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Abstract

Rationale: The airway transcriptome includes genes that contribute
to the pathophysiologic heterogeneity seen in individuals with
asthma.

Objectives:We analyzed sputum gene expression for
transcriptomic endotypes of asthma (TEA), gene signatures that
discriminate phenotypes of disease.

Methods: Gene expression in the sputum and blood of patients
with asthma was measured using Affymetrix microarrays.
Unsupervised clustering analysis based on pathways from the
Kyoto Encyclopedia of Genes and Genomes was used to identify
TEA clusters. Logistic regression analysis of matched blood samples
defined an expression profile in the circulation to determine the TEA
cluster assignment in a cohort of children with asthma to replicate
clinical phenotypes.

Measurements and Main Results: Three TEA clusters were
identified. TEA cluster 1 had the most subjects with a history of
intubation (P = 0.05), a lower prebronchodilator FEV1 (P = 0.006),
a higher bronchodilator response (P = 0.03), and higher exhaled nitric
oxide levels (P = 0.04) compared with the other TEA clusters. TEA
cluster 2, the smallest cluster, had the most subjects that were
hospitalized for asthma (P = 0.04).TEAcluster 3, the largest cluster, had
normal lung function, low exhaled nitric oxide levels, and lower inhaled
steroid requirements. Evaluation of TEA clusters in children confirmed
that TEA clusters 1 and 2 are associated with a history of intubation
(P = 5.583 1026) and hospitalization (P = 0.01), respectively.

Conclusions: There are common patterns of gene expression in the
sputum and blood of children and adults that are associated with
near-fatal, severe, and milder asthma.

Keywords: molecular endotyping; genomic; RNA; severe asthma;
pathway analysis

Asthma is a chronic inflammatory disease of
the airways that will likely afflict more than
10% of the U.S. population by the end of

this decade (1). Differences in genetic
susceptibility, environmental exposures,
and medication compliance are known to

contribute to the heterogeneous clinical
manifestations of disease (2, 3). However,
it is increasingly evident that pathobiologic
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alterations in asthma are also
heterogeneous and that differences in the
expression of many biologic pathways
underlie differences in the phenotypic
expressions of the disease (4). Therefore,
asthma could be considered as a collection
of airway diseases, each driven by
a different set of biologic networks
with unique but overlapping genomic,
transcriptomic, inflammatory,
physiologic, and clinical features of
disease. In keeping with this paradigm
shift, asthma research efforts have moved
to defining subgroups of patients with
asthma that have different clinical and
physiologic manifestations of disease
that may be driven by novel biologic
mechanisms or relative differences in the
expression of known pathways, such as
those driven by IL-13 and IL-5 (5, 6).
Ultimately, dissecting these subgroups of
disease will enable pathogenesis research,
therapeutic development, and clinical

management to focus on distinct subsets
of asthma and their associated clinical
phenotypes, leading to a more
personalized approach to disease
management (7).

To date, most efforts to define
asthma subgroups have relied on
clustering individuals by clinical features,
such as atopic history, age of onset, lung
function, or symptoms of severity. These
studies, including the Severe Asthma
Research Program and the Childhood
Asthma Management Program
characterizations of asthma clusters, have
generated novel insights, but are driven by
analytical approaches that are based on
differences in parameters that may be distal
to many molecular perturbations associated
with the disease (8, 9). In contrast to these
clinically biased approaches, unsupervised
integrative functional transcriptomics has
the potential to discriminate asthma
subtypes at a level that is reflective of
patterns in gene expression, pathobiology,
and common clinical and physiologic
features of disease: transcriptional
endotypes of asthma (TEA) clusters
(10, 11). To this end, we conducted an
unsupervised clustering analysis of gene
expression in the induced sputum of
adults and children with asthma and
identified three TEA clusters and their
associated clinical features of disease.
Some of the results of these studies have
been previously reported in the form of
an abstract (12).

Methods

Yale Center for Asthma and Airway
Diseases Cohort
A cross-sectional analysis was conducted
on sputum RNA samples collected from
subjects with asthma and control subjects
that completed the Yale Center for
Asthma and Airway Diseases (YCAAD)
phenotyping protocol between September
2009 and June 2012. Subjects were
greater than or equal to 12 years of age,
nonsmokers, and with less than or equal
to 10 pack-years of smoking history.
Inclusion criteria for asthma included
a history, physical examination, and
physiologic testing consistent with
a diagnosis of asthma based on National
Asthma Education and Prevention
Program guidelines. Exclusion criteria
included smoking within the past year,

a history chronic lung disease
other than asthma (i.e., chronic
obstructive pulmonary disease, allergic
bronchopulmonary aspergillosis, Churg-
Strauss syndrome, pulmonary vascular
disease, or interstitial lung disease); other
severe chronic conditions including
congestive heart failure, chronic kidney
disease, liver disease, or viral infection;
or inability to safely undergo the studies
required for participation. The protocol
was approved by the Yale University
School of Medicine Human
Investigation Committee, and all
patients or their parents provided
informed consent.

