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Abstract

While child and adolescent obesity is a serious public health concern, few studies have utilized 

parameters based on the causal inference literature to examine the potential impacts of early 

intervention. The purpose of this analysis was to estimate the causal effects of early interventions 

to improve physical activity and diet during adolescence on body mass index (BMI), a measure of 

adiposity, using improved techniques. The most widespread statistical method in studies of child 

and adolescent obesity is multi-variable regression, with the parameter of interest being the 

coefficient on the variable of interest. This approach does not appropriately adjust for time-

dependent confounding, and the modeling assumptions may not always be met. An alternative 

parameter to estimate is one motivated by the causal inference literature, which can be interpreted 

as the mean change in the outcome under interventions to set the exposure of interest. The 

underlying data-generating distribution, upon which the estimator is based, can be estimated via a 

parametric or semi-parametric approach. Using data from the National Heart, Lung, and Blood 

Institute Growth and Health Study, a 10-year prospective cohort study of adolescent girls, we 

estimated the longitudinal impact of physical activity and diet interventions on 10-year BMI z-

scores via a parameter motivated by the causal inference literature, using both parametric and 

semi-parametric estimation approaches. The parameters of interest were estimated with a recently 

released R package, ltmle, for estimating means based upon general longitudinal treatment 

regimes. We found that early, sustained intervention on total calories had a greater impact than a 

physical activity intervention or non-sustained interventions. Multivariable linear regression 
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yielded inflated effect estimates compared to estimates based on targeted maximum-likelihood 

estimation and data-adaptive super learning. Our analysis demonstrates that sophisticated, optimal 

semiparametric estimation of longitudinal treatment-specific means via ltmle provides an 

incredibly powerful, yet easy-to-use tool, removing impediments for putting theory into practice.
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Introduction

Adolescent obesity has become a major concern in public health due to its increasing 

prevalence [1, 2]. Overweight and obese adolescents often become overweight and obese 

adults, and are at increased risk for chronic diseases such as heart disease, diabetes and 

cancer [3–6]. Physical activity and diet are established determinants of obesity development 

[7–11]. At a physiological level, obesity occurs when there is energy imbalance, specifically 

when energy intake exceeds energy expenditure. Energy needs vary considerably for the 

growing child/adolescent, and there is considerable variability in energy intake and 

expenditure patterns throughout childhood and adolescence.

Multivariable linear or logistic regression has often been used to model the effect of energy 

intake and expenditure patterns on body mass index (BMI) or other indicators of obesity 

using observational data, and the parameter of interest is the coefficient attached to certain 

variables [8]. An alternative approach, which can utilize data adaptive estimation, is based 

upon the so-called G-computation formula, from which a substitution-type estimator can be 

derived [12, 13]. In the longitudinal settings, G-computation is an identifiability result 

derived from the sequential randomization assumption implied by a causal graph or the 

nonparametric structural equation (NPSEM) model of the data-generating mechanism [12, 

14]. The parameters of interest returned by these substitution estimators are chosen so that 

they can be interpreted, under assumptions, of the treatment (or exposure) effects one 

typically estimates in a randomized controlled trial appropriately adjusted for time-

dependent confounders. Since these estimators are functions of portions of the data-

generating distribution (such as conditional means), rather than byproducts of a parametric 

regression model, they put little constraints on the form of the data-generating distribution. 

Thus, one can use data-adaptive (machine learning), flexible algorithms in order to search 

among a large class of models to find the one that fits the model optimally. If this fit, 

according to some loss function, is estimated in an unbiased way (using cross-validation), 

then one can derive a better fit to the data than say an arbitrary linear regression model, and 

so derive estimates of the parameter that both have less bias, and lower variance. In addition, 

because the model selection is done to maximize the fit (minimize the cross-validated risk) 

of the prediction models, and not targeted towards the parameter of interest, significant 

reductions in bias are possible via an augmentation to the estimated statistical model based 

on targeted maximum likelihood estimation (TMLE) [14].
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The purpose of this article was to quantify the longitudinal effects of energy intake and 

expenditure patterns on BMI in adolescence using data from the National Heart, Lung, and 

Blood Institute Growth and Health Study (NGHS), a 10-year prospective cohort study of 

preadolescent white and African American girls designed to assess factors associated with 

the onset and development of obesity [15]. In particular, we assessed the impact of early 

interventions on physical activity level and caloric intake on BMI by estimating parameters 

defined by the G-computation formula. Our objectives were to compare, in this setting of 

longitudinal studies of obesity, the use of standard regression models for estimating the 

relevant components of the data-generating distribution with semi-parametric, data-adaptive 

methods and discuss practical implementation of latter methods using the ltmle R package 

[42].

