astrocytes following TGF-β1 treatment, its nuclear accumulation was assessed 

immunocytochemically. Smad3 was excluded from astrocyte nuclei (i.e., was predominantly 

cytosolic) in vehicle-treated cultures (Figure 4A,B). However, 30min after TGF-β1 

administration – the earliest time point evaluated – Smad3 accumulation was observed in 

approximately 50% of astrocyte nuclei (Fig. 4 A,B). Smad3 was still present in ∼20% of 

astrocytic nuclei 24 hr post-TGF-β1 addition (Fig. 4 A,B).
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Given that nuclear Smad3 was evident at the time of iNOS induction, we next tested 

whether Smad3 nuclear accumulation correlated with astrocyte iNOS expression following 

TGF-β1 treatment. As expected, iNOS immunoreactivity resulting from exposure to LPS 

plus IFNγ alone occurred independently of Smad3 nuclear accumulation (Fig. 5; left panel). 

However, the majority of cells expressing iNOS also exhibited nuclear localization of 

Smad3 in cultures treated with LPS plus IFNγ in the presence of TGF-β1 (Fig. 5, right panel, 

arrows vs. arrowheads).

To determine the time-frame in which ALK5 signaling was required to facilitate Nos2 

induction, SB431542 (20μM) was added at various times after TGF-β1 administration and 

Smad3 translocation and NO production were assessed. Addition of SB431542 (20μM) 

rapidly and completely reversed the TGF-β1-mediated nuclear translocation of Smad3 (Fig. 

6), demonstrating its effectiveness in terminating ALK5 signaling. When ALK5 – hence 

Smad3 activation – was inhibited with SB431542 (20μM) at any time prior to LPS plus 

IFNγ addition (arrowhead), the TGF-β1-mediated enhancement in NO production was 

blocked (Fig. 7). However, the TGF-β1-mediated enhancement in astrocytic NO production 

persisted when the ALK5 inhibitor was added after (4-20hr) LPS plus IFNγ addition (Fig. 

7). Thus, ALK5 signaling is required at the time of iNOS induction.

To specifically examine whether Smad3 was required for the TGF-β1-mediated 

enhancement in Nos2 induction, iNOS expression and NO production were examined and 

compared in astrocyte cultures derived from wild-type (+/+) and Smad3 null (-/-) mice (Fig. 

8). While addition of LPS plus IFNγ led to comparable levels of iNOS expression and NO 

production in astrocyte cultures derived from both wildtype and Smad3 null mice, the TGF-

β1-mediated enhancement was largely ablated in cultures lacking Smad3 (Fig. 8).

Discussion

The intracellular effectors and biological outcome of TGF-β1 signaling vary depending on 

the identity of TGFβRI, which can be either ALK5 or ALK1 (Miyazawa et al. 2002). When 

activated, ALK1 phosphorylates Smad1/5/8 whereas ALK5 phosphorylates Smad2/3. 

Herein, we find that the ability of TGF-β1 to enhance astrocytic Nos2 expression and NO 

production (Hamby et. al, 2006, 2008a,b) requires Smad3, the activation of which follows 

ALK5 signaling. Further, results support the notion that ALK5 signaling must occur prior to 

and at least concomitant with the induction stimuli in order for the TGF-β1-mediated 

enhancement of iNOS induction to occur.

Demonstration of expression of TGFβRII and ALK5, but not ALK1, mRNA in purified 

primary mouse astrocyte cultures (Fig. 1) suggests that the TGF-β1-mediated effect occurs 

via ALK5 signaling. This is in agreement with a previous report assessing TGFβRI and 

TGFβRII expression in astrocytes cultures derived from rat (Konig et al. 2005). The 

punctate staining pattern of TGFβRII protein found herein (Fig. 2) is also similar to that 

described in mouse astrocytes (Sousa et al. 2009). Likewise, the staining pattern for ALK5 

protein expression in astrocytes (Fig. 2) agrees with the immunocytochemical assessments 

of ALK5 in other cell types (Riser et al. 1999). Finally, ALK5 inhibition, afforded by the 

addition of the pharmacological inhibitors SB431542 or SB525334 to astrocyte cultures 
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(Grygielko et al. 2005; Hjelmeland et al. 2004; Laping et al. 2002), completely suppresses 

the TGF-β1-mediated enhancement in NO production (Fig. 3), confirming that TGF-β1 

enhances iNOS expression through ALK5.

