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Abstract

Head and neck oncologists have traditionally relied upon clinical tumor features and patient 

characteristics to guide care of individual patients. As surgical, radiotherapeutic, and systemic 

treatments have evolved to become more anatomically precise and mechanistically specific, the 

opportunity for improved cure and functional patient recovery has never been more promising for 

this historically debilitating cancer. However, personalized treatment must be accompanied by 

sophisticated patient selection to triage the application of advanced therapies towards ideal patient 

candidates. In this monograph, we review current progress, investigative themes, and key 

challenges facing head and neck cancer biomarker development intended to make personalized 

head and neck cancer treatment a clinical reality.
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INTRODUCTION

Head and neck cancer is a major international public health issue (1). As now the fourth most 

common cancer worldwide, it afflicts more than 500,000 new patients each year and is a 
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major source of mortality in countries as diverse as India and France. While head and neck 

cancer is less common in North America, it continues to severely impact quality of life, 

productivity, and longevity. Current multidisciplinary treatment approaches are costly, 

complex, and morbid. Nonetheless, technical improvements in surgery (2) and 

radiotherapy (3) for locoregional management, and improved efficacy of systemic agents (4) 

have recently translated into tangible improvements in clinical outcomes (5). Moreover, 

successful application of mechanistically-targeted biological therapy to head and neck 

cancer has been demonstrated (6, 7), and promises to further improve therapeutic ratio 

through individualized care (8).

Successful treatment individualization will rest heavily on successful patient selection, and 

will challenge our ability to accurately characterize tumor phenotype and host biology. 

Currently the only accepted means to communicate tumor behavior and prognosis is the 

American Joint Commission on Cancer (AJCC) staging system, which relies on clinical and 

radiological findings. The AJCC system has remained stubbornly consistent across 

published updates, and remains handicapped by deficiencies resulting in a predominance of 

patients being clumsily grouped together as “stage IV” despite heterogeneous presentations 

and prognosis (9-11).

A biomarker is defined as any biological characteristic with relevance to disease phenotype, 

or to the mechanism of action, target response, normal tissue toxicity, and/or clinical 

efficacy resulting from a specific intervention (12). A validated, feasible assay platform must 

be available for objective, reproducible measurement. Biomarkers are classified according to 

incremental levels of utility (Table 1). A pharmacodynamic biomarker correlates with the 

direct mechanistic effect of an agent on tumor or normal tissue. A prognostic biomarker 

correlates with clinical outcomes independent of treatment. A predictive biomarker 

correlates with patient outcomes specific to a given treatment. Once validated by prospective 

clinical trial results, a biomarker may ultimately serve as a surrogate for clinical endpoints. 

Although most cancer biomarker research has focused on genetic or protein material 

obtained directly from tumor tissue, biomarkers can also be obtained from readily accessible 

host specimen sources, such as blood and saliva, or even non-invasively by functional 

molecular imaging. Ultimately, the intent of biomarker discovery is to provide objective 

tools for clinicians to detect cancer, confirm optimal treatment modalities, recognize 

treatment response and toxicity, and predict prognosis, all with accuracy, speed, and 

economy. Such biomarkers would provide obligate feedback information to guide selection 

of optimal targeted therapy to individual patients.

Incorporation of biomarkers into treatment of solid tumors is well established, exemplified 

by use of prostate specific antigen (PSA) for prostate cancer (13), hormone receptor and 

HER2-ERBB2 to direct systemic treatment of breast cancer (14, 15), and more recently the 

use of epidermal growth factor receptor (EGFR) and Ras mutational status to direct targeted 

therapy for colorectal and lung cancer (16, 17). Nonetheless, progress in cancer biomarker 

development remains incremental. Formal incorporation of biomarker assessment can 

remain marginalized until the final phases of drug development due to stringent technical 

and financial challenges (18). Regardless, biologically relevant disease characterization will 

be a prerequisite for the mechanism-driven cancer treatment paradigm to ultimately succeed 
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as hoped. In this review, we will discuss ongoing opportunities, challenges, and evolving 

research themes in the development of mechanistic biomarkers for head and neck cancer 

treatment.

TUMOR-BASED BIOMARKER DEVELOPMENT

Human Papillomavirus Infection—Human papillomavirus (HPV) is a DNA virus that 

infects skin and mucosal epithelium (19, 20). It causes both benign and malignant tumors but 

can also exist in latent form, with no evidence of pathology. The HPV family contains more 

than 130 subtypes, each with tropism specific to a particular host site. Approximately a 

dozen high-risk subtypes are associated with urogenital and oropharyngeal malignancies 

contracted through sexual contact. HPV-16 is the dominant cause of oropharyngeal cancer 

(>90% cases), followed distantly by HPV-18 and HPV-33. The HPV genome encodes 8 

proteins, labeled early (E) and late (L). E6 and E7 play important roles in HPV oncogenesis 

by interrupting key steps in normal cell-cycle regulation (21). E6 expressed by high-risk 

HPV directs the ubiquitin-dependent degradation of p53, inhibiting critical tumor suppressor 

functions. E7 expressed by high-risk HPV binds the protein product of the retinoblastoma 

tumor suppressor gene (pRb) and promotes its degradation, releasing the E2F complex to 

stimulate cell cycle progression. E6 and E7 also impact additional downstream targets 

implicated in carcinogenesis, such as other members of the pRb pocket protein family, 

hTERT, and p21, but specific mechanistic roles for these actions remain unclear.

