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Cadmium is a toxic pollutant with occupational and environmental significance, due

to its diverse toxic effects. Supramolecules that conjugate and decontaminate toxic

metals have potential for use in treatment of cadmium intoxication. In addition,

metal-coordinating ability has been postulated to contribute to the cytotoxic effects

of anti-tumor agents such as cisplatin or bleomycin. Thiacalixarenes, cyclic oligomers

of p-alkylphenol bridged by sulfur atoms, are supramolecules known to have potent

coordinating ability to metal ions. In this study, we show that cadmium-coordinated

thiacalix[4]arene tetrasulfate (TC4ATS-Cd) exhibits an anti-proliferative effect

against T-cell leukemia cells. Cadmium exhibited cytotoxicity with IC50 values rang-

ing from 36 to 129 lM against epithelia-derived cancer cell lines, while TC4ATS-Cd

elicited no significant cytotoxicity (IC50 > 947 lM). However, a number of T-cell leu-

kemia cell lines exhibited marked sensitivity to TC4ATS-Cd. In Jurkat cells, toxicity of

TC4ATS-Cd occurred with an IC50 of 6.9 lM, which is comparable to that of 6.5 lM
observed for cadmium alone. TC4ATS-Cd induced apoptotic cell death through acti-

vation of caspase-3 in Jurkat cells. In a xenograft model, TC4ATS-Cd (13 mg ⁄ kg)
treatment significantly suppressed the tumor growth of Jurkat cells in mice. In addi-

tion, TC4ATS-Cd-treated mice exhibited significantly less cadmium accumulation in

liver and kidney compared to equimolar cadmium-treated mice. These results sug-

gest that cadmium-coordinated supramolecules may have therapeutic potential for

treatment of T-cell leukemia.

C admium is a nonessential transition metal and a toxic pol-
lutant with occupational and environmental significance. It

has been classified as a human carcinogen by the International
Agency for Research on Cancer (IARC) and the International
Programme on Chemical Safety (IPCS).(1,2) Post-mortem analy-
sis of cadmium level in autopsied human organs shows that
most of the body cadmium burden is retained in the kidneys and
liver. The biological half-life in the kidneys was estimated to be
12–20 years, while in the liver it may be somewhat shorter.(2,3)

ln Japan, the ingestion of cadmium-contaminated rice resulted
in Itai-itai disease, characterized by kidney dysfunction, osteo-
malacia, osteoporosis and painful bone fractures.(4)

Chelating therapy is one of the most effective strategies for
removing accumulated toxic metals such as cadmium from
biological systems. So far, a number of chelating agents of dif-
ferent types have been reported as effective means of counter-
ing cadmium toxicity.(5–8) Recently, we have focused on the
ability of one particular supramolecule to elicit this effect. Ca-
lixarenes are cyclic oligomers of p-alkylphenol bridged by a
methylene group.(9) These compounds are recognized as

important host molecules in supramolecular chemistry because
of their ability to conjugate small molecules in hydrophobic
cavities. Thiacalixarenes, newly developed calixarenes in
which the methylene groups are replaced with sulfur atoms,
were reported to exhibit improved ability to coordinate with
metal ions, as compared to calixarenes.(10,11) Due to their coor-
dination ability, thiacalixarenes may be capable of decontami-
nating cadmium and, therefore, could have therapeutic
potential for use in cadmium intoxication. When we evaluated
the removal of cadmium in an in vitro cellular system using
water-soluble p-tetrasulfonated thiacalix[4]arene (TC4ATS,
Fig. 1), cadmium toxicity against liver-derived and stomach-
derived epithelial cell lines was found to be overcome by this
supramolecule (Fig. S1). However, only slight decontamination
activity was observed in T-cell leukemia cell lines (Fig. S1).
On the basis of these data, we hypothesize that the coordina-
tion complex of TC4ATS with cadmium (TC4ATS-Cd) exerts
anti-proliferative effects selectively against leukemia cells.
In this study, we synthesized TC4ATS-Cd complex (Fig. 1)

and assessed whether this metal complex elicits cytotoxic anti-
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tumor effects against various cell lines. TC4ATS-Cd complex
exhibited an anti-proliferative effect against leukemia cells
in vitro and suppressed tumor growth in a mouse xenograft
model using Jurkat T-cell leukemia cell lines, without eliciting
obvious side effects.