Consistent with signaling through ALK5, TGF-β1 treatment of astrocytes leads to activation 

and nuclear translocation of Smad3, a process blocked by inhibition of ALK5 kinase activity 

(Fig. 6). In astrocytes, the accumulation of Smad3 in the nucleus following TGF-β1 

stimulation not only occurs fairly rapidly but is sustained (Fig. 4, 5). Although it is possible 

for Smad3 to remain in the nucleus for a long period of time, prolonged Smad activation in 

endothelial cells has previously been attributed to the continuous shuttling of Smads 

between the nucleus and cytoplasm in response to sustained receptor activation (Inman et al. 

2002). Our results suggest that a similar mechanism may be occurring in astrocytes as 

astrocyte Smad3 nuclear accumulation induced by TGF-β1 rapidly dissipates following 

treatment with SB431542 (Fig. 6).

Notably, not all astrocytes exhibit Smad3 activation (i.e., nuclear localization) when 

stimulated with TGF-β1 (Fig 4). Likewise, the ability of TGF-β1 to up-regulate astrocytic 

iNOS expression in purified murine primary astrocyte cultures treated with LPS plus IFNγ is 

not uniform (Hamby et al. 2006a). Importantly, the percentage of cells that show nuclear 

translocation of Smad3 (Fig. 4) and iNOS expression (Hamby et al. 2006a) following 

stimulation with all three mediators is very similar, suggesting that differential Smad3 

signaling could account for the heterogeneous enhancement of iNOS by TGF-β1. The 

correlation of Smad3 with iNOS in cells treated with TGF-β1, LPS and IFNγ support this 

notion (Fig. 5). Importantly, when Smad3 is depleted from the nucleus just prior to Nos2 

induction, the TGF-β1-mediated enhancement in NO production is ablated (Fig. 7), 

suggesting that Smad3 signaling is required. In support, the ability of TGF-β1 to facilitate 

iNOS induction in Smad3 null-derived astrocytes was largely ablated (Fig. 8). Altogether, 

data indicate that Smad3 is required to be in the nucleus at the time of Nos2 induction in 

order for TGF-β1 to enhance the total number of cells that express iNOS in response to LPS 

plus IFNγ stimulation.

The Smad3 nuclear translocation found in TGF-β1-treated astrocytes herein is consistent 

with biochemical evidence showing that astrocytes derived from the Smad2/3 specific Smad 

binding element (SBE)-luciferase reporter mice display increased luciferase activity when 

treated with TGF-β1 (Lin et al. 2005). The present data extend these findings by 

demonstrating at the single cell level that only a fraction of astrocytes exhibit Smad3 nuclear 

accumulation following TGF-β1 treatment. The reason for the differential activation of 

Smad3 in the astrocyte population (Fig. 4) despite homogeneous expression of TGFβ 

receptors (Fig. 2) is presently not known. However, heterogeneous activation of Smad3 in 

cultured cells is not unprecedented and has been seen in TGF-β1 treated cultures of rat 

ovarian granulosa cells (Xu et al. 2002). Interestingly, heterogeneous I-Smad, Smad7 

expression has also been shown to exist in other cell types including mouse endothelial and 

smooth muscle cells (Banas et al. 2007) and human fibroblasts (Ishida et al. 2006). Since, 

Smad7 competes with Smad2/3 for phosphorylation which can, through the recruitment of 

additional mediators, result in the inactivation of TGFβRI and even elicit TGFβ receptor 

degradation (Yan et al. 2009), it is possible that differential Smad7 expression/localization 
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might account for inability of TGF-β1 to facilitate Smad3 nuclear accumulation and Nos2 

induction in a subset of astrocytes. Future studies to understand the mechanism underlying 

heterogeneous Smad3 activation in astrocytes would be worthwhile.

