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Abstract

Metformin is a widely prescribed drug for the treatment of type-2 diabetes. Although 

epidemiological data have provided a strong rationale for investigating the potential of this 

biguanide for use in cancer prevention and control, uncertainty exists whether metformin should 

be expected to have an impact in non-diabetic patients. Furthermore, little attention has been given 

to the possibility that other biguanides may have anticancer activity. In this study, the effects of 

clinically relevant doses of metformin (9.3mmol/kg diet), buformin (7.6 mmol/kg diet), and 

phenformin (5.0 mmol/kg diet) were compared to rats fed control diet (AIN93-G) during the post 

initiation stage of 1-methyl-1-nitrosourea-induced (50 mg/kg body weight) mammary 

carcinogenesis (n = 30/group). Plasma, liver, skeletal muscle, visceral fat, mammary gland, and 

mammary carcinoma concentrations of the biguanides were determined. In comparison to the 

control group, buformin decreased cancer incidence, multiplicity, and burden; whereas, metformin 

and phenformin had no statistically significant effect on the carcinogenic process relative to the 

control group. Buformin did not alter fasting plasma glucose or insulin. Within mammary 

carcinomas, evidence was obtained that buformin treatment perturbed signaling pathways related 

to energy sensing. However, further investigation is needed to determine the relative contributions 

of host systemic and cell autonomous mechanisms to the anticancer activity of biguanides such as 

buformin.
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Introduction

Considerable attention is being given to using metformin, one of the most widely prescribed 

drugs for the treatment of type-2 diabetes, for the prevention and control of a number of 

types of cancer, including breast cancer (1–3). While epidemiologic studies, coupled with in 

vitro mechanistic evidence, have propelled metformin into clinical trials as a potential 

chemopreventive and adjuvant, preclinical observations have raised concerns about 

metformin efficacy (4–8). Magnifying the problem are conflicting reports regarding 

mechanism of action, particularly in the non-diabetic state (3, 9, 10).

Metformin is prescribed for the treatment of type-2 diabetes, but understanding of its 

mechanism of action in this context is limited and has recently been challenged (11,12). The 

prevailing view has been that metformin induces activation of AMP activated protein kinase 

(AMPK) in the liver, presumably by reducing intracellular energy charge via partial 

inhibition of complex I activity. However, evidence from mice has been inconsistent, with 

the absence of either LKB1 or AMPK activity failing to block the glucose lowering effects 

of metformin (12). Rather, new evidence has been published indicating that metformin, as 

well as a related biguanide, phenformin, induce AMP accumulation resulting in inhibition of 

adenyl cyclase and down regulation of protein kinase A activity (11). It is hypothesized that 

reduced activity of protein kinase A decreases the expression of genes that regulate hepatic 

gluconeogenesis, thereby decreasing hepatic glucose output. Nonetheless, this work failed to 

clarify the mechanism that accounts for AMP accumulation. One possible alternative to the 

proposed inhibition of complex I is that metformin and other biguanides inhibit the activity 

of AMP deaminase, the enzyme that regulates the conversion of AMP to IMP (13–15). If 

AMP deaminase is inhibited, AMP would accumulate intracellularly, not only activating 

AMPK but also inhibiting adenyl cyclase and leading to decreases in cyclic AMP and the 

activity of protein kinase A.

Recognizing that other biguanides differ from metformin in their biological activities and 

that phenformin and buformin have been reported to inhibit mammary carcinogenesis in 

various experimental models (7, 16, 17), the experiments reported herein were conducted to 

compare effects of these biguanides. Based on the results of the carcinogenesis study, 

additional experiments were conducted to generate hypotheses about potential targets of the 

most effective anticancer biguanide, buformin, and about the likely involvement of host 

systemic and cell autonomous mechanisms in accounting for cancer inhibitory activity.

