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Titanium (Ti) implants with long-term antibacterial ability and good biocompatibility are highly desirable materials that can be
used to prevent implant-associated infections. In this study, titania nanotubes (TNTs) were synthesized on Ti surfaces through
electrochemical anodization. Octenidine dihydrochloride (OCT)/poly(lactic-co-glycolic acid) (PLGA) was infiltrated into TNTs
using a simple solvent-casting technique. OCT/PLGA-TNTs demonstrated sustained drug release and maintained the characteristic
hollow structures of TNTs. TNTs (200 nm in diameter) alone exhibited slight antibacterial effect and good osteogenic activity but
also evidently impaired adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs). OCT/PLGA-TNTs (100 nm
in diameter) supported BMSC adhesion and proliferation and showed good osteogenesis-inducing ability. OCT/PLGA-TNTs also
exhibited good long-term antibacterial ability within the observation period of 7 d. The synthesized drug carrier with relatively long-
term antibacterial ability and enhanced excellent biocompatibility demonstrated significant potential in bone implant applications.

1. Introduction

Titanium (Ti) implants are widely used clinically because of
their high biocompatibility and good mechanical properties
[1]. However, implant-associated infections remain as one of
the most serious postoperative complications [2]. The high
incidence of implant-associated infections can be mainly
attributed to the adhered bacteria that form a biofilm; this
biofilm provides the bacteria with high resistance to host
defenses and antimicrobial therapies [3, 4]. Conventional
systemic drug therapies in bones present limitations such
as low efficacy, poor bioavailability, and toxicity [5]. Thus,
localized delivery of antimicrobial agents with time-effective
handling of infection while potentially eliminating problems
associated with systemic administration is highly desirable
[6, 7]. Furthermore, Ti bioactivity is not ideal and thus may
lead to the formation of a fibrous capsule around the implant
[5]. Fibrous tissues can prevent the contact between host
immunity sentinel cells and bacteria [2]. Hence, implant

coatings with enhanced osteogenic activity and antibacterial
property must be used to prevent infections and elongate the
service life of Ti implants.

With the advent of nanotechnology, nanostructured
materials play fundamental roles in orthopedic research
because bones demonstrate a structural hierarchy at the
first level in the nanometer regime [8]. Titania nanotubes
(TNTs) fabricated on the Ti surface through electrochemical
anodization have received considerable attentions in ortho-
pedic research, because of their high bioactivity to promote
bone cell growth and cell differentiation, unlike unanodized
Ti [9-12]. Moreover, TNTs with controllable dimensions,
high surface-to-volume ratio, and hollow structures have
been demonstrated to be superior platforms for local antibi-
otic delivery applications [13-17].

TNTs, as antibiotic carriers, are challenged with two
disadvantages that must be addressed before clinical appli-
cations. First, the drug release in proposed drug-delivery
systems is directed through diffusion of drug molecules
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from the nanotube structure [5]. The release rate is very
fast and short, thus limiting the antimicrobial effects to
early-stage peri-implant infections. Although polymers and
phospholipids were directly coated on the top of drug-loaded
TNTs to extend drug release, TN'Ts were buried in the coating
cap; hence, the potential benefit of TNTs in promoting bone
growth was diminished [18-20]. Poly(lactic-co-glycolic acid)
(PLGA) has been loaded into TNTs through solvent-casting
technique to maintain their characteristic hollow structure
and sustain drug release [21]. However, to the best of our
knowledge, the biocompatibility of TNTs loaded with PLGA
remains unknown. Second, bacteria are highly adaptable in
nature, which leads to the evolution of strains resistant to con-
ventional antibiotics [22]. Agents working through unspecific
modes of action are required to overcome this resistance
such as octenidine dihydrochloride (OCT). OCT, approved
as a medicinal substance in several European countries, is an
established bispyridine antiseptic with a broad activity and is
commonly used as wound antiseptic [23, 24]. It has attracted
increasing attentions because of broad antibacterial spec-
trum including antibiotic-resistant bacteria, noncytotoxicity
at suitable doses, satisfactory stability, and smaller possibility
to develop resistant bacteria [25, 26].

