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Abstract

Systems approaches to analyzing disease phenotype networks in combination with protein 

functional interaction networks have great potential in illuminating disease pathophysiological 

mechanisms. While many genetic networks are readily available, disease phenotype networks 

remain largely incomplete. In this study, we built a large-scale Disease Manifestation Network 

(DMN) from 50,543 highly accurate disease-manifestation semantic relationships in the United 

Medical Language System (UMLS). Our new phenotype network contains 2305 nodes and 

373,527 weighted edges to represent the disease phenotypic similarities. We first compared DMN 

with the networks representing genetic relationships among diseases, and demonstrated that the 

phenotype clustering in DMN reflects common disease genetics. Then we compared DMN with a 

widely-used disease phenotype network in previous gene discovery studies, called mimMiner, 

which was extracted from the textual descriptions in Online Mendelian Inheritance in Man 

(OMIM). We demonstrated that DMN contains different knowledge from the existing phenotype 

data source. Finally, a case study on Marfan syndrome further proved that DMN contains useful 

information and can provide leads to discover unknown disease causes. Integrating DMN in 

systems approaches with mimMiner and other data offers the opportunities to predict novel 

disease genetics. We made DMN publicly available at nlp/case.edu/public/data/DMN.
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1. Introduction

Linking complex human diseases to their genetic basis remains a challenging task. For 

computational strategies to discover candidate disease genes, incorporating new data may 
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lead to new discoveries. Traditional methods prioritized genes for a disease if the genes have 

similar functions with the known disease genes [2,38,44,39,32,17,48]. Recent studies 

incorporate disease phenotype similarities in addition to the genomic data to increase the 

ability of identifying new disease genes [19,23,43,46,47,16,35,37], assuming that similar 

phenotypes and overlapping genetic causes are correlated [5,29,15,2,9,10].

However, the disease phenotype networks used in current gene prediction approaches 

remain largely incomplete. Most phenotype databases were constructed through mining 

textual phenotype descriptions [18,6]. For example, van Driel and the colleagues extracted 

disease-phenotype associations from OMIM through text mining, calculated the pairwise 

disease similarities, and stored them in the database called mimMiner [42], which is one of 

the most widely-used phenotype networks in recent disease gene discovery methods 

[23,43,33,36,16]. Combining different phenotype data has the potential to reduce the bias in 

each data source and improve the network-based prediction models [26,30]. Therefore, we 

explored new accurate and publicly accessible disease phenotype data in addition to the 

existing phenotype networks.

In this study, we created Disease Manifestation Network (DMN), using the highly accurate 

and structured clinical manifestation data from Unified Medical Language System (UMLS) 

[24,4,25]. Clinical manifestation captures a major aspect of disease phenotype and can 

predict disease causes [5]. For example, the Stickler syndrome, Marshall syndrome and 

Otospondylomegaepiphyseal dysplasia (OSMED) have highly similar manifestations and 

also involve mutations in interacting collagen genes COL2A1, COL11A2, and COL11A1, 

respectively [1]. The UMLS semantic network currently uses 50,543 disease-manifestation 

semantic relationships to explicitly link 2,305 diseases to their clinical manifestations. In 

this knowledge base, all disease and manifestation terms are formally represented by unified 

concepts and the semantic relationships between concepts were collected from multiple 

different ontologies.

We hypothesized that DMN not only reflects known disease-gene relationships, but also 

contains different phenotypic knowledge compared with mimMiner. We tested the 

hypothesis through network comparative analysis between DMN, mimMiner [42], and the 

two variants of human disease network (HDN) [12], which connects diseases if they share 

genes. The correlation between DMN and HDNs indicated that DMN reflects existing 

knowledge on genetic relationships among diseases. The comparison between DMN and 

mimMiner demonstrated that the two phenotype networks are largely complementary in 

nodes, edges and community structures. The overall analysis suggests that combining DMN 

with previous phenotype data sources, such as mimMiner, may potentially improve the data-

driven methods for biomedical applications, such as disease gene discovery and drug 

repositioning.

2. Data and methods

Our study consists of the following steps (Fig. 1): (1) Constructed DMN using the disease-

manifestation associations from UMLS; (2) compare phenotypic relationships in DMN and 
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genetic relationships among diseases; (3) compared DMN with mimMiner [42]; and (4) 

conducted a case study on the phenotypic relationships of Marfan syndrome in DMN.