Materials and Methods

Chemicals

Primary antibodies used in this study were purchased from Cell Signaling Technology 

(Beverly, MA): anti-pPKAThr198/PKA, anti-pCREBSer133/CREB, anti-pSTAT3Tyr705/

STAT3, anti-pSrcSer17/Src, anti-pACC Ser79/ACC, anti-pAktSer473/Akt, anti-pAMPK Thr172/

AMPK, anti-p4EBP1Thr37/46/4EBP1, anti-pmTORSer2448/mTOR, anti-pP70S6KThr389/

P70S6K, anti-EPAC-1, anti-BEATA2_AR, anti-FAK, anti-FASN, anti-GLUT4, anti-OCT3, 

anti-NOTCH, anti-PGC1, anti-pPRAS40Thr246, anti-PRAS40, anti-pRAPTORSer792, anti-

RAPTOR, and anti-PI3K110α. Anti-BCL-2 was purchased from BD Bioscience (San Jose, 
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CA). Anti-P27 was purchased from Thermo Fisher Scientific (Waltham, MA). Anti-rabbit 

immunoglobulin-horseradish peroxidase-conjugated secondary antibody, LumiGLO reagent 

with peroxide and cAMP assay kit were also purchased from Cell Signaling Technology, 

Inc. (Beverly, MA). Anti-IGF1Rα, anti-HMGCR, anti-P21, anti-SCD1, and anti-SCEBP1 

were obtained from Santa Cruz Biotechnology, Inc. (Dallas, TX); mouse anti-β-actin 

primary antibody was obtained from Sigma Aldrich (St. Louis, MO). The 1-methyl-1-

nitrosourea (MNU) was obtained from Ash Stevens (Detroit, MI) and stored at −80°C prior 

to use. Metformin and buformin were obtained from Waco Pure Chemical Industries, 

(Waco, TX); phenformin was obtained from Sigma Aldrich (St. Louis, MO).

Biguanides

Biguanides were incorporated into an AIN-93G purified diet formulation (18–20). The 

dietary concentration of metformin, (9.3mmol/kg diet), provided the rat with a dose 

equivalent to a 50 kg women receiving 800 mg metformin/d which is within the range 

typically given for the control of type-2 diabetes. The concentrations of buformin (7.6 

mmol/kg diet) or phenformin (5.0 mmol/kg diet) were determined to be the maximum 

tolerated dose in the rat based on a preliminary feeding study. Here, maximum tolerated 

dose is defined as the highest dose that causes no weight loss, slows growth rate by less than 

10%, or induces no external signs of toxicity (21). The human dose equivalent for buformin 

and phenformin is also 800 mg/d which is higher than what has been given in clinical 

studies of these compounds. Buformin is still used clinically in Romania (Silubin, sustained 

release) where a common dose is 50 to 300 mg/d (22). Before being withdrawn from the 

market, the recommended dose of phenformin was 400 to 800 mg/d (23, 24). Biguanide 

concentrations in each diet were confirmed by HPLC analysis.

HPLC analysis of biguanides

Diet and tissue were homogenized (20% w/v) using ultrasound and then extracted with 

acetonitrile/methanol (2/1 v/v) for 30 min at room temperature. Following extraction, 

samples were centrifuged at 17,000 × G for 10 min and the supernatant fraction was directly 

analyzed via HPLC using a Waters C18 reverse phase column (μbondapak C18 10μm 

column, 3.9×300mm, equipped with a μbondapak C18 guard) with UV detection (235 nm). 

Run conditions were: isocratic elution using a 10mM KH2PO4/K2HPO4 pH 6.8 : ACN 

(37:63) mobile phase; flow rate was 1.5mL/min, the injection volume was 20uL and the run 

time was 8 min.

Carcinogenesis experiment

Female Sprague Dawley rats were obtained (Charles River, Wilmington, MA) at 20 days of 

age. At 21 days of age, 120 rats were injected with 50 mg MNU/kg body weight, i.p. as 

previously described (25). Rats were housed in solid bottomed polycarbonate cages 

equipped with food cups. At 28 days of age, 1 week after carcinogen injection, rats were 

assigned by stratified randomization using body weight to one of four groups (30 rats/group) 

and were ad libitum fed either control diet (AIN 93-G) or AIN 93-G diet into which 

metformin, buformin, or phenformin had been incorporated. Throughout the experiment, 

animal rooms were maintained at 22 ± 1°C with 50% relative humidity and a 12-h light/12-h 

dark cycle. Rats were weighed weekly and were palpated for the detection of mammary 
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tumors twice weekly starting from 21 days post carcinogen. At necropsy, rats were skinned 

and the skin to which mammary gland chains were attached was examined under translucent 

light for detectable mammary pathologies at 5× magnification. All detectable mammary 

gland pathologies were excised and prepared for histological classification according to 

published criteria (26, 27). Only confirmed mammary carcinomas are reported. The 

experimental protocols were reviewed and approved by the Institutional Animal Care and 

Use Committee and conducted according to the committee guidelines.