Methods

Data structure

For this analysis we used a subset of the NGHS data consisting of the participants recruited 

by the University of California at Berkeley center, one of three recruitment sites for NGHS 

(n = 530). The participants were 9–10 years of age at study entry and followed for 10 years; 

887 girls enrolled at baseline. The study collected anthropometric measurements annually 

and an extensive set of variables potentially relevant to weight gain, including physical, 

behavioral, socioeconomic and mental health factors such as pubertal maturation stage, diet, 

physical activity, parental education, and perceived self-worth [10, 15–20].

The time-dependent outcome variable of interest was BMI-for-age z-score, which indicates 

BMI relative to other girls of the same age on a standard deviation scale [21]. We focused 

on physical activity and total calories as the exposures/potential interventions of interest, 

with the hypotheses that increasing physical activity would result in a lower 10-year BMI 

and that increasing total calories would have the opposite effect. Physical activity was 

measured using a Habitual Activity Questionnaire that was adapted from a questionnaire 

developed by Ku et al. (1981) [22], and compared against two other assessment methods 

[18]. Total calories were estimated from 3-day food diaries [7]. Potential confounding 

variables were selected based primarily upon previously reported associations with BMI [10, 

16–24]. These included baseline race (white or African American), and the time-dependent 

variables pubertal maturation stage (four levels: prepuberty, early maturity, midpuberty, 

maturity), number of hours of television watched per week, perceived stress scale [23], 

global self-worth score (an indicator of self-esteem measured using a Harter’s Self 

Perception Profile for Children) [18, 24], as well as the outcome, BMI, at previous 

measurements.

We focused on three time points after enrollment: years 0 (age 9–10 years), 5 and 10 (19–20 

years); selection of these time points was based on preliminary work indicating that these 

were the most relevant for capturing BMI trajectories. We restricted the sample to the subset 

of participants who had total calories, physical activity, and BMI z-score measured at years 

0, 5, and 10 (n = 530) since this is the level of resolution such that there would be relatively 

little missing data. However, even at this resolution, there were still missing data for some of 

the time-varying covariates (confounders), and we imputed missing values by using a local 
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average of the years around the time point of interest within the subject, rather than omitting 

the girls with missing values completely. This did not appreciably change the overall 

summary statistics for the covariates when compared to a complete case analysis.

Parameter of interest

The research question we endeavored to answer concerned the potential causal effect of 

intervening to set longitudinal profiles of physical activity level or caloric intake amount on 

BMI z-score at year 10 of the study, when the girls were aged 19–20 years. An ideal 

experiment that would answer this question would be to randomize a cohort of girls at 

baseline to each potential longitudinal pattern of physical activity and diet, then follow up 

with the girls, ensuring perfect adherence and no attrition. The causal inference estimation 

framework makes transparent the identifiability assumptions necessary to estimate such 

parameters from observational data. The structural causal model (SCM) reflecting our belief 

about the time-ordering and relationships between the exposure, covariates, and outcome of 

interest was

(1)

where the subscripts denote the three time points of interest (years 0, 5 and 10), Aj, denotes 

the exposure of interest (physical activity or total calories) within time interval j, Lj are the 

vector of time-varying confounders (variables that affect both future exposure and the 

outcome of interest, including intervening measurements of BMI) within interval j, 

Ydenotes the outcome process of interest (BMI at year 10), and the Us denote unmeasured, 

independent (exogenous) variables, so that the variables that make up our data set are 

deterministic (but unknown) functions of the measured history, and some unmeasured error 

term. Now, we can represent the data as an independent, and identically distributed sample 

of , where the over-bar notation denotes the history of the variable, e.g. Ā = (A0, 

A5, A10, and. Ā5=(A0, A5).

Intervening on the exposure of interest at a certain time point corresponds to 

deterministically setting (A0, A5, A10) = (a0, a5, a10), resulting in a modified set of structural 

equations. The counterfactual outcome is denoted  and is interpreted as the value that Y 

would have taken under universal application in the population of the hypothetical 

intervention Ā = ā. The modified SCM, based on intervening by setting nodes to fixed 

values, is
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(2)

where the (1) notation represents counterfactuals indexed by specific treatment regimes, a. 

