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Abstract

Schizophrenia is a neurodevelopmental disorder associated with subtle abnormal cortical thickness 

and cortical surface area. However, it is unclear whether these abnormalities exist in neonates 

associated with genetic risk for schizophrenia. To this end, this preliminary study was conducted 

to identify possible abnormalities of cortical thickness and surface area in the high-genetic-risk 

neonates. Structural magnetic resonance images were acquired from offspring of mothers (N = 21) 

who had schizophrenia (N = 12) or schizoaffective disorder (N = 9), and also matched healthy 

neonates of mothers who were free of psychiatric illness (N = 26). Neonatal cortical surfaces were 

reconstructed and parcellated as regions of interest (ROIs), and cortical thickness for each vertex 

was computed as the shortest distance between the inner and outer surfaces. Comparisons were 

made for the average cortical thickness and total surface area in each of 68 cortical ROIs. After 

false discovery rate (FDR) correction, it was found that the female high-genetic-risk neonates had 

significantly thinner cortical thickness in the right lateral occipital cortex than the female control 

neonates. Before FDR correction, the high-genetic-risk neonates had significantly thinner cortex in 

the left transverse temporal gyrus, left banks of superior temporal sulcus, left lingual gyrus, right 

paracentral cortex, right posterior cingulate cortex, right temporal pole, and right lateral occipital 

cortex, compared with the control neonates. Before FDR correction, in comparison with control 

neonates, male high-risk neonates had significantly thicker cortex in the left frontal pole, left 

cuneus cortex, and left lateral occipital cortex; while female high-risk neonates had significantly 

thinner cortex in the bilateral paracentral, bilateral lateral occipital, left transverse temporal, left 

pars opercularis, right cuneus, and right posterior cingulate cortices. The high-risk neonates also 

had significantly smaller cortical surface area in the right pars triangularis (before FDR 

correction), compared with control neonates. This preliminary study provides the first evidence 

that early development of cortical thickness and surface area might be abnormal in the neonates at 

genetic risk for schizophrenia.
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Introduction

Schizophrenia is a neurodevelopmental disorder (Rapoport et al. 2005), characterized by 

hallucinations, delusions, and cognitive deficits, with heritability estimated at up to 80 % 

(Purcell et al. 2009). The first onset of psychosis in schizophrenia usually emerges in the late 

adolescence or early adulthood (Insel 2010), which is the end result of decades of interaction 

between genetic and environmental factors (Ross 2010). The early infancy period is one 

critical window, during which vulnerability is established; while the adolescent or young 
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adult period is the other critical window, during which the conversion from vulnerability to 

psychosis occurs (Ross 2010). Longitudinal studies have shown evidence of abnormalities 

preceding symptom onset, including delayed developmental milestone in their first year of 

life in adults with schizophrenia (Sorensen et al. 2010), and reduced IQ in children who 

destined to develop schizophrenia (Reichenberg et al. 2010; Woodberry et al. 2008). Having 

an affected relative also increases the risk for schizophrenia. For example, 20–50 % of 

children born to schizophrenic mothers exhibit developmental abnormalities (Marcus et al. 

1993). Their risk of developing schizophrenia is about 10 times higher than that of the 

normal population (Sullivan 2005). High-risk neonates born to schizophrenic mothers, with 

the minimal exposure to environmental influences, are ideal candidates for increasing our 

understanding of brain changes associated with vulnerability to later to schizophrenia.

Magnetic resonance (MR) imaging studies have consistently found that schizophrenia is 

associated with the widespread cortical thinning, particularly affecting the prefrontal and 

temporal cortices in the first-episode and chronic subjects (Kuperberg et al. 2003; Narr et al. 

2005a; Rimol et al. 2012), as well as reductions of the marginal cortical surface area (Rimol 

et al. 2012; Gutierrez-Galve et al. 2010). Unaffected relatives of individuals with 

schizophrenia have also been shown to exhibit cortical thickness abnormalities (Goghari et 

al. 2007b; Gogtay et al. 2007). Healthy relatives of schizophrenia patients show reduced 

cingulate thickness (Goghari et al. 2007b) and sulcal thickness alterations in the cingulate 

sulcus and superior temporal sulcus (Goghari et al. 2007a), and young healthy siblings of 

schizophrenia with childhood-onset schizophrenia exhibit thinner cortices in the temporal 

and prefrontal regions (Gogtay et al. 2007), though these are not the consistent findings 

(Goldman et al. 2009). In addition, adolescents at ultra-high risk for psychosis exhibit more 

cortical thinning in the left middle temporal cortex than controls (Ziermans et al. 2012). 