Blood collection and plasma biomarker analyses

Blood collection—Following an overnight fast, rats were euthanized over a 3-hour time 

interval, between 8 and 11 a.m., via inhalation of gaseous carbon dioxide. The sequence in 

which rats were euthanized was stratified across groups to minimize the likelihood that order 

effects would masquerade as treatment associated effects. After the rat lost consciousness, 

blood was directly obtained from the retro-orbital sinus and gravity fed through heparinized 

capillary tubes (Fisher Scientific, Pittsburgh, PA) into EDTA coated tubes (Becton 

Dickinson, Franklin Lakes, NJ) for plasma. The bleeding procedure took approximately 1 

min/rat. Thereafter, the unconscious rat was euthanized by cervical dislocation. Plasma was 

isolated by centrifugation at 1000 × g for 10 min at room temperature.

Assessment of circulating molecules—Insulin-like growth factor 1 (IGF-1), IGF 

binding protein 3 (IGFBP-3), adiponectin, insulin, leptin, and glucagon in plasma or cAMP 

in tissue lysate were determined using commercially available ELISA assays as previously 

described. Glucose in plasma was determined enzymatically using a commercially available 

kit (Pointe Scientific, Inc., Canton, MI.).

Western blotting—Each mammary carcinoma was homogenized in lysis buffer [40 mM 

Tris-HCl (pH 7.5), 1% Triton X-100, 0.25 M sucrose, 3 mM EGTA, 3 mM EDTA, 50 μM β-

mercaptoethanol, 1 mM phenyl-methylsulfonyl fluoride, and complete protease inhibitor 

cocktail (Calbiochem, San Diego, CA)]. The lysates were centrifuged at 7500 × g for 10 min 

at 4 °C and supernatant fractions collected and stored at −80 °C. Supernatant protein 

concentrations were determined by the Bio-Rad protein assay (Bio-Rad, Hercules, CA). 

Western blotting was performed as described previously. Briefly, 40 μg of protein lysate per 

sample was subjected to 8–16% sodium dodecyl sulfate-polyacrylamide gradient gel 

electrophoresis (SDS-PAGE) after being denatured by boiling with SDS sample buffer [63 

mM Tris-HCl (pH 6.8), 2% SDS, 10% glycerol, 50 mM DTT, and 0.01% bromophenol 

blue] for 5 min. After electrophoresis, proteins were transferred to a nitrocellulose 

membrane. The levels of pPKAThr198/PKA, pCREBSer133/CREB, pSTAT3Tyr705/STAT3, 

pSrcSer17/Src, pACC Ser79/ACC, pAktSer473/Akt, pAMPK Thr172/AMPK, 

p4EBP1Thr37/46/4EBP1, pmTORSer2448/mTOR, pP70S6KThr389/P70S6K, EPAC-1, 

IGF1Rα, PI3K110α and β-actin were determined using specific primary antibodies, 

followed by treatment with the appropriate peroxidase-conjugated secondary antibodies and 

visualized by LumiGLO reagent western blotting detection system. The chemiluminescence 

signal was captured using a ChemiDoc densitometer (Bio-Rad) that was equipped with a 

CCD camera having a resolution of 1300 × 1030. Quantity One software (Bio-Rad) was 

used in the analysis. The Quantity One software has a warning algorithm that notifies the 
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user if pixel density is approaching saturation so that all signals used for analysis are in the 

linear range. All Western blot signals were within a range where the signal was linearly 

related to the mass of protein and actin-normalized scanning density data were used for 

analysis.