In this study, we investigated the possibility of using
composite PLGA-TNTs as a carrier for sustained OCT
delivery. Despite active studies on using localized delivery
of antimicrobial agents to prevent implant infections, there
have been few reports on using antiseptics [27] and none
on using nanotubes to deliver antiseptics. In this paper, for
the first time, OCT/PLGA was loaded into TNTS through
a simple dip-coating process. Sustained antibacterial ability
and biocompatibility were systematically investigated.

2. Materials and Methods

2.1. Fabrication of TNTs on Ti. TNTs were fabricated through
anodization on a Ti sheet. Ti samples (Alfa-Aesar, Ward Hill,
MA, USA; 1 x 1 x 0.025cm’, 99.8% purity) were degreased
by sonication in acetone and deionized water for 15 min.
The samples were then eroded for 10 s in 4 wt% HF-5 mol/L
HNO;, followed by rinsing with deionized water and drying
in air. A two-electrode electrochemical cell using a platinum
sheet as the counter-electrode was used. Anodization was
performed using a mixture of 0.50 wt% NH,F + 10 vol% H,O
in glycerol at 60 V for 5 h. After anodization, the samples were
rinsed with deionized water, dried in air, and annealed at
450°C for 2 h.

2.2. OCT Loading. Two types of samples were prepared.
The first type was prepared by loading the mixture of
OCT/PLGA into TNTs. PLGA (Sigma-Aldrich, St Louis,
MO, USA; lactide-to-glycolide ratio: 65:35, 24,000 Da-
38,000 Da) and OCT (TCI, Shanghai, China) were dissolved
in dichloromethane at 15 mg/mL and 0.5 yg/mL, respectively.
The polymer/drug mixture was loaded into TNTs using a
dip-coating process at 40°C for 2d and then dried in air.
The second type was produced by directly loading OCT into
TNTs. OCT was dissolved in low-surface tension solvent
(ethanol) and forced into TNTs using a vacuum-assisted
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physical adsorption method. In brief, 50 L of 40 yug/mL OCT
solution was pipetted onto the nanotube surfaces and allowed
to dry under a vacuum desiccator at 20°C for 1 h. The loading
process was repeated three times.

2.3. Specimen Characterization. Scanning electron microscopy
(SEM) (JSM-7500F; JEOL, Tokyo, Japan) was used to
characterize the morphology of the prepared TNTs and
OCT/PLGA-TNTs. The infiltration of PLGA polymer into
TNTs was also assessed by SEM according to the report
of Jia and kerr [21]. Scotch tape was used to separate the
OCT/PLGA-TNTs from Ti foil. The tape with OCT/PLGA-
TNTs then was soaked in 5 vol% HF solution for 15 min until
all TNTs were etched off. The remaining PLGA was examined
through SEM.

2.4. Contact Angle Determination. A 1uL drop of distilled
water was delivered on the clean specimen surface with a
syringe at a room temperature and in the open atmosphere
of the lab. Contact angles were measured on the obtained
photographs (Phoenix 300; SEO, Seoul, Korea). The mean
value was calculated from five separate measurements.

2.5. Protein Adsorption Assay. A 1mL droplet of DMEM-LG
containing 10% FCS was pipetted onto each specimen. After
incubation at 37°C for 2h, the proteins adsorbed onto the
samples were detached using 1% sodium dodecyl sulfate. The
protein concentrations were determined using a MicroBCA
protein assay kit (Pierce, Rockford, IL, USA).

2.6. Release Profile of OCT. OCT has been shown to be
stable in chloroform at 40°C [25]. So, in vitro OCT release
kinetics of the samples were measured using ultraviolet
visible spectroscopy (UV-1750; Shimadzu, Kyoto, Japan) by
recording the absorption peak at 280nm, which is the
characteristic excitation wavelength of OCT. Two specimens,
TNTs loaded with OCT and TNTs loaded with OCT/PLGA,
were immersed in 1-mL of PBS in a glass vial while rotating
(60 revolutions per minute) at 37°C. After 1, 2, 4, and 6 h, as
well as after 1, 2, 3, 6, 9,12, 15, and 18 d, 500 mL of the solution
was sampled and fresh PBS was replenished. Three samples
were tested in each time interval, and the mean value was used
in data analysis.