YCAAD Phenotyping Protocol
An asthma questionnaire was administered
and whole blood was collected in RNA
isolation tubes (Life Technologies or
Applied Biosystems, Grand Island, NY).
Exhaled nitric oxide (FENO) was measured
and spirometry was conducted in
adherence with the American Thoracic
Society guidelines before and after short-
acting bronchodilator administration (13).
Sputum induction was performed with
hypertonic saline, as previously described
(14–17). Mucus plugs were dissected from
the sputum sample using a microscope, and
the cellular and aqueous compartments
separated. Total cell count, viability,
and differential were determined by
hemocytometer, trypan blue exclusion, and
Wright-Giemsa stain, respectively, and cell
pellets were stored in All-in-One RNA
stabilization buffer (Norgen Biotek,
Thorhold, Canada).

Genomic Analysis
Sputum cell pellets were processed using the
All-in-One purification kit (Norgen Biotek),
checked on an Agilent bioanalyzer (Agilent
Technologies, Santa Clara, CA), and,
if needed, treated again to remove DNA
contamination (Qiagen, Gaithersburg,
MD). A total of 10 ng of sputum RNA was
amplified using the WT-Ovation Pico RNA
amplification System (NuGen, San Carlos,
CA) and processed per Affymetrix
(Santa Clara, CA) protocols, as previously
described (18). Total RNA from the blood
was isolated using a column-based system
(total-RNA kit; Norgen), and if needed,
DNA contamination was removed using
a DNA clear kit (Qiagen). Hemoglobin
reduction of blood samples was used to
remove hemoglobin gene transcripts

At a Glance Commentary

Scientific Knowledge on the
Subject: Asthma is a chronic
inflammatory disease of the airways
that is clinically and physiologically
heterogeneous. Patterns that can be
captured by analyzing gene expression
levels in the airway and circulation
could resolve genes and pathways
that contribute to this heterogeneity.
Comprehensive studies that examine
disease heterogeneity by measuring
gene expression in the sputum and
associate it with important clinical
features of asthma are limited.

What This Study Adds to the
Field: This study is the first to use
noninvasive analysis of sputum gene
expression to identify transcriptomic
endotypes of asthma clusters that
correlate with clinical characteristics of
severe disease including a history of
hospitalization and near-fatal asthma
attack. The transcriptomic endotypes
of asthma clusters are associated with
a gene signature in the blood and are
evident in both children and adults
with asthma, which suggests that
there are common patterns of gene
expression among children and adults
with asthma.
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(GLOBINclear Kit; Ambion, Austin, TX)
and samples were checked by Agilent
bioanalyzer. Purified RNA from the
sputum or blood was processed for
gene expression using the Affymetrix
HuGene 1.0 ST gene arrays following
manufacturer’s protocols as previously
described. Samples with RNA integrity
numbers less than 4.0 were rejected
from the analysis. The data can be
obtained from GEO database (http://www.
ncbi.nlm.nih.gov/geo/) under the accession
number GSE56396.

Computational Analyses
An overview of the computational analysis
flow can be found in Figure 1. Raw
microarray intensity data were processed
using R packages for normalization,
quality check, batch effect adjustment,
and RIN adjustment. Distances
between samples were evaluated using
a pathway-based method and three
clusters were selected to minimize
the connectivity criteria (see online
supplement for details) (19). K-means
clustering was applied to assign samples
into the selected three TEA clusters.
Kruskal-Wallis tests were used to assess
differences in continuous clinical,
physiologic, and inflammatory asthma
phenotypes between the clusters, and
the chi-square or Cochran-Armitage
test was used to assess differences in
categorical phenotypes. False discovery
rate (FDR) was estimated using a
permutation-based method to adjust
for the multiple testing error (20).
Differentially expressed genes (DEGs)
between each TEA cluster and control
subjects were identified as genes with
an FDR less than 0.05 using the
Student t test (21). The online
supplement provides more details
on computational analyses.