2.1. Construct DMN using disease-manifestation associations in UMLS

We first extracted disease-manifestation relationships from the UMLS file MRREL.RRF 

(2013 version). The file contains 647 different kinds of semantic relationships between 

biomedical concepts. We collected the concepts pairs linked by the “has manifestation” 

relationship, and obtained 50,543 disease-manifestation pairs. The disease-manifestation 

relationships come from OMIM [14], Ultrasound Structured Attribute Reporting [3], and 

Minimal Standard Digestive Endoscopy Terminology [40]. OMIM is the major contributor 

among these data sources.

The manifestation terms vary greatly in abundance. For example, common manifestations 

such as “seizures” are associated with many diseases, while rare manifestations such as 

“Amegakaryocytic thrombocytopenia” are only associated with one disease. We used the 

information content (1) to weight each manifestation concept.

(1)

Variable wc is the weight of the manifestation concept c, nc is the number of diseases 

associated with manifestation c, and N is the total number of diseases. Then we modeled the 

manifestation similarity between disease x and y by the cosine of their feature vectors in (2), 

in which the feature vectors consist of manifestations xi and yi for disease x and y. The 

cosine similarity was used before [19,42] to quantify phenotype overlaps.

(2)

We constructed DMN as a weighted network with the manifestation similarities. The edges 

weights are in the range (0, 1].

2.2. Compare phenotypic relationships in DMN with genetic disease associations

We conducted two experiments to evaluate whether the phenotypic relationships in DMN 

reflect genetic associations among diseases. The first experiment is to calculate the 

correlation between the disease similarities in DMN and two quantified measures of genetic 

associations. We first ranked the edges (disease pairs) in DMN by their weights (disease 

similarities) from large to small. For top N disease pairs, we counted the percentage of 

disease pairs that share associated genes in OMIM and the average number of genes shared 

by the N disease pairs. Then we calculated the Pearson’s correlations between N and the 

genetic measures.

In the second experiment, we compared the network topologies between DMN and two 

genetic disease networks. A well-studied genetic disease network is HDN, in which diseases 

were connected if they share associated genes in OMIM and edges were weighted by the 

number of overlapping genes [12]. Here we inherited the network construction method of 
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HDN, but used two different disease-gene association data: the updated data in OMIM 

(April, 2013) and GWAS catalog (August, 2013). We represented the disease terms in 

OMIM-based HDN and GWAS-based HDN with 2974 and 355 UMLS concept unique 

identifiers, respectively, to enable the comparison with DMN. The two genetic disease 

networks both contains rich information of disease genetics [20,22], but are largely different. 

The OMIM-based HDN mostly contains Mendelian diseases with strong genetic causes; the 

GWAS-based HDN mostly contains common complex diseases. The two networks only 

share 45 diseases.

We compared the edges and community structures between DMN and the two HDNs. 

Network community structure reveals the biological network properties and offered insights 

into cell functions, protein interactions, and disease dynamics [8,31,34]. We applied a 

widely-used community detection algorithm [28] and calculated the two-way similarities 

between community groups:

(3)

(4)

|X| and |Y| are the number of disease pairs that appear in the same community in DMN and 

HDN, respectively. |X∩Y| is the count of disease pairs that were grouped into one 

community in both networks.

We tested the significance of edge and community similarities between DMN and HDNs by 

creating a background distribution of similarities expected at random. We kept the number 

and size of communities in DMN, and randomly swapped the assignments of disease nodes 

into each community. Then we linked nodes inside a community with probability Pin, and 

those across communities with probability Pout. The Pin and Pout were estimated from the 

edge density within and between communities in DMN, respectively. We repeated 100 times 

of randomizing DMN, and compared each random network to HDNs to create the 

background signals. Finally, we compared the observed similarities with the background 

signals using Wilcoxon signed-rank test.

2.3. Compare DMN with the widely-used disease phenotype network mimMiner

DMN and mimMiner both contain phenotypic knowledge based on clinical observations. 