Once the SCM is specified, the next step is to specify the counterfactuals indexed by 

interventions on A. The interventions simulated in this analysis were ones that 

deterministically set values of the vector ā = {a0, a5, a10}. The variables intervened on were 

physical activity level (1 denotes a high level defined as > 20 METS-times/wk, 0 denotes a 

low level defined as ≤ 20 METS-times/wk), caloric intake (1 denotes a total caloric intake of 

2,000 kcal/day or less and 0 denotes a total caloric intake more than 2,000 kcal). The cutoff 

for the total calories intervention was determined based on average energy requirement 

recommendations for women [25]. The physical activity cutoff was determined based on the 

distribution of physical activity during the first five study years, before physical activity 

began to decline steeply [26]. The counterfactuals of interest were therefore denoted as Y(a1, 

a5, a10), which can be interpreted as the BMI z-score that participants would have had under 

interventions on physical activity and total calories. A value aj = 1 means that a person can 

be considered “treated” at time point j, while a value aj = 0 means that they were “untreated” 

at that timepoint j. The intervention ā = {1, 1, 1} was chosen because it represents good 

physical activity behavior and/or eating habits being instilled at a young age and continued 

through adolescence. In contrast, the early intervention of ā = {1, 0, 0} was chosen to 

represent a decline in physical activity and/or eating habits with age. The late intervention ā 

= {0, 0, 1} represents the opposite.

Identifiability assumptions – G-computation

In order to estimate the marginal distribution of different counterfactuals from observed 

data, identifiability assumptions must be asserted. In longitudinal data, one such assumption, 

the sequential randomization assumption [14, 27] corresponds to

where Parents indicates all preceding measured variables, and in this case Y(ā) are the set of 

counterfactuals defined by the combinations of possible interventions. Under this 

assumption (as well as others outlined below), we can write the counterfactual as an 

estimand that is a function only of the observed data-generating distribution, P0:

(3)
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This result is the longitudinal G-computation formula, which allows specification of 

parameters of the observed data distribution. The parameters we specified depended on the 

different intervention patterns contained in ā. The parameters of interest are functions of the 

marginal mean under longitudinal treatment regimes, E[Y(a0, a5, a10)], or:

(4)

where ψ1 can be interpreted as the mean difference of BMI z-scores within a population of 

universal, early sustained intervention versus the mean BMI z-score in the population 

without any intervention; ψ2 is a comparison of early sustained intervention to late 

intervention; ψ3, compares early intervention, that is not sustained, versus late intervention; 

ψ4 is equivalent to ψ1, but now comparing early, but not sustained intervention to a 

population without any intervention. Finally, ψ5 compares sustained intervention to a 

population where everyone follows relatively high caloric intake or relatively low physical 

activity.

In order for one to be able to estimate these causal parameters, there needs to be sufficient 

natural experimentation of the variable of interest (the Aj) within groups defined by the 

history of covariates,  and previous levels of the Aj−. This is the so-called positivity 

assumption. There cannot be combinations of covariate and exposure histories, for which all 

participants are only “treated” or “untreated”, since this would make the right-hand side of 

eq. (2) undefined. Positivity is especially problematic when the covariates and treatment are 

continuous and in these data, there were many covariates. Thus we discretized the covariates 

by creating groupings defined by reasonable cutoffs. Specifically, we dichotomized the 

number of hours of television according to the recommendations from the American 

Academy of Pediatrics as “high” if the individual watched more than 2 hours/wk and “low” 

if they watched two or fewer hours per week. Stress was dichotomized as “high” if the stress 

score was above 25 and “low” if the score was equal to or less than 25. Race, pubertal stage, 

and self-worth score did not require discretization to address the positivity requirement. 

Energy intake was used as a confounder in the analysis of an intervention on physical 

activity and vice versa, using the cutoffs defined above.

The substitution estimator is then given by

(5)

This estimator requires the estimates of the relevant regressions and joint distribution of 

intermediates, given the past. Typically, one derives the mean via time-sequential simulation 

of the L-process, setting the treatment history to the desired rule. Thus, the standard 

formulation of this substitution estimator requires often challenging estimation, since it 

requires estimation of joint densities.
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Van der Laan and Gruber [28] present a different representation of eq. (3) that avoids having 

to estimate the joint conditional density of intermediate variables, e.g. the 

 Specifically, by invoking the tower rule, one can represent 

E[Y(ā) as an iterative conditional expectation (ICE). The approach is based on the G-

computation representation of the density of the covariate process, L, which can be written 

as:

where  is shorthand notation for 

defining the conditional distribution of a covariate process given a treatment process at a 

particular time j; equivalently define  to be the associated conditional expectation implied 

by . In addition, introduce notation for a set of random variables, La = (L(0), La(1),…, 