Validation Studies
A TEA cluster classifier was built using
an L1 regularized logistic regression
model in the YCAAD cohort to
predict TEA cluster using blood
gene expression and visualized by
principal component analysis (see
online supplement for details) (22, 23).
This classifier was applied to 870 whole
blood samples selected from the
Asthma BioRepository for Integrative
Genomic Exploration (Asthma BRIDGE)
(24, 25). Cross-platform replication of

the TEA cluster clinical phenotypes was
conducted (24, 25).

Results

Identification of Sputum TEA Clusters
in YCAAD Cohort
The sputum expression levels of 5,500
genes from 186 Kyoto Encyclopedia of
Genes and Genomes pathways were
used to assess the pathway-based distance
between samples followed by unsupervised
K means clustering to define sputum
TEA clusters (Figure 2). Three clusters
were selected based on the connectivity
criteria (see Figure E5 in the online
supplement). The “relatedness” of the
samples within each cluster was
evident on a sample distance matrix
(Figure 3). This demonstrated that
samples within TEA cluster 3 are the

most strongly related (darkest red)
and most homogeneous, followed by
TEA cluster 1, and then TEA cluster 2, the
smallest cluster. The clusters are not
associated with differences in the sputum
inflammatory cell populations among
the clusters. Therefore, using only
sputum gene expression as a
discriminator, distinct subgroups
of disease can be defined within
a heterogeneous group of individuals
with asthma.

Phenotypic Characteristics of
TEA Clusters
To determine whether the defined TEA
clusters correspond to distinct phenotypes
of asthma, the clinical, physiologic, and
biologic parameters were compared
among the TEA clusters (Table 1). The
subjects in TEA cluster 1 required
a higher daily dose of inhaled steroids

Sputum arrays from
asthma patients

Evaluate the differences in
clinical, physiological, and
cellular data across TEA

clusters

KEGG pathway–based clustering

Identify differentially
expressed genes between each

TEA cluster and controls

Build classifier for TEA clusters
using whole blood gene

expression data

Evaluate TH2 gene signature
differences across TEA clusters

Sputum arrays from
healthy controls

Blood arrays from the same
group of asthma patients

Apply the TEA classifier to
Asthma BRIDGE cohort

Evaluate the differences in
clinical and physiological data
across the predicted TEA

clusters

Compare for validation

Data preprocessing:
   1. Quality control
   2. Batch effect adjustment
   3. RIN adjustment

Figure 1. Identification of transcriptomic endotypes of asthma (TEA) clusters. Diagram showing
an overview of the computational analysis flow. BRIDGE = BioRepository for Integrative
Genomic Exploration; KEGG = Kyoto Encyclopedia of Genes and Genomes; RIN = RNA integrity
number.
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(mean daily inhaled corticosteroid [ICS]
dose, 617 mg/day; P = 0.04) and were
more likely to have a history of an
intubation for asthma, compared with
the other TEA clusters (18%; P = 0.05).
In addition, TEA cluster 1 had the
lowest prebronchodilator and post-
bronchodilator FEV1 (prebronchodilator
percent predicted FEV1, 736 24%; P,
0.01), more bronchodilator reversibility
(126 12%; P = 0.03), and elevated FENO

levels (mean, 536 43 ppb; P = 0.03),
compared with the other TEA clusters
(Table 2). The fewest number of
individuals (n = 19) were in TEA cluster
2. Compared with the other clusters, TEA
cluster 2 had the highest percentage of
subjects with no atopy (26%; P = 0.02),
subjects of Hispanic origin (P = 0.04),
and the highest percentage of
individuals that were hospitalized for
asthma (68%; P = 0.03). TEA cluster 3, the
largest cluster (47%), demonstrated the
“mildest” phenotypic characteristics of
asthma. This TEA cluster had the lowest

percentage of subjects with a history
of hospitalization or intubation for
asthma and the lowest daily ICS dose.
In addition, subjects in TEA cluster 3
had preserved prebronchodilator and post-
bronchodilator lung function, minimal
bronchodilator reversibility, and the
lowest FENO (mean, 386 27 ppb; P = 0.04)
compared with the other TEA clusters
(Table 2). There were no between-cluster
differences in sputum cell counts, cell
differentials, viability, DNase treatment
percentage, percentage of patients on ICS,
or RNA integrity number, suggesting that
the TEA clustering was not related to
a particular cell population, sample
processing, or treatment (Table 3).