Recent epidemiologic studies have confirmed HPV-associated oropharyngeal cancer as a 

distinct head and neck cancer entity unassociated with classic risk factors (e.g. cigarette 

smoking and heavy alcohol intake) or secondary head and neck cancers (22). Initial clues 

towards discovering this entity came from large American and international cancer registry 

databases demonstrating a rise in tonsil and base of tongue incidence in younger patient 

cohorts (23, 24). Hammarstedt, et. al. evaluated 203 tonsil specimens collected between 1970 

and 2002 for presence of HPV DNA and found an increasing incidence of HPV infection 

with each progressive decade (25). More recently, D'Souza, et. al. confirmed a significant 

association between oropharyngeal cancer risk and life-time number of sexual partners (26). 

The authors identified HPV-16 DNA in 72% of the orophayngeal tumor specimens. In 

separate studies, Smith, et. al. corroborated these findings (27) and also demonstrated a 

significant relationship between presence of HPV in exfoliated mucosal epithelial cells and 

risk of head and neck cancer (28). While current reports demonstrate >50% prevalence of 

high-risk HPV infection in patients with oropharyngeal cancer, they also show a much lower 

association between infection and other head and neck subsites, such as oral cavity and 

larynx (29).

Recent studies have consistently demonstrated that patients with HPV-associated cancers 

have a significantly better prognosis than patients with HPV-negative disease. Within these 

studies, patients with HPV-negative disease had at least a 30% (absolute) lower overall and 

disease-free survival at 5 years. These dramatic differences exist despite the fact that HPV-

associated cancers typically present with more advanced nodal stage. Licitra et al. evaluated 

90 patients with oropharyngeal cancer treated with surgery (30). HPV-positive patients 

enjoyed a significantly superior overall survival and tumor control rate. Fakhry et al. 
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evaluated HPV status in patients treated on a cooperative group phase II trial with induction 

chemotherapy followed by chemoradiotherapy for advanced stage laryngeal and 

oropharyngeal cancer. By multivariate analysis, presence of HPV infection predicted for 

better response to induction chemotherapy (82% vs 55%) and improved overall survival 

after a median follow up of 39 months (95% vs. 62%). Kumar et al. investigated HPV status 

of tumors in a cohort of oropharyngeal cancer patients undergoing chemoradiation (31). This 

study found a clear association between HPV copy number and disease control. This could 

reflect the biological activity of one or more viral proteins, but might also help distinguish 

between active and latent infection. Most recently, Ang, et. al. retrospectively analyzed 

outcomes from a randomized cooperative group phase III trial testing alternative 

chemoradiotherapy regimens, and confirmed tumor HPV status to be an independent 

prognostic risk factor (32). Patients with HPV-associated disease enjoyed a 58% relative 

reduction in mortality risk relative to HPV-negative patients.

HPV infection and p16 overexpression are mechanistically associated through the 

inactivation of Rb protein by viral oncoprotein E7 and subsequent upregulation of p16, a cell 

cycle dependent kinase inhibitor. Tumor cell overexpression of p16 can be detected by 

routine immunohistochemistry and can be leveraged as a surrogate for HPV-associated 

cancer (33, 34). Although the data support the clinical utility of p16 testing, technical 

detection of both p16 and biologically relevant HPV infection remains a work in 

progress (35) and must be used in conjunction with cigarette smoking history in order to 

maintain prognostic significance (32, 36, 37).

Given the relatively good prognosis of HPV-associated oropharyngeal cancer, infection 

status has become a widely accepted prognostic biomarker and is being aggressively studied 

as means to improve clinical trial design and treatment selection. However, many questions 

remain. HPV infection status has not been formally validated as a predictive biomarker for 

any specific treatment modality or agent. Technical detection of infection remains non-

standardized, and the relevance of infection in head and neck cancer outside the oropharynx 

is unestablished. Also, the exact relationship of HPV infection with other known biological 

pathways involved in head and neck cancer remains unclear. Continued HPV-specific 

biomarker discovery will be a priority in the coming years.

Epidermal Growth Factor Receptor Signaling Pathway—EGFR is a cell surface 

tyrosine kinase receptor critical to epithelial development and maintenance. Consistent with 

its central role in normal epithelial physiology, aberrant activation of EGFR signaling is 

associated with initiation and progression of a wide spectrum of epithelial cancers. EGFR 

has been identified in the laboratory (38, 39) and clinic (40, 41) as a prognostic biomarker and 

therapeutic target for head and neck squamous cell carcinoma. As a member of the ErbB 

receptor kinase family, EGFR signaling is closely tied to a number of key biologic pathways 

utilized by cancer cells to proliferate, invade, migrate, survive treatment, and foster 

supportive stromal angiogenesis, notably through downstream activation of the Ras/MAPK, 

PI3K/Akt, ERK, and Jak/STAT signaling pathways (42). EGFR expression and activation is 

commonly elevated in up to 90% of head and neck carcinoma cells through transcriptional 

activation (43) or gene amplification (44, 45) of wild type gene product. Unlike carcinomas 

affecting the lower respiratory tract, activating mutations in the kinase domain of EGFR are 
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uncommon (0-7% frequency) and do not have identified functional significance in head and 

neck cancer (46, 47). However, the constitutively active EGFRvIII deletion mutant has been 

observed in approximately 40% of examined cases (48).