Statistical Analyses

Differences among groups were evaluated as follows: incidence of mammary carcinomas by 

the Fischer exact test, the number of mammary carcinomas per rat (multiplicity) by Poisson 

regression, and cancer burden by the nonparametric Kruskal-Wallis test. Palpable cancer 

latency was evaluated by survival analysis using the Mantel-Haenszel method. P-values 

were adjusted for multiple comparisons using a Bonferroni correction. Differences in final 

body weight and circulating analytes were evaluated by ANOVA with post hoc comparisons 

by the method of Tukey (28). For Western blots, the data were either the actin-normalized 

scanning data for proteins or the ratio of the actual scanning units derived from the 

densitometry analysis of each Western blot for the phospho-proteins. For statistical analyses, 

the actin-normalized scanning density data obtained from the ChemiDoc scanner using 

Quantity One (Bio-Rad, Hercules, CA) were rank transformed, an approach that is 

particularly suitable for semi-quantitative measurements that are collected as continuously 

distributed data, as is the case with Western blots (29). Ratio data were computed from the 

scanning units derived from the densitometry analysis, i.e. the arbitrary units of optical 

density, and then the ratios were rank transformed and medians ± the interquartile ranges 

were computed and shown using scatter plots (Supplementary Fig. S1). All analyses were 

performed using Systat statistical analysis software, version 13 (Systat Software, Inc., 

Chicago, IL) or Prism for Windows, version 6 (GraphPad Software Inc.). All P values are 2-

sided and statistical significance was set a priori at P < 0.05.

Multivariate Analysis

Supervised and unsupervised multivariate techniques were employed to evaluate and 

visualize the data per our previously published approach (30–33).

Unsupervised Analysis—Principal components analysis (PCA) was used to analyze 

plasma analytes and Western data (34). The PCA model can be written:

(eq 1)

where X is the matrix of measured variables, Xbar is a vector of means (all 0 when the data 

are centered), T is a matrix of scores that summarize the X variables, P is a matrix of 

loadings, and E is a matrix of residuals.

Supervised Multivariate Analysis

Orthogonal projections to latent structures for discriminant analysis (OPLD-DA) was used 

as a supervised, class-based method (30–32, 35) to study plasma analytes and Western data. 

The OPLS-DA model can be written:
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(eq 2)

where the interpretation of equation 2 is similar to that for the PCA model; however, an 

additional rotation has been applied using the class information to partition TP′ into a 

predictive, TpPp′, and an orthogonal, ToPo′, component. The number of predictive and 

orthogonal components in the models was determined by cross-validation.

Three key statistics describe the fit of each model: R2X(cum), the total amount of explained 

variation in X; R2Y(cum), the total amount of variation explained in Y; and Q2Y(cum), the 

total amount of predicted variability in Y, estimated by 7-fold cross validation. The 

contribution of each component partitioned into between (predictive) and within 

(orthogonal) class is also estimated, and summarized as R2Xp and R2Xo, respectively. R2Xp 

and R2Xo sum to R2X(cum).

Visualization of PCA and OPLS-DA

Scatter plots of the first two score vectors for the PCA models were drawn, along with 95% 

confidence ellipses based on Hotelling’s multivariate T2, to identify outliers that might bias 

the results of OPLS-DA. For OPLS-DA, class separation was shown in several ways. The 

first predictive score was plotted against the first orthogonal score to visualize the within- 

and between-class variability associated with the first principal component, and 

dendrograms were drawn using the first (or first and second) predictive scores, by the single 

linkage method, and sorted by size. In the single linkage method, observations were merged 

by proximity to neighbors based on Euclidean distance, building the hierarchy from 

individual observations by progressively merging clusters until all observations are merged 

into one parent cluster (36).

S-plots were constructed to identify influential proteins in the separation of treatment 

groups. S-plots based on the first principal component show reliability (modeled correlation) 

plotted against feature magnitude (loadings or modeled covariance). If protein 

concentrations have variation in correlation and covariance between classes, this plot will 

assume an S-shape, with heavily influential features separating from other features at the 

upper right and lower left tails of the feature cloud within the model space (31, 32). All 

multivariate analyses were done using SIMCA-P+ v.12.0.1 (Umetrics, Umea, Sweden).