DEGs in the Airway among TEA
Clusters
We considered each TEA cluster as a unique
pathobiologic process and compared the
gene expression in the sputum of each TEA
cluster with control subjects without asthma to
determine the genes associated with each of

the TEA clusters. Using an FDR threshold
of 0.05, there were 31 significant DEGs in
TEA cluster 1, a total of 0 DEGs in TEA
cluster 2 (15 DEGs had an FDR,0.25), and
27 DEGs in TEA cluster 3 compared with
control subjects without asthma (the top 10
most significant DEGs are shown in Tables
4 and 5). In TEA cluster 1, expression of
L-histidine decarboxylase, an enzyme in
the histamine metabolism pathway that
converts histidine to histamine, was
increased in individuals with asthma
compared with control subjects with no
asthma (26). Two DEGs (EXOSC9 and
SNAPC5) that code for proteins involved
in RNA processing were down-regulated
compared with control subjects with no
asthma (27). Three DEGs (NRCAM,
PCLO, and SLC4A4) that are associated
with neuron function were significantly
increased in TEA cluster 1 compared with
control subjects with no asthma (28–30). In
TEA cluster 3, all of the 27 DEGs are up-
regulated compared with control subjects.
These included DNAH17, a force-
generating dynein heavy chain motor
protein in respiratory epithelium, and
defensin b1 (DEFB1), an antimicrobial
peptide. Both genes have been previously
associated with asthma and primary ciliary
dyskinesia, respectively (31–33). Gene
set enrichment analysis of DEGs using
GeneGO MetaCore for TEA cluster
1 and 3 shows that the strongest pathway
enrichment was in TEA cluster 3 (see
Table E2).

Validation of Sputum TEA Clusters
Using Blood Gene Expression
Because additional, sufficiently powered
datasets of genome-wide sputum
gene expression were not available for
validation of the TEA cluster model,
we turned to a second compartment,
the peripheral blood, to validate the
TEA clusters. First, using 76 YCAAD
subjects for whom both sputum and
peripheral blood expression data
were available, we identified 53 gene
expression signatures in the peripheral
blood using L1 regularized logistic
regression that predicts an individual’s
sputum TEA cluster assignment (see Table
E3). Principal components analysis (PCA)
of the peripheral blood expression levels
of these 53 genes shows that the first two
components separate the population into
clusters that closely recapitulate those
defined with the sputum data (Figure 4A).

Cluster 1 Cluster 2 Cluster 3

Figure 2. Heatmap showing the clustering results by Kyoto Encyclopedia of Genes and Genomes
pathways using MCLUST. The color represents the clustering assignment of each sample by the
Kyoto Encyclopedia of Genes and Genomes pathways.
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Next, to validate the clinical
phenotypes of the TEA clusters in a separate
cohort, we applied the blood TEA classifier
to 870 whole blood samples from the
Asthma BRIDGE cohort using the 53
transcripts common to both microarray
platforms (see online supplement for
details) (24, 25). Similar to the patterns
observed in the YCAAD cohort, the PCA
plot of the blood arrays from the Asthma
BRIDGE cohort in Figure 4B shows strong
separation between TEA 1 and TEA 3.
TEA 2 in the Asthma BRIDGE cohort,
however, mingled with TEA 3. The
prevalence of each TEA cluster in the
Asthma BRIDGE cohort was similar to the
YCAAD cohort (31%, 12%, 57% for TEA
cluster 1, 2, and 3, respectively; P = 2.23
10216). This demonstrated that a blood
signature was able to discriminate
subgroups of children with asthma

(Asthma BRIDGE) with a prevalence
similar to the adults with asthma
(YCAAD).

To determine if the childhood and
adult TEA clusters have similar clinical
features, differences among the clinical
phenotypes were evaluated in the TEA
clusters in the Asthma BRIDGE cohort
(Table 6). Consistent with the clinical
phenotypes of the YCAAD cohort, TEA
cluster 1 subjects in the Asthma BRIDGE
cohort were significantly more likely to
have a history of intubation for asthma
(8%; P = 5.583 1026) and TEA cluster
2 subjects were the most likely to have
a history of hospitalization for asthma
(35%; P = 0.01), compared with the
other TEA clusters. Therefore, in the
Asthma BRIDGE cohort, the prevalence
of the clusters, the association of TEA
cluster 1 with near-fatal disease, and

TEA cluster 2 with severe asthma
was the same as the YCAAD cohort.
Although TEA cluster 1 in the Asthma
BRIDGE cohort did not have lower lung
function compared with the other TEA
clusters (data not shown), 8% of these
children had a history of near-fatal
asthma attacks.