Head and neck cancer enjoys the distinction of being the first human cancer site for which 

successful combination of selective EGFR inhibition with either cytotoxic 

chemotherapy (49-51) or radiotherapy (6, 52) has been demonstrated in randomized, multi-

institutional clinical trials. The addition of cetuximab (a humanized monoclonal antibody 

specific to EGFR) to platinum chemotherapy significantly prolonged progression free 

survival in patients with late stage disease (5.6 vs. 3.3 months) (51). In the case of definitive 

radiotherapy, a phase III trial demonstrated improved median locoregional disease control 

(24.4 vs. 14.9 months) and median overall survival (49 vs. 29.3 months) with the addition of 

concurrent cetuximab to definitive radiation (6, 52). Small molecule inhibitors to EGFR also 

demonstrate modest (approximately 5% objective response rate) activity as single agent 

treatment of advanced disease (53). While encouraging on the clinical front, published trials 

have failed to reproducibly identify any predictive biomarker to select patients for EGFR-

targeted therapy. Although one study has suggested improved treatment response to 

accelerated radiotherapy in human tumors characterized as EGFR over-expressers by 

immunohistochemistry (54), a predictive association between quantified measurement of 

EGFR expression and survival following targeted therapy has not been validated.

Indirect detection of EGFR pathway activation, such as assaying EGFR gene copy number 

by fluorescence in situ hybridization, has been examined. Although some studies suggest 

poor prognosis following surgery or cytotoxic therapy in tumors with EGFR polysomy or 

gene amplification (44, 45), this has not been consistently reproduced (55, 56) and EGFR gene 

dosage has never been correlated with protein expression. A potentially more robust strategy 

would be to combine EGFR measures with mechanistically related markers of parallel or 

downstream signaling pathways, such as IGF1R, STAT3, and Src (57-61). An important 

example of such an approach has been pilot correlation of EGFR expression with HPV 

infection status in clinical head and neck tumor specimens (62, 63). These early studies have 

suggested that HPV infection is inversely correlated with EGFR protein expression, and that 

EGFR expression status may retain prognostic relevance regardless of HPV infection status. 

A more recent series has subsequently confirmed increased EGFR gene copy number status 

(as detected by FISH) to remain largely confined to HPV-unassociated (e.g. p16-negative) 

cancers (64). Nonetheless, this study also showed that p16 expression supersedes EGFR-

specific markers on multivariate analysis. Definitive prospective corroboration remains 

necessary, but taken together these findings suggest a potential need to regularly combine at 

least both HPV and EGFR specific biomarkers, if not others, to guide future clinical 

strategies.

Another approach to identify clinically relevant EGFR therapy-specific biomarkers would 

be to identify novel alternative mechanisms of EGFR promotion of head and neck cancer. 

As an example, recent reports indicate that EGFR and/or its downstream components have 

important functions after physical translocation to the nucleus (65). Elevated levels of nuclear 

EGFR protein have, in fact, been associated with inferior radiotherapy outcomes in 

oropharyngeal cancer patients (66, 67), but specific downstream mechanisms of action remain 
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unclear. The continuing lack of clinically predictive EGFR-specific biomarkers in head and 

neck cancer, despite clear mechanistic role of EGFR activation in disease progression, 

serves as a humbling reminder of the complex array of resistance pathways available to 

tumor cells. Given the active use of EGFR inhibitors in clinical practice, priority must be 

given to identify EGFR-specific biomarkers for individualized treatment selection.

High-Throughput Biomarker Signature Identification—The limited success of 

individual markers, such as EGFR, to predict tumor behavior has led to a hypothesis that a 

“signature” of all detected molecular alterations in a tumor can more accurately define its 

phenotype. To broadly compile molecular changes within individual tumors, high-

throughput techniques have been developed to investigate the full complement of RNA 

(microarrays) or protein (proteomics) expression alterations within a cancer or its 

surrounding microenvironment.

Microarrays permit global study of complete tumor transcriptomes. Head and neck tumor 

expression signatures have been compared with matched normal tissue, as well as metastatic 

disease, affording an opportunity to identify critical mechanistic pathways important for 

disease initiation and progression. For example, Chung, et. al. published a seminal study 

identifying four biological phenotypes of head and neck cancer defined by gene expression 

patterns (68). This work was subsequently refined to identify upregulated epithelial-to-

mesenchymal transition (EMT) and nuclear factor-kappaB-specific pathway expression in 

high-risk tumors destined to relapse (69). Other studies have leveraged microarrays to 

compare functional differences between HPV-associated and HPV-unassociated disease (70), 

to confirm the clinical relevance of tumor hypoxia adaptation signaling (71), and to identify 

signaling pathway activation specific to metastatic disease progression to cervical lymph 

nodes (72). The amount of data retrieved from microarrays can be overwhelming, with 300 to 