Here, we compared DMN with mimMiner to demonstrate that the two phenotype networks 

contain different knowledge, so that combining them in applications, such as disease gene 

discovery and drug repositioning, may potentially lead to improved performance. We first 

mapped the 5080 diseases in mimMiner from OMIM identifiers to UMLS concept unique 

identifiers to allow the comparison. Since text mining introduced false positive disease-

phenotype relationships, we needed to tradeoff between the data coverage and accuracy in 

mimMiner. Based on previous analysis [42], we chose to connect two disease nodes if their 

similarities are above 0.3. The network of mimMiner contains 4,391 disease nodes after 

these processes. We then compared the node, edges and community structures between 

DMN with mimMiner.
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2.4. Case study on Marfan syndrome

Marfan syndrome is a common inherited disorder of the connective tissue, occurring once in 

every 10,000 to 20,000 individuals [45]. About 75% of patients with Marfan syndrome have 

mutations in the FBN1 gene, which encodes brillin-1, a protein that provides strength and 

flexibility to connective tissue. Despite this well-defined mutation, gene FBN1 cannot 

always predict the wide variety of phenotypes in patients, and other unknown genetic factors 

that account for the diversified phenotypes of Marfan syndrome may exist. Here, we 

conducted a case study on Marfan syndrome and its phenotype relationships in DMN. We 

compared the corresponding subnetworks in DMN, mimMiner and HDN to show that the 

DMN contains different phenotypic knowledge and has the potential in deepening the 

understanding of MS pathogenesis.

3. Results

3.1. DMN network properties

DMN contains 2305 nodes and 373,527 edges. The network has a long-tail degree 

distribution and is robust to random removal of nodes. Removing the nodes with large 

degrees can quickly break down the network into small components (Fig. 2). Table 1 lists 

the network properties of DMN. To understand DMN better, we also showed the properties 

of three other disease networks, including OMIM-based HDN, GWAS-based HDN and 

mimMiner. DMN is denser than mimMiner, but the nodes tend to cluster into disjoint 

components. Both the phenotype networks are evidently different from the genetic 

networks: DMN and mimMiner are denser (higher network density), less cliquish (lower 

clustering coefficients) and more connective (less connected components) than HDNs. Fig. 3 

shows example subnetworks from DMN, mimMiner, and HDNs containing randomly 

sampled nodes. In contrast to the densely-connected subnetworks of DMN and mimMiner, 

OMIM-based HDN mostly contains small components such as triangles and chains. GWAS-

based HDN contains complex diseases, which are often associated with multiple genes, thus 

its edge density is higher than OMIM-based HDN, but still lower than DMN.

The differences in global structures between phenotype and genetic disease networks 

indicate that we may have not fully discovered the genes accounting for the observed 

phenotypic connections. Systematic studying the disease phenotype networks offers a 

chance to detect new disease genes, particularly for the disease whose genetic basis is 

completely unknown. Note that non-genetic factors, such as common environments and life 

styles, may also contribute to the overlapping phenotypes. To evaluated the potential of 

phenotype networks to predict disease genes, we show the correlation between phenotypic 

and genetic relationships in the next section.

3.2. DMN partially correlates with the genetic disease networks

In the first experiment, we found that the manifestation similarities in DMN have 

correlations with quantified measures of disease genetic associations. Fig. 4 (left) shows that 

the disease pairs with larger manifestation similarities (higher ranks) are more likely to share 

genes. The Pearson’s correlation between the ranks of manifestation similarities and the 

probabilities of sharing gene is −0.603 (p≪ E−8). Also, Fig. 4 (right) shows that diseases 

Chen et al. Page 5

J Biomed Inform. Author manuscript; available in PMC 2015 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with larger manifestation similarities tend to share more genes. The Pearson’s correlation 

between the ranks of manifestation similarities and average number of shared genes is 

−0.647 (p≪ E−8).

We found that only a small percentage of disease pairs share associated genes despite the 

significant correlations between phenotype similarities and genetic associations. For 

example, among the top five disease pairs with highest phenotype similarities, only one pair 

shared associated genes. This observation indicates that the overlapping manifestations may 

result from unknown genes, shared pathways, protein complexes, or common environment. 

Discovering unknown genetic factors responsible for overlapping phenotypes among 

diseases is one of the goals of studying the disease phenotype networks.

In the second experiment, we compared the edges and community structures of DMN with 

the genetic disease networks. Table 2 shows that the number of common edges between 

DMN and HDNs is significant higher than the random distribution. We found that 

mimMiner also contains 520 common edges with OMIM-based HDN and 14 with GWAS-

based HDN. However, DMN and mimMiner share different disease connections with 

HDNs: 76 of 278 (27%) edge overlaps between DMN and OMIM-based HDN do not appear 

in mimMiner, and 5 of 6 edge overlaps between DMN and GWAS-based HDN do not 

appear in mimMiner.