Discussion

Noninvasive analysis of the sputum
transcriptome conducted in these studies
identified three TEA clusters with different
clinical and physiologic characteristics of
disease. Two TEA clusters are associated
with phenotypes of severe disease: a history
of a near-fatal asthma attack and a history
of hospitalization for asthma. These
phenotypes were replicated in the TEA
clusters of a second cohort of children with
asthma that were determined using a unique
53-gene transcriptomic profile in whole
blood that is associated with the sputum
transcriptome. Taken together, these data
suggest that there are common, stable
patterns of gene expression in individuals
with asthma that are independent of age,
age of disease onset, or duration. These
TEA clusters are associated with severe
phenotypes of asthma and gene signatures
in the blood. This indicates that there are
systemic alterations in the gene expression
that link tissue compartments in patients
with severe asthma that can be used to
identify subgroups of disease that could be
clinically relevant.

The generalizable clinical features
associated with each TEA cluster suggest
that unsupervised transcriptomic clustering
generates disease subgroups that overlap
with guideline-defined or Th2 gene
level–defined disease severity (see Figure
E6). Although this shows that there is some
biologic overlap between the TEA clusters
and Th2 biology, the link is relatively weak
because allergic inflammation Kyoto
Encyclopedia of Genes and Genomes
pathway was not a pathway that
significantly contributed to the clustering
result. This suggests that the TEA clusters
are driven by biologic phenomena that
are upstream or possibly parallel to Th2
inflammation (34).

TEA cluster 1 has the highest
percentage of subjects with a history of
near-fatal asthma in both the YCAAD and
Asthma BRIDGE cohorts, despite a large

Cluster 1 Cluster 2 Cluster 3
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Figure 3. Pathway-based distance matrix among the clusters. The color of entry represents the
pathway-based distance between the corresponding two samples. Red represents a small distance
(samples are strongly related), and white represents a longer distance, showing the strength of the
clusters (samples are weakly related). Samples within transcriptomic endotypes of asthma cluster 3
are the most strongly related and most homogeneous, followed by clusters 1 and 2, respectively.
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difference in age among the individuals.
This cluster also has the lowest baseline
lung function, the highest bronchodilator
reversibility, the highest FENO levels, and
the highest doses of ICS: all characteristics
that are associated with near-fatal asthma
(35). Given that the adults and children in
TEA cluster 1 are linked by a common
transcriptomic signature in the airway
that is associated with epithelial cell
differentiation (EXOSC9 and SNAPC5),
neurohumoral hemostasis (NRCAM

and PCLO), and histamine synthesis
(DNAH17 and DEFB1), it is plausible that
these genes contribute to a greater risk
of severe bronchospasm and near-fatal
asthma associated with this cluster
(26–30).

TEA cluster 2 is the least common
TEA cluster in both cohorts (19% of
YCAAD and 12% of Asthma BRIDGE) and
has the most within-cluster heterogeneity,
compared with the other TEA clusters
(color heterogeneity seen in Figure 3).

These individuals also have severe disease
and are more likely to have been
hospitalized for asthma. Although the
evaluation of larger cohorts is required
to further define this cluster and its
associated DEGs (no significant genes
associated with this TEA cluster
were identified by an FDR cutoff of 0.05
in part because of the small number
of individuals in this cluster), the
transcriptomic discrimination of this
cluster suggests that there are distinct

Table 1. Phenotypic Characteristics of TEA Clusters in the YCAAD Cohort

Control
Subjects (n = 12) Cluster 1 Cluster 2 Cluster 3 P Value

Prevalence, n 34 19 47 0.003
Age at visit, yr 376 14 516 13 496 16 456 17 0.32
Female sex, n (%) 5 (42) 23 (68) 15 (79) 39 (83) 0.26
Race 0.58
White, n (%) 12 (100) 22 (65) 14 (74) 37 (79)
Black, n (%) 0 (0) 10 (29) 4 (21) 7 (15)
Other, n (%) 0 (0) 1 (3) 1 (5) 3 (6)
Hispanic origin, n (%) 0 (0) 1 (3) 4 (21) 7 (15) 0.04

BMI, kg/m2 23.66 2.8 30.06 7.2 306 7.3 29.36 8.0 0.84
History of atopy, n (%) 7 (58) 33 (97) 14 (74) 43 (92) 0.02
Age of symptom onset NA 25.86 19.1 29.36 20.4 20.76 20.9 0.17
Disease duration, yr NA 25.26 17.5 20.76 16.9 24.26 17.3 0.70