825 genes frequently being identified as differentially expressed between tumor and control 

samples (73-76). Because of the large amount of data generated, microarrays are mined for 

smaller sets of genes that can be used to stratify cancer phenotype. Methods for selecting 

these smaller sets of genes vary from agnostic selection of genes that are most over- or 

under-expressed by tumor cells, to investigator-defined gene candidates with specific 

biological functions relevant to the cancer phenotype under study (75, 77, 78). The demands of 

large datasets have led to pilot attempts to utilize more sophisticated statistical analytic 

techniques to identify prognostic head and neck cancer signatures (79). However, these 

techniques remain exploratory and large gene subsets (25 to 200 genes) are currently 

verified for predictive screening power in discrete training and validation tissue sets (75, 80), 

which mandates the availability of large independent collections of banked biospecimens. If 

identified within larger signatures, smaller predictive genes subsets (3 to 10 genes) can be 

further validated via direct interrogation of tumor tissue by quantitative PCR or 

immunohistochemistry (IHC); such smaller signatures are more potentially applicable for 

immediate translation to clinical trials. Several studies have correlated head and neck cancer 

gene expression with prognosis (71, 77, 78). Subsequent studies have translated pilot 

microarray studies to accessible biofluids (blood and saliva) to screen for presence of 

subclinical disease (76, 81). Thus, microarrays hold potential as screening tools and predictive 

biomarkers across a spectrum of accessible source materials. However, their current 
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contribution to head and neck cancer treatment remains limited to identification of candidate 

expression signatures requiring prospective validation through clinical trials.

Just as microarray platforms study genetic expression, proteomic techniques permit 

identification of downstream protein expression in tumors. Although there are many 

proteomic techniques, two have evolved into workhorses for translational cancer research. 

These are 1) matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass 

spectrometry and 2) surface enhanced laser desorption/ionization time-of-flight (SELDI-

TOF) mass spectrometry. Distinct from microarray profiling, proteomic profiling does not 

identify specific proteins by name but instead recognizes the differential appearance or 

absence of protein peaks at specific mass/charge ratios. As for microarrays, the amount of 

data can be overwhelming, and many studies focus on protein peaks differing most between 

tumor and normal tissue. The pattern of these peaks can be successfully used to identify 

cancer versus normal mucosal tissue with up to 95% specificity and 94% sensitivity (82). 

Proteomic techniques have been used to predict recurrence in small pilot studies (82, 83). It 

will be important to validate the utility of proteomic signatures in prospective multi-

institutional studies.

One of the challenges facing efforts to validate the clinical utility of proteomic analysis is 

that it requires fresh snap-frozen tissue, which is frequently unavailable from archival tissue 

banks. There has been progress using laser capture microdissection of formalin-fixed 

paraffin-embedded tissue for proteomic profiling (84). However, the resource and throughput 

issues of laser capture make this less appealing than use of more readily accessible biofluids.

In summary, the above results confirm that emerging techniques for high-throughput 

signature identification hold the potential to mechanistically guide rational therapy for 

individual head and neck cancer patients. However, the field continues to face significant 

technical and logistical challenges. Neither the collection of samples nor any analytic 

platform has been standardized; as a result, identified signatures vary significantly from 

study to study. There are certain upregulated proteins, such as MMP1 (85), which are 

consistently identified across studies. These may indeed be eventually confirmed as 

clinically significant biomarkers. However, the potential use of high-throughput biomarker 

signatures to routinely triage cancer treatment strategies across different centers will not be 

fully realized until comprehensive standardization of biospecimen collection, microarray 

platforms, and proteomic techniques can be achieved.

BIOFLUID-BASED BIOMARKER DEVELOPMENT

Tissue samples are thought to be the most reliable source for biomarkers. Nonetheless, the 

invasive nature of biopsying has lead to investigation of easily accessible biofluids such as 

blood and saliva. Blood has the advantage of coming into contact with all parts of the body 

and providing a theoretical read-out for all tumor-related effects. The drawback is that 

proteins specific to disease are found in relatively low concentrations relative to abundant 

normal serum proteins such as albumin and immunoglobulins (86). However, a number of 

studies, which will be discussed below, have been able to reproducibly detect circulating 

tumor proteins in serum.
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Saliva is obtained completely non-invasively and comes into direct contact with head and 

neck mucosal cancers. Mucosal keratinocytes are normally shed into saliva (87), and may be 

joined by shed cancer cells. The disadvantage of saliva is that it continuously changes with 

eating, drinking, oral hygiene, smoking, and sleep/wake cycles (88). Most well-controlled 

studies have collected saliva at a consistent time of day after a short interval of 

fasting (81, 89). Another challenge with analyzing saliva is that the collection process has not 

been standardized. Some investigators have collected whole saliva in its natural state, while 

others have collected oral rinses using phosphate buffered saline or sodium 

chloride (85, 90-92), making comparisons between published series difficult and design of 

experiments for the uninitiated challenging. A recent study (85) highlights difficulties 

involved with analyzing saliva. Lallemant, et. al. studied salivary levels of MMP1, which is 

overexpressed by up to 500-fold in head and neck tumor samples relative to normal mucosa; 

nonetheless, these investigators found MMP-1 overexpression in the saliva of only 20% of 

sampled patients. Nonetheless, another study demonstrated matched DNA methylation in 

both tumor tissue and saliva in 96% of sampled patients (91). Despite technical obstacles, an 

additional number of recent studies indicate that saliva remains a promising source of 

clinically relevant biomarkers (91-93).