Results

Effect of biguanides on the carcinogenic response

A total of 106 histopathologically confirmed mammary carcinomas were detected by 

palpation in this study and 11 additional carcinomas with a mass > 100 mg were found at 

necropsy. The effects of biguanide treatment were determined not only on palpable 

mammary pathologies, but also small pathologies that were identified by 5× magnification at 

necropsy and that we refer to as microcarcinomas (< 100 mg in size) (Table 1). In 

comparison to the control group, only buformin treatment reduced the incidence and 

multiplicity of palpable carcinomas and microcarcinomas at levels of statistical significance 

that were significant with adjustment for multiple comparisons (P < 0.008). In addition, the 
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carcinogenic response was lower in buformin treated rats in comparison to rats treated with 

metformin or phenformin, although the magnitude and statistical significance of these 

differences varied by cancer endpoint (Supplementary Table S1 for detailed statistical 

summary).

The emergence of carcinomas over time (cancer latency, Fig. 1) was most rapid in the 

metformin group whether the endpoint was the occurrence of the first carcinoma in an 

animal (cancer incidence, Fig. 1A) or the average number of cancers per rat (cancer 

multiplicity, Fig. 1B). In comparison to the control group, metformin shortened cancer 

latency (P = 0.025), whereas buformin prolonged cancer latency (P = 0.003). Phenformin 

was without effect on cancer latency relative to the control group (P = 0.265). Buformin 

prolonged cancer latency relative to either metformin (P < 0.001) or phenformin (P = 

0.015). However, these P-values are not significant after adjustment for multiple 

comparisons. Thus, only buformin significantly affected cancer latency. Fig. 1C shows the 

effect of biguanide treatment on cancer mass per rat, with only buformin reducing cancer 

burden.

Tissue concentrations of biguanides—Biguanide concentrations were determined in 

blood and tissue obtained at necropsy following an overnight fast (Supplementary Table S2). 

Plasma and tissue concentrations of metformin and buformin were similar and not 

statistically different with the exception of skeletal muscle in which metformin 

concentration was three times higher for metformin than buformin. Phenformin was only 

detected in skeletal muscle and mammary gland following the overnight fast. In mammary 

gland, the concentrations of the three biguanides were similar. In mammary carcinomas, 

metformin and buformin were found to have similar concentrations.

Effects of biguanides on circulating analytes

Blood from overnight fasted rats was collected at necropsy and all plasma samples were 

evaluated for the analytes shown in Table 2. Of the analytes measured, only the plasma 

concentrations of IGF-1 (P < 0.001), glucagon (P = 0.002), and adiponectin (P = 0.003) 

were affected. In the buformin and phenformin treated groups, IGF-1 was 30.4% and 22.8% 

lower than the control group and glucagon was 63.0% and 57.5%, lower than the control 

group, respectively. In the buformin group, adiponectin was 19.1% higher than in the control 

group.

For hypothesis generation concerning the role of host systemic factors in accounting for the 

effects of biguanide treatment, plasma analyte data were subjected to multivariate analysis 

of variance using unsupervised and supervised clustering techniques as implemented in 

SIMCA-P. Those analyses (Fig. 2) failed to reveal a pattern of analytes that distinguished 

among treatment groups (Fig. 2A) using unsupervised principle components analyses (Fig. 

2A) or a supervised technique, OPLS-DA (Fig. 2B). The poor classification rate (overall rate 

is 65% correct) is illustrated in the dendrogram from the supervised analysis (Fig. 2C) with 

the poorest classification occurring between the control group and the metformin group. 

This approach also determined whether the plasma analyte profile could distinguish between 

cancer bearing and cancer free rats irrespective of the treatment group in which they 
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occurred. Neither unsupervised (Fig. 2D) or supervised (Fig. 2E) analyses distinguished 

between these classes as illustrated in the dendrogram from the supervised analysis (Fig. 

2F).

Between-class discrimination by Western blots

To determine if treatments had distinct effects on cell signaling, all Western blot data were 

first evaluated using PCA on all 4 treatment groups. PCA identified two significant 

components that explained a total of 47.7% of the variance in protein concentration. The 

first 2 component scores of the model are shown in Fig. 3A. Buformin and phenformin 

separated well from control and metformin which were not separated from one another. 