2.7. Bacteria Cultures. Staphylococcus aureus (S. aureus)
(ATCC25923; American Type Culture Collection, Manassas,
VA, USA) was cultivated in the brain-heart infusion broth
medium at 37°C for 12 h and then adjusted to a concentration
of 10° CFU/mL. The specimens were placed on 24-well cul-
ture plates and separately incubated in 1 mL of the bacteria-
containing medium.

2.71. SEM Observation. After being incubated in 1mL of
the bacteria-containing medium for 6h, the samples were
rinsed with PBS, fixed with 3% glutaraldehyde, dehydrated in
graded ethanol series, freeze-dried, sputter-coated with thin
platinum layers, and observed by SEM.
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TABLE 1: Primers used for qRT-PCR.

Gene Forward primer sequence (5'-3') Reverse primer sequence (5'-3")
RUNX2 CCTCTGACTTCTGCCTCTGG GATGAAATGCCTGGGAACTG
ALP GCCTGGACCTCATCAGCATT AGGGAAGGGTCAGTCAGGTT
OCN CAAGTCCCACACAGCAACTC CCAGGTCAGAGAGGCAGAAT
COL-I ATCTCCTGGTGCTGATGGAC GCCTCTTTCTCCTCTCTGACC
GAPDH GGCACAGTCAAGGCTGAGAATG ATGGTGGTGAAGACGCCAGTA

2.7.2. Antibacterial Assay. In vitro antibacterial activity was
assessed by the plate-counting method. After culturing for 1,
4, and 7 days, the sample was rinsed in PBS and ultrasonically
agitated to detach the bacteria from the sample. The bacteria
suspensions were recultivated on agar plates for colony
counting. The antibacterial rates were calculated using the
following formula: antibacterial rate (%) = (CFU of control —
CFU of experimental groups)/CFU of control x 100%, where
Ti served as the control while TNTs and TNTs/PLGA consti-
tuted the experimental groups.

2.8. Cell Cultures. Sprague-Dawley rat bone marrow mes-
enchymal stem cells (BMSCs) were purchased from Cyagen
Biosciences (Guangzhou, China). The cells were cultured in
DMEM-LG containing 10% FCS at 37°C, and the medium
was changed every 3d. Cells were used between passage 4
and passage 6 in the following experiments. The samples were
placed in 24-well plates, and the BMSCs were seeded at a
density of 4 x 10*/well for the cell adhesion assay and 2 x
10*/well for the other assays.

2.8.1. Cell Morphology. After culturing for 2d, the samples
were rinsed with PBS, fixed with 2.5% glutaraldehyde, dehy-
drated in graded ethanol series, freeze-dried, sputter-coated
with thin platinum layers, and observed by SEM.

2.8.2. Adhesion and Proliferation. For the cell adhesion assay,
the adherent cells were fixed and stained with 4,6-diamidino-
2-phenylindole (DAPI; Sigma-Aldrich) after culturing for 0.5,
1, and 2 h. Images were captured from five random fields by
a fluorescence microscope, and the cell number in each field
was determined. To assess cell proliferation, the cell numbers
were assessed using Cell Counting Kit-8 (CCK-8; Beyotime,
Shanghai, China) assay after seeding for 1, 3, and 7 d.

2.8.3. Gene Expressions. The expression levels of osteogen-
esis-related genes, including runt-related transcription factor
2 (RUNX2, a key transcript factor for osteogenic differ-
entiation), alkaline phosphatase (ALP, an early marker for
osteogenic differentiation), osteocalcin (OCN, a late marker
for osteogenic differentiation), and type 1 collagen (COL-
1, a main collagen found in bones), were measured using
quantitative reverse transcription polymerase chain reaction
(qQRT-PCR). Total RNA was extracted using Trizol (Invitro-
gen, Carlsbad, CA, USA) after culturing for 2 weeks. Total
RNA was then reverse-transcribed with a cDNA Reverse
Transcription Kit (TaKaRa, Shiga, Japan), and qRT-PCR
analysis was performed on an ABI Prism 7500 real-time PCR

cycler (Applied Biosystems, Carlsbad, CA, USA) using SYBR
Premix Ex Taq II (TaKaRa). The primers for the target genes
are listed in Table 1. The expression levels of the target genes
were normalized to that of the housekeeping gene GAPDH.