History of hospitalization, n (%) NA 13 (38.1) 13 (68.4) 16 (34.0) 0.03
History of intubations, n (%) NA 6.0 (18) 2.0 (11) 2.0 (4) 0.05
OCS tapers in past year, n (%) NA 19 (55.9) 12 (63.2) 24 (51.1) 0.67
ACT score NA 166 6.4 146 6.6 186 5.1 0.22

ICS dose, mg/d NA 6176 448 5306 449 3966 356 0.04
ICS use, yes, n (%) NA 27 (79) 17 (89) 31 (66) 0.10
Chronic OCS use, n (%) NA 4 (11.8) 2 (10.5) 3 (6.4) 0.68

Definition of abbreviations: ACT = Asthma Control Test; BMI = body mass index; ICS = inhaled corticosteroids; NA = not applicable; OCS = oral
corticosteroids; TEA = transcriptomic endotypes of asthma; YCAAD = Yale Center for Asthma and Airway Diseases.
Data are means6 SD, except where indicated. P values for comparisons among TEA clusters were determined using Kruskal-Wallis or
Cochran-Armitage test. The false discovery rate estimated by the permutation-based method is 11%.

Table 2. Pulmonary Function of TEA Clusters in YCAAD Cohort

Control Subjects
(n = 12)

Cluster 1
(n = 34)

Cluster 2
(n = 19)

Cluster 3
(n = 47) P Value

FEV1, % of predicted value
Pre–b2-agonist use 966 11 736 24 766 22 866 22 0.006
Post–b2-agonist use 986 14 806 24 816 20 916 22 0.493

FVC, % of predicted value
Pre–b2-agonist use 866 22 856 22 866 18 966 19 0.09
Post–b2-agonist use 916 20 906 20 886 18 976 18 0.28

FEV1/FVC
Pre–b2-agonist use 0.776 0.62 0.676 0.13 0.706 0.11 0.726 0.10 0.13
Post–b2-agonist use 0.796 0.50 0.706 0.13 0.726 0.12 0.806 0.10 0.06

BDR, % 26 6.2 126 12 96 13 66 7 0.03
FENO, ppb 206 9.7 536 43 526 42 386 27 0.04

Definition of abbreviations: BDR = bronchodilator response; FENO = exhaled nitric oxide; TEA = transcriptomic endotypes of asthma; YCAAD = Yale Center
for Asthma and Airway Diseases.
Data are means6 SD. P values for comparisons among TEA clusters were determined using Kruskal-Wallis or Cochran-Armitage test. The false discovery
rate estimated by the permutation-based method is 5.6%.
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pathobiologic differences between patients
that have near-fatal asthma attacks and
those that have severe exacerbations
requiring hospitalization. Consistent
with this concept is the fact that patients
in TEA cluster 2 have the highest levels
of YKL-40 in the sputum among the
clusters (P = 0.03, data not shown),
findings consistent with a possible
YKL-40 endotype/phenotype with
increased risk of exacerbations and

abnormal post-bronchodilator FEV1

(36, 37).
Individuals in TEA cluster 3 have

clinical features most consistent with mild
disease including increased expression of
DEFB1, a gene that has been associated
with mild asthma in multiple studies (31).
Compared with the other TEA clusters,
these individuals have preserved lung
function, the lowest ICS dose, and the
lowest FENO level and are less likely to have

been hospitalized or intubated for asthma.
TEA cluster 3 is also the most strongly
related with the least within-cluster
heterogeneity (consistent red color of this
cluster in Figure 3). It is also the most
common cluster with a prevalence of
approximately 50% in children and adults.
Interestingly, PCA analysis of the blood
transcriptome shows that in children, TEA
cluster 3 overlaps with cluster 1 and 2
(Asthma BRIDGE cohort, Figure 4B), but is

Table 3. Sputum Characteristics of TEA Clusters in the YCAAD Cohort

Control Subjects (n = 12) Cluster 1 (n = 34) Cluster 2 (n = 19) Cluster 3 (n = 47) P Value