Materials and Methods

Reagents. Cadmium chloride and cadmium acetate were
obtained from Wako (Osaka, Japan). MTT, NADH and sodium
pyruvate were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Ac-DEVD-MCA was obtained from Peptide Institute
(Osaka, Japan).

Instrumental analysis.
1H-NMR spectra were measured at

300 MHz using a DPX-300 spectrometer (Bruker, Billerica,
MA, USA). ESI-MS spectra were analyzed by API4000
(Applied Biosystems, Forester City, CA, USA). Elemental
analysis and quantitation of metals were performed using a
graphite furnace atomic absorption spectrometer (GFAAS)
AA-6300 and GFA-EX7i (Shimadzu, Kyoto, Japan).

Synthesis of TC4ATS-Cd complex. TC4ATS was synthesized
as TC4ATS sodium salt (TC4ATS-Na), as described previ-
ously.(12,13) TC4ATS-Cd complex was synthesized by coordi-
nation of cadmium ion to TC4ATS. Briefly, an equimolar
mixture of TC4ATS-Na and cadmium acetate was stirred in
water. The resulting precipitate was recovered by filtration,
washed with isopropanol, and dried to yield TC4ATS-Cd
complex as a white powder. The molecular formula for
TC4ATS-Cd was determined by NMR, ESI-MS and
elemental analysis. 1H-NMR (300 MHz, D2O) d 8.09 ppm
(s, ArH, 8H); ESI-MS for TC4ATS-Cd�2Na (H2O ⁄MeOH)
m/z: 970.9 (M-H)�; elemental analysis for C24H12O16S8-
Na2Cd, calcd: Cd 11.6, Na 4.7, found: Cd 12.4, Na 4.3.

Cell culture. Hepatoma cell lines FLC-4 were provided by Dr
S. Nagamori (Kyorin University, Japan). Breast adenocarcinoma
cell lines, MCF7, and gastric adenocarcinoma cell lines, AGS,
were provided by the Department of Chest, Breast and Endo-
crine Surgery, Akita University, Japan. Colon carcinoma cell
lines, HCT116, and T-cell leukemia cell lines, Jurkat, were pro-
vided by Dr H. Tomoda (Kitasato University, Japan). Esophageal
carcinoma cell lines, TE4, and T-cell leukemia cell lines, HPB-
ALL, HUT78 and PEER, were obtained from Riken Bioresource
Center, Japan. Embryonic kidney cell lines, HEK293, were pro-
vided by the Department of Hematology, Nephrology and Rheu-
matology, Akita University. Promyelocytic leukemia cell lines,
HL-60, and T-cell leukemia cell lines, JKT-beta-del, were
obtained from the Japanese Collection of Research Bioresources,
Japan. FLC-4, MCF7 and HCT116 cells were cultured in
DMEM ⁄F12, Eagle’s MEM containing 10 lg ⁄mL insulin and
McCoy’s 5A, respectively. AGS and HEK293 cells were cul-
tured in DMEM. TE4, Jurkat, HPB-ALL, HUT78, PEER, HL-60

and JKT-beta-del cells were cultured in PRMI-1460. Each me-
dium was supplemented with 10% FBS, 100 units ⁄mL penicillin,
100 lg ⁄mL streptomycin and 2.5 lg ⁄mL amphotericin B. Cells
were cultured in a humidified 5% CO2 atmosphere at 37°C.

MTT assay. Cytotoxicity was evaluated using MTT assay.
Epithelia-derived cell lines were seeded in 96-well plates 24 h
prior to the addition of test compounds, and then incubated at
37°C for an additional 48 h. Leukemia cell lines were cultured
in 96-well plates with test compounds at 37°C for 48 h. After
the treatment, MTT was added and incubated for 4 h. After
incubation, extraction solution (40% dimethylformamide, 2%
CH3COOH, 0.03 M HCl and 20% SDS) was added and mixed
thoroughly by agitation overnight at room temperature. Cyto-
toxicity was determined by measuring optical density at
570 nm using a microplate reader (Model 550; Bio-Rad, Her-
cules, CA, USA).