Only one buformin tumor fell outside the 95% confidence ellipse.

OPLS-DA was then used to refine the model fit and partition the variance into predictive 

(protein expression differences related to treatment) and orthogonal (protein expression 

differences unrelated to treatment) sources. The first predictive and orthogonal components 

are plotted in Fig. 3B; 24.1% of the variance in protein concentration was related to 

treatment (first predictive component), whereas 14.4% of the variance was unrelated to 

treatment (first orthogonal component); the remaining variation is attributed to noise. The 

overall fit of the model was good (R2XP1-3 = 80.9%, R2XO1 = 37.2%, R2Y(cum) = 96.3%, 

Q2(cum) = 81.1%). The dendrogram (Fig. 3C), constructed using the first 2 score vectors 

form the OPLS-DA model, illustrates the classification accuracy. Two main clusters were 

defined: 1) buformin and 2) all other treatment groups, which subsequently split into clusters 

comprising phenformin, control and metformin, which mirrored the ordering observed in the 

carcinogenic response (Table 1 and Fig. 1).

Identification of influential proteins

To determine the proteins responsible for the distinctions observed among treatment groups 

and provide insight into differences in the carcinogenic response, two-class OPLS-DA 

modeling was performed. Since buformin and metformin were in similar concentrations in 

mammary carcinomas and mammary gland, but metformin was ineffective in inhibiting the 

carcinogenic process, these two treatments were compared. A two-class OPLS-DA model 

comparing buformin and metformin (Fig. 4A) was used to generate the S-plot shown in Fig. 

4B with magnitude and variation in each protein shown in Fig. 4C. Among the most 

influential proteins accounting for separation are those involved in the regulation of de novo 

lipid synthesis (pACC and FASN) and known to be regulated at least in part by components 

of the mTOR signaling pathway which also contributed significantly to observed separation 

between groups.

Discussion

Many compounds exist that have biguanide related activity, and two of these compounds, 

buformin and phenformin, were synthesized in the same era that metformin was developed 

(9). In general, they are not used in the treatment of diabetes because they have a greater 

potential to induce lactic acidosis. Nonetheless, the question has been raised about whether 

metformin is the best biguanide with which to answer questions about the anti-cancer 
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activity of this class of compounds (10). To address this question relative to breast cancer, 

the effects of metformin, buformin, and phenformin were evaluated. Buformin, but not 

metformin or phenformin, was found to have strong cancer inhibitory activity. In this regard, 

the biguanide concentration data (Supplementary Table S2) merit comment. Buformin and 

metformin were present in tissue at similar concentrations yet buformin was highly effective 

in inhibiting mammary cancer; whereas, metformin was not. This situation established a 

rationale for the post hoc analyses reported in Fig. 3 and Fig. 4, the goal of which was 

hypothesis generation about the targets of effective biguanides for breast cancer prevention 

and control. Relative to phenformin, which was fed at the lowest dietary concentration of the 

three biguanides, it was not detectable in any tissue after an overnight fast other than 

mammary gland and skeletal muscle. Given that 5 mmol/kg diet appears to be a maximal 

tolerated dose of this compound, it is worth considering that phenformin’s ineffectiveness 

against breast cancer might be associated with either rapid metabolism or the need to bolus 

dose rather than feed it in the diet in order to achieve effective doses of the compound in 

target tissue(s).

The main finding for metformin was a lack of effectiveness against the carcinogenic 

response, compared to control and other biguanides. The results of this study showed that 

administration of a clinically relevant dose of metformin in the diet, based on allometric 

dose conversion, may have accelerated the carcinogenic response in this non-diabetic model 

for breast cancer. However, the effects of metformin on multiple cancer endpoints were 

judged not to be statistically different from the control group following adjustment for 

multiple comparisons (Supplementary Table S1). Metformin was detected in liver, 

mammary gland, and mammary carcinomas suggesting that absence of the compound in 

potential target tissues is unlikely to account for lack of cancer inhibitory activity 

(Supplementary Table S2). Additionally, the effect of metformin compared to control was 

qualitatively in the wrong direction. Though existing literature has supported an indirect 

action by metformin through its activity in the liver, differences in plasma analytes, 

associated with hepatic metabolism and thought to play a role in breast carcinogenesis, were 

not detected in metformin versus the control group (Table 2).