Recent attempts have been made at analyzing the proteome in saliva (89, 90, 94), but the 

hostile physical environment of saliva has hampered progress (95). More interest has been 

shown for proteomic analysis of plasma or serum. Attempts to identify individual serum 

protein prognostic markers or serum protein profiles to screen for early head and neck 

cancer have met with varying success (96-99). One of the more successful serum proteomic 

profiling attempts is a recent study in occult papillary thyroid carcinoma patients which 

correctly identified patients harboring malignant disease with 95% sensitivity and 94% 

specificity (100). A more recent study has suggested that mass spectroscopy analysis of 

serum or plasma can identify head and neck tumor cell dependence on EGFR signaling 

pathways and predict clinical response to targeted EGFR inhibition (101), while another has 

provided pilot evidence that serum cytokine and angiogenic factor profiles associated with 

tumor hypoxia can predict for response of head and neck cancers to induction 

chemotherapy (102).

EMERGING BIOMARKER STRATEGIES USING BIOSPECIMENS

DNA Damage Repair—Successful treatment of head and neck cancer with radiotherapy 

and chemotherapy requires creation of unsuccessfully repaired DNA damage within tumor 

cells. Delineation of biomarkers specific to the activity and integrity of tumor cell DNA 

damage repair networks is a promising area of interest. Several series have demonstrated 

expression of the repair protein ERCC1 to predict for chemotherapy response in 

esophageal (103), non-small cell lung (104), and head and neck cancer (105, 106). Interestingly, 

one of these studies showed that ERCC1 overexpression in head and neck tumors was rare 

in non-smokers, suggesting a potential connection between DNA repair capacity and tumor 

HPV infection status (106). Another DNA damage response protein associated with HPV 

pathogenesis, p53, is among the most extensively studied biomarkers in head and neck 

cancer. p53 mediates cellular sensitivity to genotoxic insult and suppresses tumor 

progression through a wide array of regulatory effects on DNA damage repair, cell cycle 
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control, apoptosis, and downstream gene expression (107, 108). p53 mutations are associated 

with tobacco exposure (109) and have been observed in up to 80% of sampled head and neck 

cancers (110). On a functional level, genetic inactivation of p53 can directly participate in the 

immortalization of cultured keratinocytes (111, 112). Many institutional and cooperative 

group series have studied the prognostic significance of head and neck tumor p53 

expression; however, disjointed use of heterogeneous technical methods across studies, 

coupled with the complex upstream regulation (113) and contradictory downstream 

functions (114) of the protein itself, have yielded inconclusive findings (115). Nonetheless, 

more recent work has demonstrated that functionally disruptive p53 mutations may indeed 

predict for head and neck surgical outcomes (116). Efficient genetic detection of tumor cells 

with p53 mutations in surgical margins is also feasible (117); this approach is formally being 

studied in the cooperative group setting.

DNA damage repair-related biomarkers should intuitively predict for radiotherapy and 

chemoradiotherapy outcomes for head and neck cancer; regardless, none have been 

conclusively validated. Radiation causes many types of DNA damage, but the type of lesion 

most closely linked to target cell killing is the double strand break (DSB) (118). A recent 

study has established Ku80, a mediator of DSB repair, as the first candidate DNA repair 

biomarker to show potential predictive value for head and neck radiotherapy (119). There is 

mechanistic rationale to support an association between Ku80 expression and 

radioresistance. Ku80 is a key member of the non-homologous end joining pathway, the 

principal pathway used by healthy mammalian cells to repair DSBs (120). In this series, 

Ku80 was overexpressed in half of tumors, and its expression was independent of all clinical 

and genetic covariates examined. Ku80 overexpression was an independent predictor for 

both locoregional failure and mortality following radiotherapy (p < 0.01). However, the 

predictive power of Ku80 overexpression was confined largely to HPV-negative disease, 

where it conferred a 9-fold greater risk of mortality at 2 years (Figure 2). Although Ku80 

will require additional validation, this and other damage repair proteins hold tremendous 

promise as predictive markers with direct relevance to the mechanistic action of radiation-

based treatment.

Tumor Hypoxia—Tumor hypoxia has long been associated with poor clinical outcome in 

head and neck cancer (121-123). Tumor cell survivors of hypoxic stress are selected for 

reduced apoptotic potential, increased angiogenic signaling, enhanced metastatic capability, 

and greater resistance to radiotherapy. The biological cornerstone of hypoxia-specific stress 

responses is the hypoxia-inducible factor 1 (HIF-1) transcription factor (124). Given HIF-1's 

pro-survival and angiogenic effects, targeted inhibition of HIF-1 signaling has generated 

interest as a therapeutic target for radiosensitization (125-127). Tumor cell HIF-1 expression 

has been directly associated with inferior treatment outcomes for head and neck 

cancer (128-130). Other hypoxia-associated proteins, such as the HIF-1 homolog HIF-2 (131), 

and downstream hypoxia adaptation proteins carbonic anhydrase IX (131, 132), lysyl 

oxidase (133), galectin-1 (134), and osteopontin (135) have been directly associated with poor 

head and neck radiotherapy outcomes in institutional and cooperative group trials. 