Young adults at genetic risk for schizophrenia also show low cortical thickness in the right 

anterior cingulate cortex, left paracingulate and posterior cingulate regions, bilateral frontal 

regions, temporal regions, inferior parietal and occipital regions (Byun et al. 2012). 

However, it remains unclear when the abnormalities of cortical thickness or surface area 

arise in patients with schizophrenia or their unaffected first-degree relatives.

Recent MR imaging studies of neonates at high genetic risk for schizophrenia have revealed 

structural abnormalities in the lateral ventricle, total gray matter (GM), cerebrospinal fluid, 

and intracranial volumes in male neonates (Gilmore et al. 2010a). Altered brain structural 

network was also found in high-risk neonates (Shi et al. 2012). These results suggest that the 

cortex developmental abnormalities in high-risk subjects may occur as early as the neonatal 

stage. Due to the low tissue contrast and high noise in the neonatal brain MR images, 

previous studies of high-risk neonates have been limited to the volume-based morphometric 

analyses. In fact, the cortical volume is the product of the cortical surface area and cortical 

thickness, which are driven by distinct cellular and genetic mechanisms (Panizzon et al. 

2009; Chen et al. 2013). According to the radial unit hypothesis of cortical development, the 

cortical surface area is determined by the number of neuron columns that run perpendicular 

to the cortical surface, whereas the cortical thickness is influenced by the number of cells 

within a column (Rakic 1988). Therefore, volume-based morphometric analyses are unable 

to differentiate the cortex abnormality from either the cortical thickness or surface area, or 

both. With the recent advance in techniques for neonatal brain MR image processing (Wang 

Li et al. Page 3

Brain Struct Funct. Author manuscript; available in PMC 2016 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al. 2011, 2013, 2014; Shi et al. 2010; Li et al. 2013a, 2014a), we are able to accurately 

reconstruct the neonatal cortical surfaces and further measure their cortical thickness and 

surface area, respectively, which is likely to provide more precise information of the 

possible cortex abnormalities. In this preliminary study, with our advanced infant-specific 

surface-based analysis pipeline (Li et al. 2013a, 2014a, b, c; Meng et al. 2014), for the first 

time, we are able to measure cortical thickness and surface area of neonates at high genetic 

risk for schizophrenia and matched control neonates, to identify whether the abnormalities 

of cortical thickness or surface area may exist in the high-risk neonates.

Materials and methods

Participants and MR image acquisition

The Institutional Review Board of the University of North Carolina (UNC) School of 

Medicine approved this study. Pregnant mothers with a confirmed diagnosis of 

schizophrenia or schizoaffective disorder were recruited and underwent a Structured Clinical 

Interview for DSM-IV Axis I Disorders (SCID) (Gilmore et al. 2010a). Past psychiatric 

records were obtained and a final consensus diagnosis was assigned. Matched control infants 

were selected from a companion study of normal brain development at UNC (Knickmeyer et 

al. 2008). Control infants were matched on gender, age in terms of time since last menstrual 

period at birth, age since the last menstrual period at MRI, and maternal age (Table 1). 

Potential control mothers were screened for psychiatric illness using a modified SCID. All 

genetic fathers and other first-degree relatives had no psychiatric illness, as confirmed by 

reports from children’s mothers. The mean age of fathers was 30.8 ± 4.9 years. The dataset 

used in this paper has previously been used for studying brain volume differences and 

structural network difference between high-risk infants and control infants (Gilmore et al. 

2010a; Shi et al. 2012).

All written informed consent forms were obtained from the parents. Exclusion criteria of 

infants included abnormalities on fetal ultrasound or major medical or psychotic illness in 

the mother. All infants were free of congenital anomalies, metabolic disease, and focal 

lesions. Detailed recruiting information can be found in Gilmore et al. (2010a) and Shi et al. 

(2012). Structural MR images were acquired from offspring of mothers (N = 21) who had 

schizophrenia (N = 12) or schizoaffective disorder (N = 9), and also matched healthy 

neonates of mothers who were free of psychiatric illness (N = 26).

MR images were acquired on a Siemens head-only 3T scanner with a circular polarized head 

coil. For T1-weighted images, 160 axial slices were obtained using the 3-dimensional 

magnetization-prepared rapid gradient-echo sequence: TR = 1,820 ms, TE = 4.38 ms, flip 

angle = 7°, and resolution = 1 × 1 × 1 mm3. For T2-weighted MR images, 70 axial slices 

were acquired with turbo spin-echo sequences: TR = 7,380 ms, TE = 119 ms, flip angle = 

150°, and resolution = 1.25 × 1.25 × 1.95 mm3. The duration of T1 scan was 5:51 min, and 

the duration of T2 scan was 5:36 min. T2-weighted images were linearly aligned onto their 

respective T1-weighted images and further resampled to be 1 × 1 × 1 mm3. Before scanning, 

infants were fed, swaddled, and fitted with ear protection. All infants were unsedated during 

scanning. Our current success rate for obtaining usable MRIs was approximately 90 % for 

neonates (Li et al. 2014c). All images in this study were visually checked and rated for 
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motion artifacts using a 4-point visual scale [none (1), mild (2), moderate (3), severe (4)] 

based on Blumenthal et al. (2002) and Lyall et al. (2014). The average motion artifact rating 

was less than 1.4.