La(J), Y = La(J + 1)) which has distribution, Pa, that is counterfactual random vectors of the 

covariate process generated under a specific treatment regime, a. The ICE representation is 

based on an equality which is formed from ICEs relative to these counterfactual 

distributions, or:

The substitution estimator, following eq. (6), starts with estimating the innermost 

conditional expectation, , and then moves outward, estimating the 

relevant regressions to generate the estimated conditional expectations, until at the end, one 

simply gets an average across all observations. The obvious computational virtue is that 

unlike the estimator (5), one does not have to estimate conditional densities of the covariate 

process, L, but only a set of conditional expectations (regressions) that can be done much 

more straightforwardly, using data-adaptive (semiparametric) techniques. This is an 

enormous advantage over the estimator based on eq. (5). The one small disadvantage, is 

these set of regressions must be run for each desired treatment rule, a, whereas using the 

original formulation, one only has to estimate the conditional densities once. However, this 

is a very small price to pay when the covariate process is high dimensional, i.e. consists of 

many variables, so any practical joint conditional density estimation requires either very 

strong assumptions (conditional independence, or joint normality, etc.) or a very large 

degree of smoothing (e.g. histogram density with very large bins). Table 1 contains the steps 

for defining the parameter of interest, as well as the associated estimation steps, for our 

specific obesity study.

Because the  are defined via particular treatment regime of interest, a, this 

procedure is repeated for each particular regime of interest. This formulation offers a very 
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compelling alternative to a substitution based on the standard representation (4). However, 

using the estimator based on the ICE approach still requires estimates of very high-

dimensional regression, outcomes versus often many variables, potentially measured at 

several times in the past), in a very big, semi-parametric model. We discuss below how to 

target the estimation towards our particular parameter of interest, but before we do so, we 

discuss a general data-adaptive approach for deriving the regression models required for the 

estimate listed in Table 1.

Estimation via SuperLearner

Given little theory to guide one on the functional form of the regressions that comprise our 

ICE estimator, and the impossibility of nonparametric estimation because of the high 

dimension of the predictors, a potentially consistent approach requires a data-adaptive, 

semiparametric modeling method. Traditional approaches would fit the regressions based on 

a potential simplification (dimension reduction) of the predictors (e.g. the conditional means 

given the entire history are only functions of the most recent history), and/or the assumption 

of a simple parametric forms (e.g. regression with only main effects). Because doing so will 

almost certainly result in a misspecified model, such arbitrary (non-targeted) simplifications 

will result in an arbitrarily biased estimator. Thus, we used the data-adaptive, ensemble 

machine learning algorithm known as the SuperLearner (SL) [29]. The SL takes a library of 

algorithms and uses cross-validation to create a convex combination of the algorithms with 

weights based on the ability of each algorithm to minimize the cross-validated risk (expected 

value of the user-supplied loss function) in the cross-validation procedure. The optimality 

properties of cross-validation and super learning are detailed in van der Laan and Polley [29] 

and van der Laan et al. [30]. If k algorithms are competitors, the Oracle Selector is the one 

that chooses the algorithm that minimizes the true risk as if the true underlying distribution 

of the data was known. The Oracle Inequality suggests that the number of candidates 

algorithms considered can be polynomial in size without hindering the performance of SL. 

Thus, many algorithms can be considered and the combination will perform asymptotically 

as well as the Oracle selector. Therefore, it is a good choice for estimating the required 

models since one can include both more agnostic algorithms, and particular models favored 

by the researchers. Although sample size might indicate a variance-bias trade-off towards a 

smaller model (and thus more biased model), theory indicates that this trade-off will be in an 

optimal direction.

Since the SL is an ensemble learner, the candidate algorithms from which it chooses and 

utilizes in the combination are not indicated. We used the SL package available in R [31] 

and our library of candidate learners included generalized linear models (GLM), generalized 

additive models (GAM) [32], Bayesian generalized linear models (bayesGLM) [33], 

generalized linear models using coordinate-wise descent (glmnet) [34, 35], and the mean 

function. In addition, one must specify the number of splits (folds); 10-fold cross-validation 

was used to estimate the final model.

Targeted maximum likelihood estimation

The data-adaptive fitting of the models that make up Step 1 above are targeted to optimizing 

the ability of models to predict the outcome, and not towards estimating the parameter. One 
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can improve the estimator by “targeting” these fits towards the parameter of interest. 