Additional promising factors associated with tumor cell adaptation to microenvironmental 

stress include overexpression of Src and E-cadherin (136), glioma-associated oncogene 
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family zinc finger 1 (137), uroporphyrinogen decarboxylase (138), as well as mutated TP53 

tumor suppressor protein (116). Interestingly, HPV E7 has recently been mechanistically 

linked to increased HIF-1 expression through inhibition of histone deacetylases (139). Given 

the critical role these factors play in tumor progression and metastasis, continued 

investigation of hypoxic stress adaptation biomarkers remains a priority.

Micro-Ribonucleic Acid (miRNA)—As noted earlier, high-throughput evaluation of 

tumor mRNA expression is being actively pursued as a means to overcome the inherent 

limitations of individual biomarkers. However, there is growing recognition that mRNA-

based tumor profiling is susceptible to complex post-transcriptional modulation, including 

regulation by non-coding miRNA. MiRNA are small transcripts 19-24 nucleotides in length 

which inhibit and target mRNA for degradation with varying degrees of specificity (140). 

MiRNA have recently been shown to play important roles in human cancers through 

regulation of vital cellular processes such as proliferation, differentiation, and 

apoptosis (141, 142). MiRNA expression profiles are tissue-specific and have been used to 

categorize cancer subtypes (143-145). Early reports have demonstrated specific miRNA 

expression patterns unique to head and neck cancer which could potentially be used as a 

diagnostic or prognostic markers (146-149). Mechanistic roles for specific miRNA have been 

suggested, most notably for miR-21 which is overexpressed in human head and neck cancer 

tissue and promotes progression in head and neck tumor models (146, 150, 151). Likewise, 

miR-98 appears to regulate HMGA2-mediated head and neck tumor cell line sensitivity to 

chemotherapy (152), miR-31 stimulates HIF pathway signaling in head and neck cell 

lines (153), miR-221 promotes vascular invasion by oral carcinoma cancer cells (148), 

downregulation of miR-375 is associated with increased carcinoma cell clonogenicity and 

proliferation (154), and miR-26a has been shown mechanistically to impair EZH2 oncogene-

dependent cell growth and cell cycle progression in nasopharyngeal carcinoma cells (155). 

Additional miRNA expression changes in head and neck cancer, including increased 

expression of miR-423, miR-106b, miR-20a, miR-16 and downregulation of miR-10a have 

recently been described (154).

Despite this early progress, with the notable exception of miR-21 and miR-375, there has 

been little reproducibility across published studies. MiRNA expression profiles have not 

been reproducibly associated with specific head and neck anatomic disease sites, nor with 

treatment outcomes (154). Also, no associations between miRNA profiles and HPV tumor 

infection status have been reported to date. Early studies have suffered significantly from 

disorganized collection of tumor tissue (mostly from out-of-date institutional or cooperative 

group treatment trials), with only small subpopulations of patients with adequate tissue 

being available for miRNA PCR amplification and analysis. In addition, most studies have 

used limited amounts of normal tissue for baseline miRNA expression measurements, with 

many series not using matched normal control tissue obtained directly from study patients. 

This has unquestionably impacted the reproducibility, sensitivity, and clinical applicability 

of available published results. Just as with older high-throughput genetic and proteomic 

screening platforms, considerable work remains necessary to optimize and validate miRNA 

profiles as clinically meaningful biomarkers.
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IMAGING-BASED BIOMARKER DEVELOPMENT

Tissue-based biomarkers, such as HPV and EGFR, promise to increase study power, reduce 

drug development costs, and limit pursuit of futile therapy (156). Nonetheless, tumor tissue 

collection is expensive and complicated. Fresh tissue collection is difficult to obtain from 

patients referred to tertiary centers who have undergone outside workup and arrive with 

diagnostic pathology slides in hand. Development of disease-specific biomarkers collected 

from readily accessed biofluids (e.g. saliva, blood, urine) or tissue (e.g. buccal scrapings, 

skin) is one strategy to avoid such difficulties. However, such biomarkers currently rely on 

unproven or quickly evolving technical platforms and preclinical mechanistic data, and will 

likely remain exploratory for some time. An alternative exists which can leverage clinically 

validated technology and widely available expertise—non-invasive imaging-based 

biomarkers. The principle of this approach is straightforward, theoretically compelling, and 

exhaustively confirmed in animal models and human patients alike. Functional imaging can 

provide quantitative, non-disruptive, multiplexed characterization of whole tumor biology 

across all treatment and surveillance intervals without sampling deficiencies. Nonetheless, 

ongoing debate over competing techniques and targets, expensive upfront capital and long-

term operational costs, and unresolved standardization of candidate imaging measures 

remain challenges to validation and wide scale deployment.