2.9. Statistical Analysis. All data were expressed as the mean
+ standard deviation (SD). One-way ANOVA and Student-
Newman-Keuls post hoc test were used to determine the level
of significance. P < 0.05 was considered to be significant, and
P < 0.01 was considered to be highly significant.

3. Results

3.1. Specimen Characterization. The SEM images of TNTs
with and without OCT/PLGA loading are shown in Figure 1.
TNTs (200nm in diameter) were neatly and uniformly
arranged over the anodized Ti surface in Figure1(a). The
diameter decreased to 100 nm after OCT/PLGA loading,
and the intertubular areas were filled with PLGA, as shown
in Figure 1(b). The side view of TNTs and the image of
the remaining PLGA after TNTs removal are shown in
Figures 1(c) and 1(d), respectively. The remaining PLGA was
uniformly arranged in most of the areas, and its length was
similar to the length of TNTs. Thus, PLGA demonstrated an
excellent infiltration depth into TNTs.

3.2. Static Contact Angles. Drop images were captured by a
video camera in the direction perpendicular to the surface
(Figure 2). For hydrophilic material, the contact angle is
lower than 90 degrees, and the smaller the contact angle, the
greater the hydrophilicity. Multiple comparisons (Figure 2)
revealed that TNTs showed the greatest surface hydrophilic-
ity, whereas Ti exhibited the greatest surface hydrophobicity.

3.3. Protein Adsorption Assay. The amounts of adsorbed
proteins from 10% FCS after 2h of incubation are pre-
sented in Figure 3 to elucidate subsequent cellular responses.
OCT/PLGA-TNTs with higher hydrophilicity absorbed more
proteins than control Ti. However, paradoxically, TNTs with
the highest hydrophilicity had the fewest protein aggregates.
It is because the protein aggregates (=30-nm-size regime)
initially attach only to the available surfaces that are the top
portion of the nanotube walls [11,12], and these aggregates are
too small to anchor on TNTs with a diameter of 200 nm. The
protein aggregates could easily attach to OCT/PLGA-TNTS5,
probably because the larger intertubular areas, which were
filled with PLGA, provided more effective nucleation sites for
protein adsorption.
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FIGURE 1: SEM images: (a) TN'Ts with a diameter of 200 nm, (b) OCT/PLGA-TNTs with a diameter of 100 nm, (c) side view of TN'Ts, and (d)
remaining PLGA.
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FIGURE 2: Photographs of water droplets on different samples and multiple-comparison results of contact angles on different samples (mean
+SD,N =5,"P < 0.05, “*P < 0.01).
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FIGURE 3: Protein adsorption to the samples after 2 h of immersion
in DMEM-LG containing 10% FCS (mean + SD, N = 3, *P < 0.05,
**p<0.01).

3.4. OCT Release. Figure 4 shows the OCT release time pro-
files from TNTs and OCT/PLGA-TNTs in PBS. For the OCT
directly released from the nanotubes, the release kinetics
could be described in two phases: a high percentage (80%) of
the drug released in the first 6 h (initial burst release) and then
a slow release for the following 2 d. By contrast, in the case of
PLGA-TNTSs, the drug release pattern was directed through
the transport of drug through the polymer matrix and the rate
of polymer degradation [19, 21], so the burst release decreased
from 80% to 48% (versus TNTs) and the extended overall
release increased from 2d to 15d.