Specifically, we used Targeted Maximum-Likelihood Estimation (TMLE), a two-stage 

estimator that augments the estimated models that comprise the ICE-inspired algorithm 

discussed in Table 1. This results in a bias-reduction step, which will remove residual bias 

relative to the substitution estimator if the treatment mechanism can be estimated 

consistently [14]. The TMLE augmentation [28] involves adding a so-called clever 

covariates to each of these regressions, which requires estimation of the treatment 

mechanism. Specifically, for each time point, it requires estimates of the probability of being 

in the treatment group (e.g. high physical activity) given the past (that is, all past covariates, 

treatments, and outcomes) [36].

Specifically, we use the same formulation as discussed above, but now based on , 

which is obtained, as a regression, treating the initial estimator,  as an offset, of Y 

against covariate:

where gk, ≡ P(Ak = ak|Parents(Ak)). To derive the clever covariate one needs an estimate of 

gk (gn,k) and in this case, we used simple main terms logistic regression, both for the 

outcome of current treatment given the past. This is done as a compromise to ameliorate the 

residual bias that could result from the original SL fits, which are designed to minimize the 

risk of the prediction but avoid adding problems with creating large outliers via these clever 

covariates that can result from models that estimate probabilities of censoring or treatment 

either close to 1 or 0 (see chapter on CTMLE in Van der Laan et al. for a less ad hoc 

approach to model selection for the treatment/censoring models in the context of TMLE).

As discussed above, one of the virtues of TMLE over the initial substitution estimator is that 

it reduces bias due to the fact that the original statistical models are chosen based on 

minimizing expected loss with regards to prediction of the outcomes (intermediate and 

final), and not with regards to minimizing the mean-squared-error of the estimate of the 

parameter of interest. Relatedly, the TMLE estimate is consistent if either the original 

models or the treatment/censoring models are consistently estimated (doubly-robust). If they 

both are consistently estimated, the estimator is semi-parametrically (locally) efficient. 

Finally, the TMLE can be thought of a smoothing of the original substitution estimator, and 

thus can have more predictable sampling distributional properties; it is an asymptotically 

linear estimator with a known influence function, and this can be used to derive robust 

asymptotic inference [14]. Thus, one can derive an approximate SE by simply taking the 

sample standard deviation of the estimated IC of a subject divided by the sample size, or 

 (see van der Laan and Gruber [28] for the form of the IC).

The required calculations would seem a daunting task to code, and thus the effort required 

could inhibit taking such an approach. However, an R package, ltmle, provides a one-stop, 
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user-friendly implementation of the ICE, TMLE estimator. One can either use the defaults 

available for estimating the prediction and treatment models, or one can specify particular 

algorithms, including SL with an associated library of learners. Though not discussed here, 

the package incorporates the possibility of missing data and not just fixed treatments of 

interest, but treatment rules. The package also returns, in addition to the TMLE estimate, the 

ICE based on non-augmented model, the so-called inverse probability of treatment weighted 

(IPTW) estimators, as well as a “naïve” estimate based on no dependent confounding. 

Finally, the package will also return estimates of marginal structural models if one wants to 

model the treatment-specific mean as a potentially smooth function of the history of 

intervention (e.g. the total number of time intervals with treatment). Thus, the powerful ltmle 

packages makes estimating a relatively complex suite of estimators amazingly 

straightforward, which opens the door to estimation of targeted casual parameters based on 

potentially complex interventions to a much wider audience.

Data analysis results

Characteristics of the sample of NGHS participants at the three time points in the analysis 

are provided in Table 2. All participants were aged 9 or 10 at Year 0. There was a noticeable 

decrease in physical activity at Year 10. Additionally, by the end of the study, all 

participants had reached pubertal maturation. Table 3 contains the numbers and percent of 

individuals who followed the relevant patterns of interest in total calories and physical 

activity.

The results of estimation of the marginal means of interest by four estimators are in: a 

“naïve” estimator, and a series of ICE substitution estimators based on different models for 

the relevant regressions: (a) based on multivariate regressions with only main effect terms, 

(b) on SL fits, and (c) based on augmented SL fits, or TMLE. We fit these to compare, in 

order, an estimators that (1) simply assumed no confounding at all, but in that context makes 

no modeling assumptions (naïve), (2) adjusts for confounding, but in a parametric model 

(MTLR for multivariable linear regression), (3) adjusts for confounding in a much bigger 

(and therefore less biased) statistical model, but where the estimator is not targeted towards 

the particular parameter of interest (and thus, contains no “smoothing” adjustment of the 

estimate of the data-generating distribution towards that parameter – SL), and (4) is targeted 

for estimation in a large (semiparametric) model and, but specifically for the parameter of 

interest (TMLE). Statistical inference was based on the influence curve for the TMLE 

estimators, but on the nonparametric bootstrap for all others (we also re-did the inference for 

one of the TMLE estimators using the bootstrap as a check on the IC-based inference).