Lactate dehydrogenase assay. Jurkat cells were incubated in
96-well plates with TC4ATS-Cd at 37°C for 48 h. After treat-
ment, cell-free media were recovered by centrifugation at
3,000 rpm for 5 min. Cell-free media were mixed with
500 lM NADH in 96-well plates. After a 10 min-agitation,
lactate dehydrogenase (LDH) reaction was started by the addi-
tion of 4 mM sodium pyruvate. Oxidation of NADH to NAD+,
accompanied by the conversion of pyruvate to lactate, was
monitored by measuring the decrease in absorbance at 340 nm
using Infinite M200 microplate reader (TECAN, M€annedorf,
Switzerland). LDH activity was calculated as the rate of
decrease in NADH.

Western blot analysis. Leukemia cell lines were cultured with
test compounds at the indicated concentration for 24 h. After
treatment, cell lysates were prepared in lysis buffer (25 mM
HEPES (pH 7.5), 5 mM EDTA, 2 mM DTT and 0.1%
CHAPS) and clarified by centrifugation. After determination of
protein concentration, equal amounts of protein were subjected
to SDS-PAGE under reducing conditions. After electrophore-
sis, proteins were transferred to PVDF membranes. Membranes
were blocked with 1% skim milk and then incubated with anti-
bodies specific for activated caspase-3 (Cell Signaling Tech-
nology, Danvers, MA, USA), cleaved PARP (Cell Signaling
Technology) or b-actin (Sigma-Aldrich). After washing, the
membranes were incubated with peroxidase-conjugated sec-
ondary antibody (Sigma-Aldrich). Subsequently, targeted pro-
teins were detected using the ECL system (GE Healthcare,
Buckinghamshire, UK).

Caspase-3 assay. The activity of caspase-3 in TC4ATS-Cd-
treated cell lysates was measured by quantifying caspase-spe-
cific cleavage of a fluorogenic substrate. Cell lysates were pre-
pared using the same procedure described above for western
blot analysis. After determination of protein concentration,
equal amounts of proteins were incubated with 20 lM Ac-
DEVD-MCA in reaction buffer (25 mM HEPES [pH 7.5]),
10% glycerol, 5 mM EDTA and 10 mM DTT) in 96-well
black plates at 37°C for 2 h. Caspase-3 activity was deter-
mined by measuring fluorescence intensity using a microplate
fluorometer Fluoroskan Ascent (Excitation 355 nm ⁄ emission
460 nm; Thermo Fisher Scientific, Waltham, MA, USA).

Xenograft models. All animal experiments were conducted in
accordance with the guidelines for animal experiments in Akita Uni-
versity. Jurkat cells (5 9 107 cells) were inoculated s.c. into 6-
week-old female SCID mice (CLEA Japan, Tokyo, Japan). Twenty
days after inoculation, vehicle (saline), 3 mg ⁄kg (13 lmol ⁄kg)
CdCl2 and 13 mg ⁄kg (13 lmol ⁄kg) TC4ATS-Cd were administered
by i.p. injections three times weekly for 2 weeks (all groups, n = 5).
Body weight and tumor size were measured three times weekly.

Fig. 1. Structures of TC4ATS and TC4ATS-Cd. Structure of TC4ATS-Cd
was deduced from mass spectral data and elemental analysis.
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Tumor volume was calculated as follows: Tumor volume = (Long
length) 9 (Short length)2 9 1 ⁄2. Thirty-five days after inoculation,
mice were killed, and organs (liver, kidney, spleen and lung) and
tumors were excised and weighed.

Quantitation of cadmium levels in tumors and organs. Excised
organs and tumors were digested by 1 M HNO3 for 2 h, and
then added to 30% H2O2 to digest at 60°C. After centrifuga-
tion, cadmium contents in the supernatant were measured
using GFAAS.

Statistical analysis. All data were expressed as means � SD.
Student’s t-test was used to evaluate statistical differences
between groups. A P-value of <0.05 was considered statisti-
cally significant.