Fluorodeoxyglucose-Positive Emission Tomography (FDG-PET)—Anatomic 

imaging of head and neck cancer by CT or MRI has long been incorporated into the AJCC 

staging system. In contrast to traditional structural imaging information on tumor size and 

infiltration, functional imaging provides qualitative or quantitative snapshots of differential 

physiology within tumor and host tissues. FDG-PET, with or without registered CT imaging, 

has served as the functional imaging workhorse for head and neck cancer over the past two 

decades. FDG-PET/CT is most relevant to current care in the Western World; this technique 

spatially marries semi-quantified tissue glucose uptake data to contextual anatomic 

information provided by CT. Published data is extensive and has been summarized by meta-

analyses (157), expert consensus reports (158, 159), and government-commissioned 

comparative effectiveness monographs (160). Put simply, FDG-PET/CT incrementally 

improves disease staging accuracy and treatment response assessment over anatomic 

imaging (161-164), although potentially without compelling clinical benefit if performed 

unselectively (165-167).

Considerable interest has focused on FDG-PET/CT monitoring of disease response to 

radiotherapy. A number of groups have found that FDG-PET post-treatment restaging 

provides high negative predictive power (168-171); accordingly, there is now growing 

acceptance of withholding consolidative neck dissection following radiotherapy in the 

absence of residual FDG-avid adenopathy (172), although others argue that expert clinical 

interpretation of serial CT imaging could achieve similar results (173, 174). Our group's 

approach has been to emphasize identification of specific clinical situations where FDG-

PET/CT diagnostic yield may be optimized. We have studied FDG-PET/CT utility in the 

context of other important clinical parameters, particularly HPV infection status, through a 

Bayesian, risk-based approach classically employed by clinicians choosing between 

alternative diagnostic tests in specific patients. We prospectively demonstrated that FDG-
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PET/CT provides little value over CT alone in radiation response assessment for unselected 

patients with locally advanced HNSCC (166, 167). Nonetheless, we found that FDG-PET/CT 

can significantly improve assessment of treatment response in high-risk patients, such as 

those with HPV-unassociated disease (Figure 1). Our results provide critical impetus to 

incorporate risk-stratification strategies into FDG-PET/CT assessment of radiotherapy 

response in locally advanced head and neck cancer. It is important to emphasize that such an 

individualized, context-specific approach will be relevant to any current or future imaging-

based biomarker.

Early post-radiotherapy FDG-PET imaging of cervical neck nodes is frequently obscured by 

non-specific inflammatory changes, leading to decreased accuracy unless imaging is delayed 

following treatment completion (170, 175-177). As a consequence, many patients cannot be 

efficiently triaged for appropriate upfront treatment intensity or towards timely salvage 

therapy. Ongoing development of novel 18F-based radiotracers promises to expand the 

utility of PET/CT as an imaging biomarker through complementary mechanism-specific 

disease characterization (178, 179). PET tracers with the most mature literature-based track 

record in head and neck cancer include the proliferation tracer 3’-deoxy-3’-18F-

fluorothymidine (180) and the hypoxia tracer 18F-fluoromisonodazole (F-MISO) (181). Given 

the well documented relationship between head and neck tumor hypoxia and aggressive 

phenotype, institutional series have generated particular interest in the use of FMISO-

PET/CT for prediction and mechanistic characterization of treatment response (182, 183), as 

well as individualized targeting of hypoxic tumor subregions for escalated radiation dose 

delivery (184, 185). Other biomarker candidates include the amino acid tracers O-(2-18F-

fluoroethyl)-L-tyrosine (186, 187) and L-3-18F-fluoro-D-methyltyrosine (188), the dopamine 

precursor 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine (189) for head and neck 

neuroendocrine tumors, and the lipid biosynthesis precursors 18F-fluoroacetate (190) and 18F-

fluorocholine (191).

Beyond PET/CT, novel vascular imaging techniques hold particular promise. Radiation 

stands apart from most systemic cytotoxic agents in its ability to impact tumor cells both 

directly and indirectly through destruction of supporting stromal blood vessels. Preclinical 

studies provide compelling data to show that radiation impacts tumor blood flow and 

vascular integrity, necessitating tumor adaptation and reconstitution of vessel function for 

regrowth (127, 192). This indicates an opportunity to exploit vascular functional imaging for 

tumor response assessment. Early examples of potentially relevant clinical application 

include high-risk thyroid cancer, which is responsive to targeted anti-angiogenic agents (193) 

and nasopharyngeal cancer, which is currently being treated with combined radiation and 

anti-angiogenic therapy in the cooperative group trial setting (Radiation Therapy Oncology 

Group Study 0615).

Vascular Magnetic Resonance Imaging—Dynamic contrast enhanced-MRI (DCE-

MRI) is a quantifiable, data-intense vascular imaging technique (194, 195). It has been used in 

the preclinical setting to characterize whole tumor responses to radiation treatment, with or 

without sensitizers (127, 196-198). DCE-MRI provides new opportunities to monitor tumor 

response through localization and quantitative measurement of changes in tumor perfusion 

and vascular integrity. DCE-MRI acquires T1-weighted images before, during, and after 

Lucs et al. Page 12

Head Neck. Author manuscript; available in PMC 2015 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



injection of an intravenous paramagnetic contrast agent, such as gadopentetate dimeglumine 

(Gd-DTPA). Two-compartment pharmacokinetic models are used to compute quantitative 

kinetic parameters, such as the volume transfer constant (Ktrans) between blood plasma and 

extravascular-extracellular space (EES), the blood plasma volume fraction (vp), and the EES 

volume fraction (ve)(194). A number of small institutional series have directly demonstrated 

the feasibility of DCE-MRI for evaluation of radiotherapy response (199-201), detection of 

recurrent disease (202), and pharmacokinetic analysis (203) in head and neck cancer patients. 