The requirement for nuclear localization of Smad3 at the time of iNOS induction is 

consistent with a role for Smad3 in facilitating Nos2 transcription. However, the murine 

iNOS promoter does not have a canonical Smad-binding element (SBE), though Smad3 has 

been shown to bind to non-canonical elements including AP-1 (Zhang et al. 1998), which is 

present on the iNOS promoter (Xie et al. 1993). Additionally, Smad3 has been demonstrated 

to facilitate gene transcription without binding to DNA directly but, rather, via interaction 

with other transcription factors and co-activators in a transcriptional activation complex 

(Heldin et al. 2009). Notably, Smad3 has been shown to facilitate transcription through 

complexes with AP-1 and NFκB, both which are known to be involved in facilitating Nos2 

transcription (Dhandapani et al. 2003; Zhang et al. 1998; Zhu et al. 2004).

In sum, we find that TGF-β1 modulates the induction of iNOS by inflammatory mediators in 

an ALK5/Smad3-dependent manner. These data additionally provide one explanation that 

accounts for the heterogeneous enhancement in LPS plus IFNγ-induced Nos2 expression 

that follows TGF-β1 treatment of astrocytes in vitro, namely, differential Smad3 activation. 

Additionally, results described herein may explain, in part, the reported heterogeneous 

expression of iNOS that occurs in astrocytes under neuroinflammatory conditions in vivo 

(Luth et al. 2001; Oleszak et al. 1998). Future studies are necessary to determine the exact 

mechanism for both the heterogeneous activation of Smad3 and its facilitation of Nos2 

expression.
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Figure 1. Analysis of TGFβ receptor mRNA expression in murine primary astrocytes
Astroctye cultures were exposed to TGF-β1 (3ng/ml) or its vehicle for 24 hr prior to addition 

of medium alone or that containing LPS + IFNγ (final concentration= 2μg/ml + 3ng/ml, 

respectively; 4hr). Thereafter, total RNA was isolated and TGFβRII, ALK5 and ALK1 

mRNA expression was assessed via RT-PCR. Lanes 1,5, Basal; Lanes 2,6, TGF-β1; Lanes 

3,7, LPS + IFNγ; Lanes 4,8, TGF-β1 + LPS +IFNγ. Positive control (+) used was mRNA 

isolated from brain microendothelial cultures (BMECs). Negative control (-) is H2O. β-actin 

mRNA expression was also assessed in astrocyte samples to demonstrate RNA integrity and 

approximate equal loading. Data from two separate experiments (lanes 1-4 and 5-8, 

respectively) from two separate dissections are shown.
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Figure 2. Immunocytochemical assessment of TGFβ receptor expression in murine astrocytes
Naïve astrocyte cultures were fixed and immunolabeled for TGFβRII (red) or ALK5 (red) in 

the presence [(+) BP; negative control] or absence [(-) BP] of their respective blocking 

peptides followed by DAPI counterstaining (blue) to illustrate the number of nuclei per 

field. A representative photomicrograph (40× magnification) is shown per treatment 

condition. Scale bar= 40μm.
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Figure 3. Effect of ALK5 inhibition on astrocytic iNOS-derived NO production
Primary astrocytes were treated with the indicated concentrations of either SB431542 (A) or 

SB525334 (B) for 1 hr prior to addition of medium containing vehicle or TGF-β1 (final = 

3ng/ml). Twenty-four hr later, cultures were cultures were spiked with medium alone or that 

containing LPS plus IFNγ (final = 2μg/ml and 3ng/ml, respectively). (A) Twenty-four hr or 

(B) 29-32hr later, cell culture supernatants were collected and NO production (mean μM 

nitrite accumulation + SEM) was assessed. (A), n = 6 cultures from 2 separate dissections, 

(B) n=10-11 from 4 separate dissections. (*) indicates a significant increase over LPS plus 

IFNγ alone, whereas (#) indicates a significant diminution from control as determined by 

one-way ANOVA followed by the Student Newman Keul's post-hoc test. Significance was 

assessed at p<0.05.
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Figure 4. Immunocytochemical assessment of Smad3 nuclear translocation following TGF-β1 
treatment
(A) Astrocyte cultures were treated with either vehicle (0 hr) or 3ng/ml TGF-β1. After the 

indicated treatment times, cultures were fixed and immunolabeled for Smad3 (red) followed 

by DAPI counterstaining (blue) to illustrate the number of nuclei per field. A representative 

photomicrograph (40× magnification) is shown for each treatment condition. Scale bar = 