Results

Attenuated effects of TC4ATS in cadmium toxicity against

epithelia-derived cell lines in vitro. We synthesized the
TC4ATS-Cd complex via conjugation of cadmium ion with
TC4ATS-Na. Based on the results of instrumental analysis, the
molecular composition of TC4ATS-Cd was determined to be
TC4ATS-Cd·2Na (Fig. 1). We evaluated the cytotoxicity of
TC4ATS-Cd using the MTT assay and compared its effect
with that of CdCl2 in a variety of human epithelia-derived can-
cer cell lines, including FLC-4, MCF7, HCT116, AGS and
TE4, and embryonic kidney HEK293 cell lines (Fig. 2). CdCl2

elicited cytotoxicity with IC50 values of 106, 36, 47, 60, 129
and 1.9 lM against FLC-4, MCF7, HCT116, AGS, TE4 and
HEK293 cells, respectively (Fig. 2). Results for HEK293 cells
were consistent with the fact that the kidney is among the
organs with high sensitivity to cadmium.(2,3) Compared to
CdCl2, TC4ATS-Cd exhibited low cytotoxicity against any of
the tested epithelia-derived cell lines (IC50 values of 2,453,
2,208, 1,497, 947, 2,128 and 15 lM against FLC-4, MCF7,
HCT116, AGS, TE4 and HEK293 cells, respectively [Fig. 2]).
In addition, TC4ATS-Na was not associated with any detect-
able cytotoxicity (IC50 value >2 mM [Fig. 2]). In addition,
maximum tolerated concentration (=IC20 value) of TC4ATS-
Cd against FLC-4, MCF7, HCT116, AGS, TE4 and HEK293
cells were 667, 1,326, 280, 505, 454 and 6.8 lM, respectively
(Fig. 2). These data indicate that the cytotoxic effect of the
cadmium ion is attenuated by its coordination with TC4ATS
in cells of epithelial origin.

TC4ATS-Cd inhibits proliferation of leukemia cell lines in

vitro. We next evaluated the cytotoxicity of TC4ATS-Cd in a
variety of human T-cell leukemia cell lines, including Jurkat,
HPB-ALL, HUT78, PEER and JKT-beta-del cell lines, and
human promyelocytic leukemia HL-60 cell line (Fig. 3). CdCl2
exhibited cytotoxicity with IC50 values of 6.5, 9.8, 25, 28, 27
and 30 lM against Jurkat, HPB-ALL, HUT78, PEER, HL-60
and JKT-beta-del cells, respectively (Fig. 3). The sensitivities
of leukemia cells for CdCl2 were slightly higher than those of

Fig. 2. TC4ATS-Cd attenuates cadmium toxicity against epithelia-derived cells in vitro. FLC-4, MCF7, HCT116, AGS, TE4 and HEK293 cells were
treated with CdCl2, TC4ATS-Na or TC4ATS-Cd at indicated doses for 48 h. Cell viabilities were analyzed using MTT assay to determine the cytotox-
icity of tested agents. Data are presented as means � SD (n = 3).
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epithelia-derived cancer cell lines (Figs 2 and 3). In contrast to
the results obtained with epithelia-derived cells (Fig. 2), some
leukemia cell lines showed remarkable sensitivity to TC4ATS-
Cd. IC50 values for TC4ATS-Cd in Jurkat, HPB-ALL and
HUT78 were determined to be 6.9, 17 and 35 lM, respectively
(Fig. 3). In contrast, PEER, HL-60 and JKT-beta-del cells had
low sensitivity to TC4ATS-Cd (IC50 values of 144, 81 and
275 lM, respectively [Fig. 3]). Taken together, our findings
show that a kind of T-cell leukemia cell lines is highly suscep-
tible to TC4ATS-Cd in vitro.