3.5. Antimicrobial Activity. Figures 5(a), 5(b), and 5(c) show
the qualitative SEM assessments of bacteria incubated with
samples. It could be observed that many multiple bacterial
colonies formed colony masses on the surfaces of Ti and
TNTs. In strong contrast, very few single bacterial colonies
were detected on OCT/PLGA-TNTS.

Antibacterial activity was evaluated for 7d as shown
in Figure 5. On day 1, OCT/PLGA-TNTs loaded with OCT
generated a high antibacterial rate of 100%. Although a slight
decrease in the antibacterial rates was observed as time
increased, a high antibacterial rate of 97.2% was maintained
until day 7. This finding suggests an effective and long-term
antibacterial activity against S. aureus. TNTs alone exhibited
slight antibacterial rate of about 20%, which was relatively
constant with time.

3.6. Cell Morphology. The BMSCs displayed dramatically
different shapes related to the topography of the substrate,
as shown in Figure 6. Most of the BMSCs on Ti appeared
round and spread poorly with no cellular extensions and
filopodia propagation indicative of undifferentiated BMSCs
(Figures 6(a), 6(b), and 6(c)). By contrast, the cells on
OCT/PLGA-TNTs (Figures 6(d), 6(e), and 6(f)) and TNTs
(Figures 6(g), 6(h), and 6(i)) had to extend across the tubes
to locate a protein-deposited surface on intertubular areas
for initial contact, thereby becoming more extended with

a large number of prominent filopodia and unidirectional
lamellipodia extensions compared with Ti, and pure TNTs
with a larger diameter presented stronger induction.

3.7. Adhesion and Proliferation. The highest numbers of ini-
tial adherent cells on OCT/PLGA-TNTs and lowest numbers
of initial adherent cells on TNTs are shown in Figure 7.
Upon contact of an implant surface with blood, the proteins
available in the serum adsorb to the surface within an initial
incubation time and mediate the subsequent cellular perfor-
mance [11, 28]. Cell attachment is believed to be significantly
greater on material surfaces with more protein adhesions
[29-33]. Thus, OCT/PLGA-TNTs with more protein adhe-
sions induced more cell attachment at an early time than Ti,
and TNTs with the fewest protein aggregates induced the least
attachment.

Cell proliferation was measured by the CCK-8 assay
(Figure 8). On day 1, the cell numbers on OCT/PLGA-TNTs
were slightly smaller than those on Ti. This slight proliferation
suppressive effect was possibly related to the differentiation
tendency of BMSCs because of the reciprocal relationship
between cell proliferation and differentiation [34, 35]. The
inhibition of BMSC proliferation was not serious or long. By
days 3 and 7, the cell growth on 100 nm OCT/PLGA-TNTs
caught up because of the large surface area available for cell
colonization. This finding indicates that OCT/PLGA-TNTs
did not impair cell viability and could support cell prolifera-
tion. However, cell proliferation on TNTs was obviously lower
than that on the Ti control and OCT/PLGA-TNTs, and this
trend became more evident with time. The very low adhesion
at the early stage can potentially lead to cell quiescence or
even apoptosis by anoikis, a type of programmed cell death
through “homelessness” [36].

3.8. Gene Expressions. The expression levels of osteogenesis-
related genes including RUNX2, ALP, OCN, and COL-1 were
assessed by qRT-PCR. The results are shown in Figure 9. The
three topographies explored in this study induced different
gene expression levels. Previous study reported that elongated
BMSCs are prone to undergo osteogenesis [37, 38], so the
effects of nanotubes on inducing fast and good distribution of
BMSCs favored the osteogenic ability. OCT/PLGA-TNTs and
TNTs significantly promoted the expression of osteogenesis-
related genes and demonstrated excellent osteogenic activity,
with the latter exhibiting a higher promotion.

4. Discussions

With the steadily increasing demand for implants, a proper
approach that can endow biomaterials with long-term
antibacterial ability and biointegration has been actively pur-
sued [28]. In the present study, OCT/PLGA was loaded into
TNTs using a simple solvent-casting technique. The design
sustained OCT release and maintained the characteristic
hollow structure of TNTs. OCT/PLGA-TNTSs showed good
antibacterial characteristics and biointegration and are thus
important to prevent implant-associated infections.