Mucus cell concentration* 40.866 20.98 83.026 105.75 89.236 143.61 73.726 62.48 0.63
Squamous, % 8.26 6.7 7.96 7.0 8.06 5.9 9.26 6.9 0.60
Viability, % 58.16 9.6 56.56 16.1 64.46 11.9 61.76 17.8 0.14
Neutrophils, % 34.66 10.0 41.56 13.0 41.96 15.2 37.86 14.6 0.34
Eosinophil, % 1.56 1.8 5.86 6.7 4.76 5.9 5.26 7.7 0.91
Macrophage, % 61.36 11.8 50.96 13.0 50.96 16.0 55.46 15.4 0.31
Lymphocyte, % 1.06 0.9 1.36 1.5 1.26 1.0 1.36 1.4 0.90
Bronchial epithelial cell, % 1.66 4.3 0.86 1.5 1.36 3.3 0.46 1.0 0.26
RIN, mean 7.66 1.1 7.46 1.2 7.56 1.0 7.76 1.4 0.1

Definition of abbreviations: RIN = RNA integrity number; TEA = transcriptomic endotypes of asthma; YCAAD=Yale Center for Asthma and Airway Diseases.
Data are means6 SD. P values for comparisons among TEA clusters were determined using Kruskal-Wallis or Cochran-Armitage test.
*Cells per microliter 3 104.

Table 4. Top 10 Differentially Expressed Genes between TEA Cluster 1 and Control Subjects

Gene Name Gene Symbol
Biologic

Processes Function
Fold

Change P Value FDR
PubMed

References

Hemogen HEMGN Apoptosis Transcription
factor

1.25 2.793 1027 4.013 1023 16

Piccolo (presynaptic
cytomatrix protein)

PCLO Cytoskeleton
organization,
regulation of
exocytosis

Protein 1.21 6.263 1027 4.013 1023 26

Cartilage-associated
protein

CRTAP Extracellular matrix
organization

Scaffolding protein 21.48 7.873 1027 4.013 1023 25

Exosome component 9 EXOSC9 RNA processing RNase complex
component

22.10 1.113 1026 4.013 1023 32

Chromosome 9 open
reading frame 173

C9orf173 NA NA 1.36 1.233 1026 4.013 1023 2

Small nuclear RNA
activating complex,
polypeptide 5,
19 kD

SNAPC5 DNA-dependent
regulation
of transcription

Transcription
factor

21.08 1.233 1026 4.013 1023 9

Impact RWD domain
protein

IMPACT Negative regulation
of protein
phosphorylation

Enzyme 22.12 1.443 1026 4.013 1023 11

Solute carrier family 4,
sodium bicarbonate
cotransporter,
member 4

SLC4A4 Sodium ion
transport

Membrane
transporter
protein

1.22 1.453 1026 4.013 1023 61

Histidine decarboxylase HDC Histamine
biosynthesis

Enzyme 1.39 1.943 1026 4.783 1023 48

Neuronal cell adhesion
molecule

NRCAM Neuron migration Cell adhesion
molecules

1.19 2.293 1026 5.083 1023 40

Definition of abbreviations: FDR = false discovery rate; NA = not applicable; TEA = transcriptomic endotypes of asthma.
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distinct from the other TEA clusters in
adults (Figure 4A). This suggests that the
transcriptome (and clinical phenotype)
of the individuals in this TEA cluster
could change over time.

These studies also demonstrate that the
unsupervised clustering analysis of gene

expression in the sputum and/or blood has
the capacity to discriminate subgroups of
asthma that are independent of clinical
characteristics typically used to study severe
asthma (i.e., body mass index, atopy, FEV1).
This is caused, in part, by the clustering
approach we developed that is distinctly

different compared with conventional
approaches that use clinical features,
and large differences in gene expression
compared with subjects with no asthma
to select genes for the clustering analysis
(5, 9–11). In contrast, the analytical
approach used herein was not biased by

Table 6. Phenotypic Characteristics of TEA Clusters in the Asthma BRIDGE Cohort

Cluster 1 (n = 266) Cluster 2 (n = 105) Cluster 3 (n = 499) P Value

Prevalence in cohort 31% 12% 57% ,2.23 10216

Age at visit, yr 14.86 8 10.16 5 12.66 7 3.273 1028

Sex, n (%) female 128 (48) 45 (43) 212 (43) 0.31
Race 1.683 1027

White, n (%) 102 (38) 79 (75) 284 (57)
Black, n (%) 105 (40) 9 (9) 124 (25)
Other, n (%) 29 (11) 7 (7) 37 (7)
Hispanic origin, n (%) 30 (11) 10 (10) 54 (11) 0.09

History of atopy, n (%) 69 (26) 40 (38) 113 (23) 0.0013
Age of symptom onset 3.506 3.21 3.326 2.89 3.486 2.80 0.86

History of hospitalization, n (%) 91 (34) 37 (35) 128 (26) 0.011
History of intubations, n (%) 21 (8) 0 (0) 9 (2) 5.583 1026

ACT score 146 4 126 3 136 3 8.793 1027

Definition of abbreviations: ACT=Asthma Control Test; BRIDGE=BioRepository for Integrative Genomic Exploration; TEA= transcriptomic endotypes of asthma.
Data are means6 SD, except where indicated.