TC4ATS-Cd induces apoptosis in T-cell leukemia cell lines. We
further investigated the cytotoxic effects of TC4ATS-Cd in
human T-cell leukemia Jurkat cells using the release of LDH
into the culture medium as an indicator of the loss of cellular
membrane integrity. TC4ATS-Cd increased LDH release from
Jurkat cells in a dose-dependent manner (Fig. 4a), suggesting
that TC4ATS-Cd induces apoptosis or necrosis. Apoptosis is a
proteolytic cascade involving several cysteine proteases that
culminates in cell death. Because caspase-3 is a key protease
in the execution of apoptosis and is activated by proteolytic
cleavage, we investigated its activation by measuring the
expression of the cleaved fragment of caspase-3 (activated cas-
pase-3). TC4ATS-Cd upregulated the levels of activated cas-
pase-3 protein in Jurkat cells (Fig. 4b,d). When caspase-3
activity was measured by fluorogenic substrate assay, incuba-
tion with TC4ATS-Cd increased its proteolytic activity in Jur-

kat cells (Fig. 4c). The cleavage of PARP, an event in the
proteolytic cascade downstream of caspase-3 activation in
apoptosis, was found to be consistently and markedly upregu-
lated in TC4ATS-Cd-treated cells (Fig. 4b). Similar to Jurkat
cells, the caspase-3 activation and the cleavage of PARP in
HPB-ALL cells were induced by treatment with 50 lM of
CdCl2 and TC4ATS-Cd (Fig. 4d). In contrast, apoptotic events
in low TC4ATS-Cd-sensitive leukemia cell lines and epithelia-
derived cell lines except for HEK293 were not elicited with
CdCl2 and TC4ATS-Cd at 50 lM (Figs 4d and S2). Thus,
TC4ATS-Cd induces cell death by activating the apoptotic
machinery in the TC4ATS-Cd-sensitive type of T-cell leuke-
mia cell lines.

In vivo anti-tumor effects of TC4ATS-Cd against T-cell leukemia

cell lines. Prior to testing the anti-tumor activity of TC4ATS-
Cd in vivo, we first conducted a preliminary experiment to
determine the maximum tolerated dose (MTD) of TC4ATS-
Cd and CdCl2. As a result of i.p. injection three times
weekly for 2 weeks into mice, MTD of TC4ATS-Cd and
CdCl2 were determined to be 13 lmol ⁄kg (13 and 3 mg ⁄kg,
respectively) (Table S1). Next, we evaluated the effects of
TC4ATS-Cd on tumor growth from Jurkat cells transplanted
into SCID mice. Twenty days after s.c. implantation of Jur-
kat cells, TC4ATS-Cd or CdCl2 were administrated by i.p.
injections three times weekly for 2 weeks, and body weight
and tumor volume were measured (Fig. S3). There was no

Fig. 3. TC4ATS-Cd inhibits proliferation of leukemia cells in vitro. Jurkat, HPB-ALL, HUT78, PEER, HL-60 and JKT-beta-del cells were treated with
CdCl2, TC4ATS-Na or TC4ATS-Cd at indicated doses for 48 h. Cell viabilities were analyzed using MTT assay to determine the cytotoxicity of tested
agents. Data are presented as means � SD (n = 3).
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(a)

(d)

(b) (c)

Fig. 4. TC4ATS-Cd induces apoptotic cell death in T-cell leukemia cells. (a) Lactate dehydrogenase (LDH) activity. Activities of LDH released into
the media of TC4ATS-Cd-trerated Jurkat cells were measured. LDH activities were calculated as the rate of decrease in NADH levels. Data are pre-
sented as means � SD (n = 3). (b) Western blot analysis of activated caspase-3 and cleaved PARP in Jurkat cells. The levels of activated caspase-3,
cleaved PARP and b-actin in TC4ATS-Cd-treated Jurkat cells were determined. (c) Caspase-3 activity. Amidolytic activity of caspase-3 in TC4ATS-
Cd-treated Jurkat cells were measured using a fluorogenic substrate. Data are presented as means � SD (n = 3). (d) Western blot analysis of acti-
vated caspase-3 and cleaved PARP in T-cell leukemia cells. The levels of activated caspase-3, cleaved PARP and b-actin in TC4ATS-Na, CdCl2 or
TC4ATS-Cd-treated T-cell leukemia cells were determined.