PLGA, which was approved by the US FDA as therapeutic
material, was selected as the OCT carrier in this study
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because of its excellent biocompatibility and biodegradability
without interrupting osseointegration [39]. As expected, our
proposed design enabled slow and sustained release for 15d
using the composite OCT/PLGA-TNTs. S. aureus, known for
its extensive resistance to antibiotics, is the most common

cause of implant infections [40] and was therefore chosen for
the study. The antibacterial ability of the OCT/PLGA-TNTs
decreased gradually with time and the tendency was consis-
tent with the OCT time release profiles. A postimplantation
period of 6 h has been identified as the “decisive period” when
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column) showing the morphology of BMSCs after 2 d of culture on samples.

the implant is particularly susceptible to surface colonization
[28]. The very few single bacterial colonies in Figure 5(b)
(versus many multiple bacterial colonies in Figures 5(a) and
5(c)) showed that the burst OCT release of 48% in the
first 6 h could effectively inhibit bacterial adhesion on the
OCT/PLGA-TNT samples, though the larger OCT release of
80% of TNTs may have resulted in less bacteria adhesion on
the TNTs. After this stage, few drugs are needed to prevent
further infection with the help of the host defense [41].
The antibacterial assay showed that the slow and sustained
OCT release from OCT/PLGA-TNTS also exhibited a good
long-term antibacterial ability within the observation period
of 7d. The long-term antibacterial ability with slow and
sustained OCT release is meaningful to preventing implant
infection while avoiding potential side effects associated
with OCT overdose in clinical practice. Our results also
showed that TNTs without drug loading slightly inhibited
the antibacterial activity. This finding is in accordance with
reports that controlled titania nanotube formation through

anodization and heat treatment, which decrease the contact
angles of water and form crystalline TiO,, leading to a
decreased bacterial adhesion on them [42].

BMSCs are multipotent stem cells that can give rise
to various adult cell types, including osteoblasts [43], and
most osteoblastic cells that colonize the implant surface to
induce bone growth originate from BMSCs [44]. Hence, it is
crucial to evaluate the behavior of BMSCs on OCT/PLGA-
TNTs before the clinical application. Cell assay showed that
OCT/PLGA-TNTs could support BMSCs adhesion and pro-
liferation. This finding indicates that excellent antibacterial
ability can be obtained from OCT at concentrations lower
than the values to induce BMSC damage. This result is in
accordance with previous reports [25, 45], in which OCT is
more toxic to S. aureus than to mammalian cells under similar
test conditions, resulting in a good biocompatibility with con-
comitant antibacterial activity. Furthermore, OCT/PLGA-
TNTs promoted cell spreading and thus demonstrated excel-
lent osteogenic activity. Although PLGA can be replaced by
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serum proteins and extracellular matrices after degradation,
the initial changes (within the first 24 h) in the cell shape
and cytoskeletal distribution would decide the fate of stem
cell differentiation [46]. In addition, a good cell distribution
on the biomaterial surface is important in winning the “race
for the surface” against bacteria, thereby aiding to combat
infection [47]. Although TNTs alone showed the best ability
to promote cell spreading and osteogenic differentiation, it
obviously impaired cell adhesion and proliferation.

The technique reported in this study can be readily
extended to other types of local drug-delivery applications
to produce desirable biological effects. The incorporated
amount and release rates can also be readily controlled by
varying the drug concentration and the lactide-to-glycolide
ratio.

5. Conclusions

In summary, OCT/PLGA was loaded into TNTs without
completely filling the nanotubes using a simple solvent-
casting technique to obtain sustained OCT release. OCT/
PLGA-TNTs showed good antibacterial effects which could

prevent postoperation complications and even late cases of
infection while osteogenic activity was enhanced. Moreover,
the fabrication process of OCT/PLGA-TNTs is simple, eco-
nomical, and versatile. Thus, OCT/PLGA-TNTs are highly
attractive for biomedical implants because of their controlled
drug release, long-term antibacterial efficacy, and promotion
of osseointegration.
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