There are often substantial differences between the adjusted estimates based on the SL 

(TMLE and SL) and the, naïve, suggesting that these are confounded by the included 

covariates. For example, the naive point estimate of E(Y(0,0,1)) is very different from the 

estimates generated from the SL and TMLE estimators (Table 4). The point estimates serve 

as the inputs for the various intervention comparisons (4) shown in Table 5. One can see 

some significant differences between the simple substitution estimator based on parametric 

regression and that based on SL (the equivalent substitution estimator and TMLE). For 

instance, for physical activity, the estimate of ψ4 using MTLR is −0.44 and apparently 
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statistically significant. However, given the model used was no doubt misspecified, no doubt 

the estimator is also biased, whereas both the estimators based on an initial SuperLearning 

fit (SL and TMLE) are close to the null. This represents a fairly serious bias that could have 

resulted in the estimate of a misspecified, parametric regression model was used. If looking 

at the TMLE estimates, there are no significant estimated intervention comparisons for 

physical activity; the most “extreme” comparison for total caloric intake (longitudinally 

consistent low versus consistently high) suggests a modest but significant reduction in BMI 

standardized units (−0.192; 95% CI −0.374, −0.010). To make sure that this estimate and 

inference was stable, we also derived the inference of this estimate using the nonparametric 

bootstrap and got very similar results (95% CI −0.410−0.011), with a symmetric bootstrap 

distribution (see Figure 1). The corresponding estimate before the TMLE augmentation (the 

SL estimator) shows a more modest reduction in BMI from consistently low caloric intake 

of −0.123. The difference between the two is driven mainly by the difference in the TMLE 

estimate versus the SL estimate of E[Y(0,0,0)], that is around 0.7 vs. 0.6 standardized units 

(and both estimates are much larger than the naïve estimate of around 0.5). Thus, the 

significant TMLE-based association appears to be a result, not just of fitting a 

semiparametric model adjusting for time-dependent and time-independent confounding, but 

also by the augmentation of these original models to account for potential residual 

confounding.

Discussion

One should always estimate the data-generating distribution within a statistical model that 

only is constrained by what one actually knows about the distribution. In most 

circumstances, such as longitudinal studies of obesity, little if anything is known about the 

form of the data-generating distribution, so the true statistical model is semiparametric. In 

addition, the parameters of interest should be based upon the specific scientific/policy 

questions of interest, and not as a convenient byproduct of a parametric statistical model. In 

this article, we have applied advances in data-adaptive estimation (SuperLearning) 

combined with a targeted bias reduction (TMLE) to estimate parameters targeting the impact 

of longitudinal interventions in both caloric intake and physical activity on BMI in the study 

of adolescent obesity.

In our case, we defined the parameters of interest as marginal means of BMI at different 

fixed longitudinal intervention profiles, and differences of those means related to specific 

questions regarding how a potential pattern of intervention could affect BMI at age 19–20 

years old. Then, we compared the use of data-adaptive super learning and a targeted 

(TMLE) augmentation to this initial fit to estimates of the same parameter using both 

parametric linear regression analyses, as well as a simple naïve (unadjusted) analysis.

The estimated impacts of physical activity and total calories on year 10 (ages 19–20) mean 

BMI z-score in this population were not significant, with total calories having a larger effect 

regardless of the estimation method used. Specifically, looking at the TMLE estimates, only 

the most extreme comparison (that is ψ5, representing the difference of means if having 

continuously reported relatively high versus low caloric intake) was the only comparison to 

remain significant (or close to significant), though the impact on mean BMI is rather slight. 
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We were concerned about the stability of this estimate, so we also used the nonparametric 

bootstrap (as opposed to the influence-curved based inference) and found the resulting 

estimates of the sampling distribution were nearly identical, indicating the robustness of this 

finding. There significant differences in the estimates of some parameters (see ψ4 for 

physical activity), but not for others (the estimate of ψ5 for total caloric intake). However, 

one never knows a priori when using a semiparametric TMLE estimator will “matter” and 

when it makes little difference in the estimation/inference, and this analysis suggests it is 

unwise to assume the difference will not be important. Thus, augments are made on behalf 