(a)

(c)

(b)

Fig. 5. TC4ATS-Cd suppresses tumor growth of Jurkat cells in vivo. SCID mice were inoculated s.c. with Jurkat cells. Twenty days after inocula-
tion, saline vehicle, TC4ATS-Cd (13 lmol ⁄ kg), or CdCl2 (13 lmol ⁄ kg) were administered by i.p. injection three times weekly for 2 weeks (all
groups, n = 5). Thirty-five days after inoculation, mice were killed and tissues of interest and tumors were dissected out. Tumor and organ
weights and their cadmium content were measured. (a) Images of excised tumors. Scale bars represent 1 cm. (b) Weights of excised tumor. Data
are presented as means � SD (vehicle, n = 4; TC4ATS-Cd, n = 5; CdCl2, n = 3). *P < 0.05, TC4ATS-Cd versus vehicle. (c) Mouse survival rates and
cadmium levels in each organ. Cadmium contents were measured using a graphite furnace atomic absorption spectrometer. Data are presented
as means � SD (vehicle, n = 4; TC4ATS-Cd, n = 5; CdCl2, n = 3). ND, not detected. *P < 0.05, **P < 0.01, versus CdCl2.
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significant difference in body weight changes between vehi-
cle-treated and TC4ATS-Cd-treated groups (Fig. S3b). Sur-
vival rates during the experimental period were 4 ⁄5 for
animals administered vehicle, 5 ⁄5 for TC4ATS-Cd and 3 ⁄5
for CdCl2. (Figs 5c and S3a). Tumor weights were signifi-
cantly lower in TC4ATS-Cd-treated mice, as compared to
those in vehicle-treated mice, while CdCl2 administration
induced a non-significant decrease in tumor weight (Fig. 5a,
b). Cadmium accumulation in the liver and kidney of
TC4ATS-Cd-treated mice was significantly lower than in
CdCl2-treated mice, despite the administration at an equimo-
lar dose (Fig. 5c). Consistent with the above results, no sig-
nificant atrophy was observed in the kidney tissue of
TC4ATS-Cd-treated mice, while administration of CdCl2
notably induced renal atrophy (Fig. S4). Therefore,
TC4ATS-Cd suppresses the tumor growth of T-cell leukemia
cells in a xenograft model, without any apparent side
effects.

Discussion

Cadmium is a well-known, highly toxic environmental and
industrial pollutant, which causes a number of adverse health
effects and diseases in humans, including renal dysfunc-
tion, hepatotoxicity, osteoporosis and cancer.(4,14) At the cellu-
lar level, cadmium affects cell proliferation, differentiation,
apoptosis and other cellular activities.(15–17) In developing a
new chelating approach for removing the accumulated cad-
mium from biological systems, we focused on thiacalixarene
supramolecule. Recently, TC4ATS has been reported to
remove cadmium from cadmium-contaminated soil through
extraction methods.(18) We found that TC4ATS effectively
abrogates the anti-proliferative effects of cadmium against
FLC-4 and AGS cells (Fig. S1). In contrast to its effect on
epithelia-derived cells, TC4ATS showed only a slight neutral-
izing action in Jurkat cells (Fig. S1). These preliminary studies
suggest that the complex of cadmium with TC4ATS may
exhibit selective anti-proliferative activity against leukemia
cells.
Recently, a lot of metal complexes have been evaluated as

anti-tumor agents, similar to the classical drugs such as cisplatin
or bleomycin. Two ruthenium-containing complexes, NAMI-A
and KP1019, have reached human clinical testing.(19–22) A gold-
based antirheumatic agent, auranofin, exhibits anti-tumor activ-
ity in vitro and in vivo.(23,24) Au(DMDT)Br2, a gold(III) com-
plex, inhibits tumor growth by inhibiting proteasome
activity.(25,26) Zn(PyDTC)2 and Cu(PyDTC)2, complexes cou-
pled with zinc(II) and copper(II), respectively, also have been
shown to induce cell death by inhibiting proteasome activity.(27)