Table 3 lists the community structure similarities between DMN and HDNs. If two diseases 

are grouped together in OMIM-based HDN, they have over 60% chances to stay in one 

community in DMN. On the other hand, diseases in one community in DMN have 0.6% 

chance of being grouped together in OMIM-based HDN. The absolute values of community 

structure similarities may be biased: OMIM-based HDN mostly contains small size clusters, 

and the probability of two diseases share one cluster is naturally low. However, statistical 

test shows that the similarities in community partitions between DMN and HDN are 

significantly higher than the random distribution, indicating that the observed similarities 

reflect intrinsic correlations between the biological networks. The community structure 

correlation between DMN and GWAS-based HDN is also significant compared with random 

signals.

In summary, DMN is partially correlated with the genetic disease networks in both edges 

and community structures. On the one hand, the phenotype relationships among diseases in 

DMN reflects shared genetic mechanisms. On the other hand, many disease-associated 

genes and pathways may have not been discovered yet. In addition, comparative analysis to 

HDNs also show that DMN and mimMiner contain different knowledge. The phenotype 

relationships in DMN have the potential to provide leads for discovering new disease 

genetics.

3.3. DMN contains knowledge different from mimMiner

We compared DMN with the widely-used phenotype network mimMiner to show their 

differences. Table 4 summarizes their differences in nodes, edges, and community 

structures. Though DMN shares 75% of the nodes with mimMiner, 295,975 edges (79.2%) 

are unique and do not appear in mimMiner. Examples of the unique edges are 
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schizophrenia–myopia, autism–tuberous sclerosis, and familial mediterranean fever–alport 

syndrome. We extracted all unique disease pairs in DMN and made the data publicly 

accessible. In addition, the community structures of DMN and mimMiner are partly 

correlated. The community similarities in the two directions are comparable and both 

moderate, showing that we cannot completely predict the phenotype clusters in one network 

based on the other. Therefore, the knowledge captured in DMN and mim-Miner is 

complementary. Integrating these two networks is valuable for better prediction of candidate 

disease genes.

3.4. Case study of Marfan syndrome

We have demonstrated the difference between DMN and mimMiner through network 

comparison. In this section, we conducted a case study on Marfan syndrome (Ms) to further 

compare disease relationships in DMN and mimMiner. The direct neighbors of MS in DMN 

(665 nodes) and mimMiner (363 nodes) have overlaps (241 common neighbors), but are 

largely different. Fig. 5 shows the top twenty MS neighbors with the highest weights in 

DMN, mimMiner and OMIM-based HDN (GWAS-based HDN does not contain MS, 

therefore is not shown). The difference shows that the phenotype networks may contain new 

leads to discover the unknown causes of MS. The subgraphs of DMN (Fig. 5(a)) and 

mimMiner (Fig. 5(b)) share six of the twenty nodes. The edges in the DMN subgraph vary 

greatly in weights, while those in the mimMiner subgraph have almost uniform weights. 

Both the phenotype networks contain disease relationships that cannot be found in the other, 

hence are able to complement each other. For example, Lujan-Fryns syndrome (LFS) is 

among the top neighbors of MS in DMN, but is not connected to MS in mimMiner. Many 

literatures support the phenotype similarities between LFS and MS, such as tall stature, long 

limbs, and heart problems [11,41,27,13]. Inspired by these common phenotype features, a 

few studies looked for new genetic origins of MS and LFS [21,7].

We manually traced the data sources to explain the different connections between LFS and 

MS in the two phenotype networks. For DMN, we extracted disease-manifestation 

associations from UMLS ontologies and found seven common manifestations between LFS 

and MS, such as “Contracture of joint,” “Congenital funnel chest,” and “Aneurysm of 

ascending aorta.” For mimMiner, we manually curated both full text and clinical synopsis 

fields from OMIM disease records for both diseases, but only found three out of the seven 

common manifestations in UMLS shared by the two diseases. In addition, and text mining 

approaches introduced false signals when extracting disease-phenotype associations. As a 

result, the LFS-MS connection has a weight below the threshold in mimMiner.

One disadvantage of mimMiner is that we need to control the false positive disease-

phenotype associations introduced by text mining. Practical applications, such as candidate 

disease gene prediction tasks, chose stringent threshold for disease similarities, which is 

often higher than 0.3 [19,23]. However, one threshold hardly fits all diseases. Directly 

removing disease pairs with small similarities may cause the miss of true disease 

connections such as LFS-MS. The disease-phenotype associations in UMLS were 

observations rather than the result of text mining, hence do not require the users to control 
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the false positive signals. Therefore, combining DMN with mimMiner may improve the 

quality of disease phenotype network.