Studies of mechanism

The understanding of how biguanides exert protective activity against cancer in vivo is 

limited. One question of interest is whether anticancer activity is driven indirectly through 

effects on host systemic factors that impact cellular activity in the breast or whether the 

effects are direct. In order to generate further hypotheses about this question for 

investigation in future experiments, we used multivariate analysis of plasma analytes (Fig. 

2) and mammary carcinoma Western blot data (Fig. 3 and Fig. 4) to determine whether 

either dataset would distinguish among treatment groups. The hypothesis generating 

experiments on plasma analytes were insufficient to distinguish among treatment groups or 

cancer bearing versus cancer free animals (Fig. 2); whereas, the patterns of protein 

expression in carcinomas resulted in 100% classification accuracy by treatment group (Fig. 

3).
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The multivariate analyses that resulted in high classification accuracy were based on the 

evaluation of the effects of biguanide treatment on cell signaling events in mammary 

carcinomas. The measured proteins represent multiple mechanisms proposed to explain the 

anti-diabetic effects of biguanides. In terms of anticancer activity, these proteins are 

associated with energy sensing pathways, cell proliferation, and cell death. Western blot data 

(Supplementary Fig. S1) were subject to unsupervised and supervised multivariate clustering 

analyses. This approach revealed that mammary carcinoma patterns of protein expression 

distinguished among treatment groups with the groups ordering in a manner consistent with 

treatment response (Fig. 4 dendrogram; buformin < phenformin < control < metformin). 

This finding is consistent with biguanides mediating direct effects in the target tissue.

Whether biguanides act indirectly, directly, or a combination, there is considerable 

discussion about the specific targets and cellular processes mediating biguanide effects. 

While some evidence indicates that biguanides act as weak mitochondrial poisons by 

reducing activity of complex I of the electron transport system, there is an alternative 

hypothesis that biguanides inhibit AMP deaminase (13, 14). In either case, intracellular 

concentrations of AMP would increase, activating AMP activated protein kinase and 

suppressing protein kinase A activity. The multivariate analysis of protein expression 

emphasized the negative regulation of mTOR activity via AMPK activation. This 

observation is supported by: a) elevated levels of activated ACC and RAPTOR which are 

direct targets of activated AMPK (Fig. 4 and Supplementary Fig. S1); and b) lower levels of 

the activated targets of mTOR, e.g., p70S6K. Further, changes in ACC activation, FASN, 

SREBP1, and SCD1 indicate alterations in intra-tumoral lipid synthesis may be occurring in 

carcinomas from buformin-treated rats. These findings, which are considered hypothesis 

generating, will permit further experiments to be designed to identify causal mechanisms.

Limitations

The studies carried out in this work used a non-diabetic animal model in which metformin 

had less anti-cancer activity than other biguanides. Though non-diabetic animal models are 

relevant to anticipating outcomes in ongoing clinical trials that exclude diabetics and 

individuals taking metformin, the biguanides buformin and phenformin are no longer used 

clinically due to risk for lactic acidosis. Though buformin and phenformin are unlikely to 

see clinical use, understanding biguanide drug targets in preclinical animal models will help 

develop new agents.

Human subjects are generally administered metformin once or twice a day; whereas, it was 

administered in the diet in this study. This could result in differences in tissue concentrations 

that might impact target protein activity. This underscores a critical need for more data on 

the pharmacokinetics and pharmacodynamics of metformin if its current indications are 

extended to cancer prevention at various organ sites.