of simpler approaches as opposed to a more rigorous and more complicated procedure are 

charitably, naïve. In summary, the TMLE based on SL provided an estimate that appears to 

have a (close to) normal sampling distribution as estimated by the bootstrap (Figure 1), less 

asymptotic bias since it is estimated in a much larger model, but in this case apparently little 

sacrifice regarding sampling variability. We note that there are estimating equation based 

alternatives for estimating these parameters include inverse probability of treatment 

weighting (IPTW) and augmented IPTW (A-IPTW) [12, 27, 37]. However, as discussed in 

van der Laan and Rose [14] and several other articles involving applications, TMLE has 

both the double-robustness of the A-IPTW in this case, but also has the additional benefit of 

more potential robustness in this case by making sure the model for the relevant components 

of P0 falls within the natural boundaries of the outcome variable (in this case, between the 

minimum and maximum of observed BMI z-scores).

To suggest that we can identify the causal effect of the proposed interventions from the data 

requires strong assumptions, and we acknowledge that many of them will not be precisely 

true. We also acknowledge that examining the longitudinal effects of total caloric intake and 

physical activity on BMI is a complex problem and that other variables could be considered 

in future studies. For instance, accurate measurement of diet and physical activity, especially 

in children, is challenging, and measurement error could have been a major issue in this 

application. Additionally, deterministically setting diet and physical activity to certain levels 

may not be realistic since, for example, girls who are very physically active may consume 

more calories. Dynamic regimes assign the exposure value based on the value of covariates. 

In this case, for example, physical activity could be set to a certain level depending on the 

total calories consumed. Rather than forcing everyone in the study population to the same 

exposure value, this allows for more realistic interventions. Finally, we limited our analysis 

to a relatively small set of potential confounders. Some other potential confounders of 

interest that warrant future investigation with regard to the development of adolescent 

obesity include genetic factors, self-perception, and exposures to mental health stressors, 

endocrine disruptors, and community-level variables such as aspects of the built 

environment [38–40]. Though there is clearly a benefit to reducing the bias of residual 

confounding, new challenges arise, such as greater potential for the violating positivity 

assumption, which requires that there be variation of the exposure variable within strata of 

the covariates; this assumption generally becomes harder to meet as more covariates are 

included in the analysis [41]. In our application, even with a relatively small set of 

covariates, some dimension reduction measures, such as dichotomizing continuous 

variables, was needed. Of course, that is one of the challenges of estimating ambitious 

parameters with relatively small sample sizes.
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Recognizing the limitations of this analysis, we have provided a framework for estimation of 

longitudinal interventions related to childhood obesity from observational data. This analysis 

has demonstrated how a very flexible, and yet user-friendly implementation of estimation of 

intervention rules via longitudinal TMLE (ltmle) [28, 42] provides a powerful way of 

estimating parameters with direct public health relevance within a large (honest) statistical 

model.
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Figure 1. 
Nonparametric bootstrap distribution of TMLE estimator of ψ5
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Table 1

Steps of defining parameter and estimate in the ICE formulation

Step Definition of parameter in ICE formulation Estimation step in the obesity study

1
Define the conditional expectation of the outcome with covariate 
history set to observed, and the treatment history to the desired 

intervention, or: 

Regress the final BMI z-score, Y, given its parents: 

, get the predicted value at the treatment 

history of interest: 

2

Take the expectation of  based on the covariate and 
intervention of interest up to 10 years (in our ordering treatment 
comes after L-process measured within the same interval), 

Regress  against parents of  and then 

predicted at .

3

Repeat to define Regress  against the parents of  and predict 

at 

4
The parameter of interest is: Derive the estimate of the treatment-specific mean by taking an 

average of the , or 
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Table 2

Characteristics of the sample of NGHS participants (N = 530) at three time points

Variable Year 0 Year 5 Year 10

mean (SD1) mean (SD) mean (SD)

BMI z-score 0.41 (1.1) 0.72 (1.0) 0.53 (1.1)

Total calories (kcal) 1,953 (607) 1,894 (699) 1,972 (717)

Physical activity (METS-times/wk) 29.1 (17.9) 19.7 (14.1) 11.4 (17.2)

Hours of TV/video per week 33.0 (18.4) 35.5 (20.6) 30.6 (24.4)

Perceived stress2 25.3 (6.8) 24.0 (6.4) 23.4 (8.0)

Global self-worth score3 3.1 (0.6) 3.1 (0.7) 3.2 (0.6)

N (%) N (%) N (%)

Race

 White 270 (51%)