More recently, Cao, et. al. have demonstrated in a pilot experience of 14 patients treated for 

advanced head and neck cancer with chemoradiotherapy that DCE-MRI measures of blood 

volume within the primary tumor GTV obtained 2 weeks post-treatment can predict for local 

disease control (204). Small patient numbers prevented meaningful analysis of nodal disease 

response.

Our group has prospectively imaged 14 patients with locally advanced oropharyngeal cancer 

with serial DCE-MRI performed at baseline, mid-treatment, and 6-8 weeks post-radiation 

treatment. Highlighting the relevance of imaging biomarkers to both disease response and 

toxicity prediction, we evaluated relationships between radiation dose and DCE-MRI 

parameter response in both tumor and normal salivary tissues. To achieve this, pixels within 

nodal target volumes and salivary gland regions of interest (ROIs) were deformably 

registered to IMRT dose maps via an “Demon's” image intensity-based algorithm (205) and 

binned into low, medium, and high dose groups (20-40 Gy, 40-60 Gy, and 60+ Gy, 

respectively). The low dose pixel group was of particular importance given that this 

represents gland subvolumes receiving doses close to known biological thresholds for 

salivary dysfunction following radiation treatment. Although Ktrans values did not change 

significantly across treatment in salivary tissues at a group-wide level, we observed parotid 

ROI subvolumes receiving 20-40 Gy to dichotomously group towards increased or 

decreased Ktrans changes by mid-treatment. Mid- and post-treatment ve values increased 

significantly (p < 0.02) in both nodes and salivary tissues, with the magnitude of these 

changes suggesting dose response. Thus, serial Ktrans measurements can potentially 

categorize at-risk parotid sub-volumes receiving biological threshold doses by tissue 

vascular responses at three weeks mid-treatment. Interestingly, ve, an understudied DCE-

MRI parameter, can potentially provide early and sustained quantifiable, dose-dependent 

measures of nodal and salivary gland response. Additional validation will be required and is 

ongoing.

Another promising vascular MRI technique with pilot experience in head and neck cancer is 

diffusion-weighted MRI (DW-MRI), which quantifies diffusion of water molecules with 

tumor tissue and may serve as a surrogate marker for treatment response (206). Much like 

DCE-MRI, this technique is handicapped by limited published experience in patients, image 

analysis challenges, and high resource requirements. Nonetheless, encouraging pilot data 

suggests utility in head and neck cancer of DW-MRI for assessment of treatment response to 

radiotherapy (207), potentially as early as one week into treatment (208).
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CONCLUSIONS

The search for predictive markers has longed shadowed the evolution of cancer medicine 

itself. Head and neck oncologists have traditionally leveraged clinical factors and general 

tumor features to guide their care. However, as treatments for head and neck cancer have 

become more precise and mechanistically informed, the opportunity for personalized 

application of selective treatments has increasingly relied upon effective patient selection. 

Such selection must be guided by validated prognostic and predictive biomarkers. Although 

progress outlined in this review demonstrates much promise, such as the growing 

importance of high-risk HPV infection as a means to guide treatment for oropharyngeal 

cancer, biomarker development still remains an unfulfilled, rate-limiting step towards 

capitalization of the promise of personalized cancer treatment.

Whether a biomarker is based on histology, imaging, or genomic information, its ultimate 

utility will require validated measurement that is faithfully reproduced across clinical 

settings and institutions. Towards this goal, there is increasing multi-disciplinary 

collaboration within and among academia and government agencies to guide (12) (and, in 

fact, ultimately regulate (209)) standardization of biomarker measurement. This is a 

particularly important need for functional molecular imaging (210), which has lagged in this 

area due to an exciting, but disjointed, proliferation of competing modalities and biological 

tracers. Looking forward, biomarker development promises to remain a critical determinant 

as to whether personalized care can reach its full potential for patients suffering from head 

and neck cancer.
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Figure 1. 
Receiver operator curves for FDG-PET/CT are shown for primary (A) and nodal disease 

(B), with a solid line for high-risk patients and a dashed line for low-risk patients. For 

comparison, the sensitivity/specificity of CT is plotted for high-risk (open square) and low-

risk (open circle) patients, as well.
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Figure 2. 
Cumulative locoregional failure (A and C) and overall survival (B and D) rates for high-risk 

HPV-negative patients (A and B) and for a validation HPV-negative cohort (C and D) as a 

function of low, medium, or high Ku80 protein expression.
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Table 1

Biomarker Types

Biomarker Type Outcome Correlate Specific Examples

Pharmacodynamic Mechanistic treatment effect on tumor or 
normal tissue

mRNA/protein expression; protein phosphorylation; enzymatic 
activity; intra-tumor vascular function; normal tissue toxicity

Prognostic Clinical outcome independent of treatment High-risk HPV infection status in H&N cancer

Predictive Clinical outcome specific to a treatment Estrogen/progesterone receptor and HER2-ERBB2 expression in 
breast cancer; EGFR mutation status in non-small cell lung cancer

Surrogate Outcome Direct substitution for clinical outcome PSA in prostate cancer
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