40μm. (B) The percentage of cells exhibiting Smad3 nuclear accumulation per treatment 

condition was calculated (from a total of ∼100 cells present /field of view) and data plotted 

as mean % cells with Smad3 nuclear accumulation + SEM (n = 3-4 wells from 2 separate 

dissections). (*) indicates a significant increase in % of cells with Smad3 nuclear 

accumulation compared to control (0; non-TGF-β1 treated cells) as determined by one-way 

ANOVA followed by the Student Newman Keul's post-hoc test following appropriate 

transformation of the percentage data. Significance was assessed at p<0.05.
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Figure 5. Immunocytochemical assessment of astrocytes exhibiting Smad3 nuclear accumulation 
and iNOS expression
Cultures were treated with either vehicle [(-) TGF-β1] or TGF-β1 [(+) TGF-β1; 3ng/ml] for 

24 hr prior to the addition of medium containing LPS plus IFNγ (final = 2μg/ml and 3ng/ml, 

respectively). Eight hr later, cultures were fixed and immunolabeled for SMAD3 (green) and 

iNOS (red) followed by DAPI counterstaining (blue) to illustrate the number of nuclei per 

field. Representative photomicrographs (63× magnification) from at least three experiments 

are shown for each treatment. Scale bar = 20μm.
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Figure 6. Time course of Smad3 nuclear translocation after SB431542 addition
Astrocyte cultures were treated with either vehicle [(-) TGF-β1] or TGF-β1 [3ng/ml; (+) 

TGF-β1] for 60 min. Thereafter, cultures were either fixed (A) or exposed to vehicle 

[DMSO; (-) SB431542] or SB431542 [20μM; (+) SB431542] (B). Thirty or 90 min later, 

cultures were fixed (A,B), immunolabeled for Smad3 and counterstained for DAPI. Images 

from the same field of view per treatment group are shown. A representative 

photomicrograph (63× magnification) from at least three experiments is shown for each 

condition. Scale bar= 40μm.
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Figure 7. Effect of SB431542 following TGF-β1 addition on NO production
Cultures were exposed to either vehicle [(-) TGF-β1] or TGF-β1 [(+) TGF-β1; 3ng/ml] 

followed by the addition of SB431542 (20μM) at the indicated times. At 24 hr (arrow), 

medium containing LPS plus IFNγ (final = 2μg/ml and 3ng/ml, respectively) was added to 

cultures. Twenty-four hr later, culture supernatants were collected and NO production (mean 

μM nitrite accumulation + SEM) was assessed (n = 6 from 3 separate dissections). (*) 

indicates a significant increase due to TGF-β1, whereas (#) indicates a significant within 

group SB431542-mediated diminution as compared to CON. Significance, assessed at 

p<0.05, was determined by two-way ANOVA followed by the Bonferroni's post-hoc test.
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Figure 8. Effect of TGF-β1 in Smad3 null versus wildtype-derived astrocytes
Astrocyte cultures derived from either Smad3 null (-/-) or wildtype (+/+) littermates were 

treated with vehicle [(-) TGF-β1] or TGF-β1 [(+) TGF-β1; 3ng/ml] for 24 hr prior to the 

addition of 2μg/ml LPS plus 3ng/ml IFNγ. (A) Twelve-14 hr later, culture supernatants were 

collected and NO production (mean μM nitrite accumulation/mg protein + SEM) was 

assessed (n = 15-18 from 3-4 separate dissections). (*) indicates a significant within group 

increase, whereas (#) indicates a significant between group diminution as determined by 

two-way ANOVA followed by the Bonferroni's post-hoc test. (B) Thereafter, cultures were 

fixed and immunolabeled for iNOS followed by DAPI counterstaining. The percentage of 

cells expressing iNOS per culture well was calculated and data plotted as mean % iNOS 

positive cells + SEM (n = 6 from 3 separate dissections). Following transformation of the 

percentage data, significance was assessed as in (A).
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