Cu(8-OHQ)2, a cupper(II) complex, has been shown to reduce
cell viability in Jurkat cells.(28) Bjelogrli�c et al. have reported
that a cadmium complex, CdCl2(Hfpsesc), exhibits anti-prolifer-
ative effects against a variety of cancer cell lines.(29) Synthesized
TC4ATS-Cd complex showed anti-proliferative effects elicited
by induction of apoptosis in T-cell leukemia cell lines (Figs 3
and 4), indicating that TC4ATS is a new type of host molecule
that may be useful in the development of metal-coordinated
anti-cancer drugs.
In contrast to the cadmium complexes, the cytotoxicity of

host molecule TC4ATS-Na was not observed at doses below
1 mM in any of the tested cell lines (Figs 2 and 3). The toxic-
ity and adverse effects of TC4ATS are important issues that
need to be considered in the development of its potential clini-
cal applications as a host molecule. To our knowledge, the

bioactivity and the toxicity of TC4ATS itself have not been
reported until now. However, a large number of studies
evaluating the bioactivity of p-tetrasulfonated calix[4]arene
(C4ATS), a parent compound of TC4ATS, have been reported
in the literature, with the findings reviewed by Perret et al.(30)

Evaluation of a number of toxic effects, including hemolytic
activity, immune response and cytotoxicity towards various
cell lines, demonstrated that C4ATS is not associated with any
detectable toxicity.(31–33) In an acute toxicity test in vivo, no
toxic effects were observed at doses up to 100 mg ⁄kg.(34) Pre-
vious studies suggest that TC4ATS could be used as a host
molecule, despite the different recognition capability of
C4ATS for metal ions or organic molecules.(35) However, fur-
ther investigations are warranted to further determine the toxic-
ity of TC4ATS.
TC4ATS-Cd showed no anti-proliferative effects in epithe-

lia-derived cell lines except for HEK293 cells, even though
CdCl2 reduced cell viability in all tested epithelia-derived
cell lines (Fig. 2). In addition, cadmium accumulation in
organs, including kidney and liver, of TC4ATS-Cd-treated
mice were lower than those of CdCl2-treated mice (Fig. 5c).
These results may be accounted for by slower TC4ATS-Cd
incorporation into epithelia cells and ⁄or faster TC4ATS-Cd
elimination from epithelia cells. Although the mechanism
underlying the difference in sensitivity between the
TC4ATS-Cd and CdCl2 against epithelia-derived cells
remains unclear, administration of TC4ATS-Cd may have
fewer adverse effects.
In addition, leukemia cell lines were distinguishable in two

groups: high sensitivity and low sensitivity to TC4ATS-Cd
(Figs 3 and 4d). Interestingly, JKT-beta-del cells in the low-
sensitivity group are clone cells that lack the rearranged T-
cell receptor (TCR) b gene and, thus, have impaired cell sur-
face expression of TCR ⁄CD3 complex in Jurkat cells in the
high-sensitivity group.(36) TCR recognizes agonist peptides
associated with major histocompatibility complex proteins,
and transduces signals controlling both T-cell activation and
activation-induced apoptosis across the plasma mem-
brane.(37,38) The difference in TC4ATS-Cd-sensitivity deter-
mined by the expression levels of TCR suggests a novel
mode of action for the cadmium complex. However, the
detailed mechanism underlying the action of the TC4ATS-Cd
is still under investigation.
In conclusion, TC4ATS-Cd complex exhibits anti-tumor

activity in mouse xenograft models of human T-cell leukemia
Jurkat cell lines. Treatment with TC4ATS-Cd showed anti-
proliferative effects against any kind of leukemia cell lines,
accompanied by induction of apoptosis. Furthermore, cad-
mium contents in liver, kidney and tumors in TC4ATS-Cd-
treated mice were lower than in CdCl2-treated mice. These
results suggest that TC4ATS-Cd has considerable therapeutic
potential for use as an anti-cancer agent in the treatment of
T-cell leukemia.
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Supporting Information

Additional supporting information may be found in the online version of this article:

Fig. S1. Neutralizing effect of TC4ATS-Na against cadmium toxicity.

Fig. S2. Western blot analysis of activated caspase-3 and cleaved PARP in epithelia-derived cell lines.

Fig. S3. TC4ATS-Cd elicits no adverse effects on tumor-bearing mice.

Fig. S4. Relative organ weights in tumor-bearing mice.

Table S1. In vivo toxicity tests of TC4ATS-Cd and CdCl2.
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