4. Discussion

We have constructed a phenotype network using the clinical manifestation data from the 

biomedical ontologies, and demonstrated the correlation between the manifestations based 

phenotype relationships and genetic associations among diseases. We have also compared 

DMN with another phenotype network that has been widely-used in candidate gene 

selection. Results show that the two phenotype networks are largely complementary.

Our work has a few limitations and can be improved in future studies. First, the 

manifestation data in UMLS is highly accurate but is limited in size. Though we have used 

50,543 disease-manifestation pairs to construct DMN, the number of nodes in DMN is 

smaller than that in mimMiner. To increase the coverage of diseases, we need to integrate 

DMN and mimMiner and obtain a more complete phenotype network. In addition, many 

nodes in DMN are syndromes and rare diseases. Phenotype data obtained from other 

sources, such as literature, contains information of more common diseases and can greatly 

complement DMN. Currently, we are developing approaches to integrate heterogeneous 

phenotype networks, including DMN, mimMiner, and the network constructed from the 

disease-manifestation relationships based on literature mining [49].

Second, the comparison in network community indicate differences in the community 

structures between DMN and HDNs. One possible reason is that many disease associated 

genes may have not been discovered yet and the community structure of the genetic 

networks may largely bias towards known knowledge. In the future, we plan to discover 

new disease-gene associations by analyzing the observed phenotype similarities. Also, since 

similar manifestations between diseases may be caused by common functional modules or 

pathways, we will integrate gene functional relationships with the phenotype network in 

detecting new disease mechanisms.

Third, phenotypic data is high-dimensional, containing not only manifestations, but also 

other aspects on levels from genes, cells to organisms. Though our network uses highly 

accurate manifestation data, it can only reflect one aspect of the phenotype associations. In 

the future, we will integrate the DMN with multiple other kind of phenotype data, and 

incorporate the comprehensive phenotype network in disease gene discovering methods.

Finally, the scope of this study is to demonstrate the potential of DMN to predict unknown 

disease mechanisms. Our analysis showed the significant positive correlation between 

manifestation similarities and genetic overlaps among diseases through comparative 

analysis. To use DMN in discovering new disease mechanisms, however, we still need to 

develop systems approaches and exploit other network characteristics, such as network local 

structures, which are not discussed in this study.
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5. Conclusions

Systems approaches in studying disease phenotype networks have great potential in 

discovering unknown disease mechanisms. Currently, disease phenotype networks remain 

largely incomplete. Clinical manifestation is an important aspect of the phenotype data. In 

this study, we built a disease phenotype network, DMN, using the high quality disease-

manifestation semantic relationship data from ontologies in the UMLS. Phenotype-genotype 

correlation analysis based on network comparison have demonstrated that the phenotype 

relationships in DMN reflects overlapping genetic mechanisms of diseases, but also contains 

new leads to discover genetic disease causes. Also, we have shown that DMN and a widely-

used phenotype network are complementary. With the integration of phenotype data from 

other sources, our network could strengthen current candidate disease-gene selection 

methods.
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Fig. 1. 
The four steps of network analysis for DMN.
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Fig. 2. 
Robustness of DMN with respect to the removal of random nodes and hub nodes.
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Fig. 3. 
Randomly selected subgraphs of (a) DMN, (b) mimMiner, (c) OMIM-based HDN and (d) 

GWAS-based HDN. Only part of the node labels are shown in the figure due to space limit. 

In contrast to DMN and mimMiner, the sub-graphs in HDNs are less connective and 

cliquish.
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Fig. 4. 
Correlation between manifestation similarities and genetic associations. Left: Correlation 

between proportion of genetically associated disease pairs (x-axis) and the phenotype 

similarity ranks (y-axis) in DMN. Right: Correlation between the average numbers of genes 

shared by disease pairs (x-axis) and the phenotype ranks (y-axis) in DMN. Diseases with 

larger phenotype similarity in DMN tend have stronger genetic association.
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Fig. 5. 
Top 20 nodes directly connected to Marfan syndrome with the highest weights in (a) DMN, 

(b) mimMiner, and (c) HDN. The common nodes among the three subnetworks are 

highlighted. The thickness of edges represents the weights.
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Table 2

Compare the edge overlaps N between DMN and the genetic disease networks. Network B′ represents the 

randomized graph that preserves the properties of Network B. Column N(A,B′) represents the average number 

of edge overlap comparing network A and the randomized networks.

Network A Network B N(A,B) N(A,B′) P-value

HDN(OMIM) DMN 278 65.4 ≪ E−8

HDN(GWAS) DMN     6   2.93 ≪ E−8
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