 Black 262 (49%) – –

Pubertal stage

 Prepuberty 334 (63%) 0 (0%) 0 (0%)

 Early maturity 172 (32%) 32 (6%) 0 (0%)

 Midpuberty 24 (5%) 400 (75%) 0 (0%)

 Maturity 0 (0%) 98 (18%) 530 (100%)

Notes:

1
Standard deviation

2
A 10-item scale developed by Cohen with scores ranging from 0 to 40 (1983)

3
A 6-item scale developed by Harter with scores ranging from 1 to 4 (1982).
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Table 3

Number and percent following the early interventions on physical activity and total calories

1, 1, 1 1, 0, 0 0, 0, 1 0, 0, 0

Physical activity 102 (19%) 132 (25%) 10 (2%) 45 (8%)

Energy intake 130 (25%) 63 (12%) 35 (7%) 54 (10%)
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Table 4

Comparison of the point estimates for each intervention using 4 different estimators

Intervention Estimation method Intervention

Physical activity Energy intake

E(Y(0,0,0)) NAÏVE 0.747 0.526

MTLR 0.636 0.662

SL 0.590 0.599

TMLE 0.548 0.695

E(Y(0,0,1)) NAÏVE 0.400 0.638

MTLR 0.729 0.582

SL 0.636 0.561

TMLE 0.641 0.508

E(Y(1,0,0)) NAÏVE 0.526 0.433

MTLR 0.490 0.549

SL 0.505 0.535

TMLE 0.528 0.597

E(Y(1,1,1)) NAÏVE 0.399 0.555

MTLR 0.522 0.434

SL 0.531 0.476

TMLE 0.597 0.503

E(Ybar) NAÏVE 0.533 0.533

MTLR 0.533 0.533

SL 0.531 0.531

TMLE 0.540 0.528

Notes: A simple naïve (unadjusted) estimator (NAÏVE), ICE-based substitution estimates using (a) main effects multivariable linear regression 
(MTLR), (b) SL, and (c) SL augmented via Targeted Maximum-Likelihood Estimation (TMLE). Values are based on BMI z-scores.
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Table 5

Estimates for specific intervention comparisons with different estimation methods

Method Intervention

Physical activity (95% CI) Energy intake (95% CI)

Ψ1 NAÏVE −0.134 (−0.429, 0.100) −0.056 (−0.254, 0.212)

MTLR −0.010 (−0.122, 0.103) −0.099 (−0.166, −0.027)

SL 0.0001 (−0.115, 0.086) −0.055 (−0.167, −0.047)*

TMLE 0.057 (−0.520, 0.634) −0.026 (−0.458, 0.406)

Ψ2 NAÏVE −0.002 (0.617, 0.497) 0.161 (−0.471, 0.237)

MTLR −0.206 (−0.382, −0.032)* −0.148 (−0.298, 0.019)

SL −0.106 (−0.345, 0.043) −0.085 (−0.306, −0.018)*

TMLE −0.044 (−0.304, 0.216) −0.005 (−0.227, 0.217)

Ψ3 NAÏVE 0.125 (−0.481, 0.582) −0.103 (−0.628, 0.163)

MTLR −0.239 (−0.436, −0.057) −0.032 (−0.206, 0.145)

SL −0.131 (−0.363, −0.064)* −0.0261 (−0.200, 0.100)

TMLE −0.114 (−0.330, 0.103) 0.089 (−0.157, 0.335)

Ψ4 NAÏVE −0.007 (−0.226, 0.149) 0.002 (−0.426, 0.174)

MTLR −0.437 (−0.110, 0.022) 0.017 (−0.087, 0.114)

SL −0.025 (−0.093, 0.020) 0.004 (−0.080, 0.095)

TMLE −0.012 (−0.620, 0.596) 0.068 (−0.354, 0.491)

Ψ5 NAÏVE −0.348 (−0.646, −0.095)* −0.056 (−0.325, 0.307)

MTLR −0.114 (−0.312, 0.083) −0.228 (−0.388, −0.065)*

SL −0.059 (−0.271, 0.076) −0.123 (−0.400, −0.108)*

TMLE 0.049 (−0.170, 0.269) −0.192 (−0.374, −0.010)*

Notes: Naïve corresponds to an unadjusted comparison under different interventions. MTLR corresponds to main effects multivariable linear 
regression. SL corresponds to a simple substitution estimator based on SL. TMLE corresponds to targeted maximum-likelihood estimates. Values 
are differences in BMI z-scores, and

*
indicates statistically significant association.
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