Table 5. Top 10 Differentially Expressed Genes between TEA Cluster 3 and Control Subjects

Gene Name Gene Symbol
Biologic

Processes Functions
Fold

Change P Value FDR
PubMed

References

Heart development
protein with
EGF-like domains 1

HEG1 Endothelial cell
angiogenesis

Cell adhesion
molecules

1.78 1.093 1027 2.423 1023 7

Small nucleolar RNA,
C/D box 104

SNORD104 RNA modification Noncoding RNA 2.58 2.463 1027 2.733 1023 2

Dynein, axonemal,
heavy chain 17

DNAH17 Ciliary motility Microtubule-associated
motor protein

1.88 2.613 1026 1.183 1022 7

Cbl proto-oncogene,
E3 ubiquitin protein
ligase B

CBLB Regulation of
T-cell anergy

Ubiquitin protein ligase 2.04 2.953 1026 1.183 1022 93

Defensin, b1 DEFB1 Innate immune
response

Antimicrobial peptide 2.85 2.973 1026 1.183 1022 133

Nonprotein coding
RNA 204

NCRNA204 NA Noncoding RNA 2.20 3.553 1026 1.183 1022 1

Transcription
elongation factor A
(SII) N-terminal and
central domain
containing

TCEANC RNA elongation Transcription
elongation factor

2.22 6.583 1026 1.823 1022 10

Radical S-adenosyl
methionine domain
containing 2

RSAD2 Regulation of
Toll-like receptor
9 signaling
pathway

Antiviral protein 1.57 1.043 1025 2.073 1022 28

Purinergic receptor
P2Y, G-protein
coupled, 14

P2RY14 Regulation of
inflammation

UDP-glucose receptor 5.14 1.043 1025 2.073 1022 31

Malignant fibrous
histiocytoma
amplified sequence

MFHAS1 Cell cycle Protein 4.14 1.113 1025 2.073 1022 11

Definition of abbreviations: EGF = epidermal growth factor; FDR = false discovery rate; NA = not applicable; TEA = transcriptomic endotypes of asthma.
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clinical phenotypes and is solely based
on ontologically derived, pathway-based
gene expression. This approach results
in reduced background from random
statistical events interfering with the
clustering algorithm and the overwhelming
effects of analyzing gene expression that
is different between patients with asthma
and control subjects: eliminating gene
expression signals that are associated with
disease heterogeneity. Ultimately we found
two different sets of genes in the blood
and sputum that are associated with the
same or similar clinical phenotypes.
Because clustering analysis using only
blood gene expression identified clusters
without unique clinical features (data not
shown), we believe that the evaluation of
gene expression in the primary organ of
involvement is essential to dissect disease
heterogeneity of chronic inflammatory
airway disease.

Although TEA clusters are clearly
distinguished, there remains heterogeneity
within each cluster, especially within
TEA clusters 1 and 2. This suggests that
analysis of larger populations of patients
will define additional TEA clusters that
are biologically similar within the clusters we
have defined. These may reveal additional
novel molecular phenomena that further
define the heterogeneity of disease. In
addition, longitudinal studies of patients with
asthma currently underway will determine
how stable and robust the TEA clusters are
over time, and will define the potential of
unsupervised transcriptomic analysis of the
blood and sputum to identify patients at risk
of adverse outcomes, such as near-fatal
and severe asthma exacerbations early in the
course of their disease. Ultimately, these
studies will determine if transcriptomic
signatures in the blood and/or airway have
the capacity to personalize approaches
to the management of asthma, enhance
outcomes and selection for existing
and emerging treatments, or will be
most useful to advance the pathogenesis
research in asthma and other complex
diseases. n
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of this article at www.atsjournals.org.
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Figure 4. Data visualization of the transcriptomic endotypes of asthma (TEA) clusters using the 53
blood expression. (A) Principal components analysis plot of the 76 matched blood arrays in the Yale
Center for Asthma and Airway Diseases cohort. (B) Principal components analysis plot of the
blood arrays from the Asthma BioRepository for Integrative Genomic Exploration cohort. TEA cluster
assignment was predicted using the TEA cluster classifier built in the Yale Center for Asthma and
Airway Diseases cohort. PC = principal component.
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