Implications

A lack of effect for metformin in non-diabetic preclinical rodent models of breast cancer has 

been recently reported (37). These findings are confirmed and extended in this work by 

evaluation of additional biguanides. These preclinical studies raise many questions about the 
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use of biguanides such as metformin in cancer prevention and control. In the context of 

having an impact in vivo, this study indicates that in non-diabetic individuals, the effects of 

an anti-diabetic therapeutic dose of metformin may have limited benefit. In contrast, other 

biguanides outperform metformin in the preclinical model. As the mechanisms that account 

for the observed protection are established, the goal will be to identify agents that render 

protection in the absence of dose limiting toxicities, e.g. lactic acidosis, and such agents 

would represent the next generation of compounds with biguanide-related anti-cancer 

activity.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Effects of biguanide treatment on various aspects of the carcinogenic response. A, the 

incidence of palpable mammary cancer as a function of days post carcinogen injection. B, 

the average number of palpable cancers per rat as a function of days post carcinogen 

injection. C, the cancer burden in grams per rat determined at necropsy. The graph is a 

scatter plot showing the median and interquartile range. The computation includes tumor 

free rats (not shown in the graph). Note that only 5 buformin treated rats had palpable 

carcinomas, a fact that limited the number of carcinomas that could be Western blotted in 

this group.

*Significantly different from the control group when adjusted for multiple comparisons.
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Figure 2. 
Multivariate discriminant analysis was used to determine whether plasma analyte data could 

distinguish among treat groups (A–C) or whether an animal was cancer bearing versus 

cancer free (D–F). A, to visualize inherent clustering patterns, the scatter plot represents 

unsupervised analysis through the PCA 4-class model. Poor separation of treatment groups 

is observed. Model fit: R2X(cum)= 0.437, and Q2(cum)= 0.093. B, to determine 

contributing sources of variation, the scatter plot represents supervised analysis of the 4-

class OPLS-DA model, which rotates the model plane to maximize separation due to class 

assignment. Separation is still poor with an overall misclassification rate of 45%. Model fit: 

R2Y(cum)= 0.199, Q2Y(cum)= 0.132. C, to visualize the misclassification rate, the 

dendrogram depicts hierarchical clustering patterns among treatment groups using single 

linkage and size. D, to visualize inherent clustering patterns, the scatter plot represents 

unsupervised analysis through the PCA 2-class model. Poor separation of treatment groups 

is observed for the categories: cancer free = 0 versus cancer bearing = 1. E, to determine 

contributing sources of variation, the scatter plot represents supervised analysis of the 2-

class OPLS-DA model, which rotates the model plane to maximize separation due to class 

assignment. Separation is still poor with an overall misclassification rate of 55%. Model fit: 

R2Y(cum) = 0.124, Q2Y(cum) = 0.080. F, to visualize the misclassification rate, the 

dendrogram depicts hierarchical clustering patterns among treatment groups using single 

linkage and size.
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Figure 3. 
Multivariate discriminant analysis was used to determine whether Western blot data for 26 

proteins assessed in mammary carcinomas (Supplementary Fig. S1 and 2) could distinguish 

among treat groups. A, to visualize inherent clustering patterns, the scatter plot represents 

unsupervised analysis through the PCA 4-class model. Separation of treatment groups is 

observed. Model fit: R2X(cum) = 0.747, with 5 components, and Q2(cum) = 0.155. B, to 

determine contributing sources of variation, the scatter plot represents supervised analysis of 

the 4-class OPLS-DA model, which rotates the model plane to maximize separation due to 

class assignment. Complete separation of the 4 classes was observed. Model fit: R2Y(cum) 

= 0.984, Q2Y(cum) = 0.963. C, to visualize the misclassification rate, the dendrogram 

depicts hierarchical clustering patterns among the treatment groups using single linkage and 

size. Two main clusters comprise 1) buformin versus 2) phenformin, control, metformin.
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Figure 4. 
To determine the proteins responsible for class separation, multivariate analysis was 

extended to identify influential proteins responsible for the separation between classes. A, a 

supervised OPLS-DA model was created to compare buformin to metformin; complete 

separation was observed. B, an S-plot was constructed by plotting modeled correlation in the 

first predictive principal component against the modeled covariance in the first predictive 

component. Upper right and lower left regions of the S-plots contain candidate proteins with 

both high reliability and high magnitude. C, to determine the statistical reliability of the 

proteins shown in 4B, jack-knifed confidence intervals (JKCI) were created on the 

magnitude of covariance in the first component for the 26 proteins and sorted in ascending 
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order based on expression in the buformin group; proteins with JKCIs including 0 were not 

considered to account for separation.
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