Image processing

All MR images were preprocessed using the same infant-specific pipeline in Li et al. (2013a, 

b), including: (1) skull stripping, followed by manual editing to ensure the accurate removal 

of non-brain tissues; (2) removal of the cerebellum and brain stem; (3) correction of 

intensity inhomogeneity; (4) rigid alignment of all images onto the neonatal brain atlas (Shi 

et al. 2011). Tissue segmentation of neonatal brain MR images into gray matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF) was performed by an infant-specific patch-

driven coupled level sets method (Wang et al. 2013). After tissue segmentation, non-cortical 

structures were masked and filled, and each brain was separated into left and right 

hemispheres.

Based on tissue segmentation results, topologically correct and geometrically accurate 

cortical surfaces of each hemisphere for each subject were reconstructed using a deformable 

surface method (Li et al. 2012, 2014a). Specifically, the WM of each hemisphere was first 

topologically corrected to ensure having a spherical topology, and then the corrected WM 

was tessellated to form a triangulated surface mesh. Lastly, the triangular surface mesh of 

each hemisphere was deformed towards the reconstruction of the inner, central and outer 

cortical surfaces by preserving its initial topology. Note that the reconstructed cortical 

surfaces were spatially smooth and not constrained to voxel grids, thus achieving 

submillimeter accuracy (Li et al. 2014a). All inner cortical surfaces, with vertex-to-vertex 

correspondences to the outer cortical surfaces, were smoothed, inflated, and mapped to the 

standard sphere (Fischl et al. 1999). Each cortical surface was parcellated into 34 gyral-

based regions of interest (ROIs) using Free-Surfer (Desikan et al. 2006). The cortical surface 

reconstruction and parcellation results were visually inspected for accuracy and further 

manually edited when needed. As major cortical folding is established at term birth and 

preserved during postnatal development (Li et al. 2013a, 2014c), the adult-based surface 

atlases in FreeSurfer, which encode major cortical folding information, achieve reasonable 

accuracy for parcellation of infant cortical surfaces (Li et al. 2013b), however, infant age-

specific surface atlases would further improve the parcellation accuracy. The cortical 

thickness for each vertex was computed as the average value of the minimum distance from 

inner to outer surfaces and the minimum distance from outer to inner surfaces (Li et al. 

2014a), similar to Fischl and Dale (2000). The mean cortical thickness value for each 

cortical region was then computed. The total surface area for each cortical region was 

computed based on the central cortical surface, which was defined as the surface lying in the 

geometric center between the inner and outer surfaces, for providing a balanced 

representation of gyral and sulcal regions (Van Essen 2005). The automated cortical surface 

measure computation results have been validated on five neonates with manual 

segmentation by a single rater. Intra-class correlations were calculated for regional cortical 

thickness and surface area, with the average value of 0.87 for cortical thickness and 0.91 for 

surface area, respectively (Lyall et al. 2014). Figure 1 shows the cortical surface 

reconstruction and parcellation results of a representative neonate.
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Statistical analysis

To compare control and high-risk groups, we performed analysis of covariance (ANCOVA) 

procedure (Montgomery 2013). In this study, all analyses were implemented in SAS 9.3 

software (SAS Institute, Cary NC) using generalized linear model (GENMOD) procedure to 

fit the ANCOVA. For each cortical region, we fit the following model

where, the subscript i represents the ith subject, yi is the mean cortical thickness or total 

surface area, agei is the gestational age in days at MRI acquisition, birthagei is the 

gestational age in days at birth, groupi is 0 if control group and 1 if high-risk group, genderi 

is 0 if male and 1 if female, and εi is an error term. For each ROI, we computed the least 

squares (LS) means and their standard errors (SE) for control and risk groups. By testing the 

differences of LS means between two groups, we obtained the z values and the 

corresponding p values. For each gender, we then followed the same procedure. Unless 

otherwise stated, p values were not corrected for multiple comparisons, as this study is 

primarily exploratory, hypothesis generating, and in need of replication.

Results

Cortical thickness

The mean cortical thickness and their SE of each group were provided in Table 2. No 

significant group difference was found between infants at high genetic risk for schizophrenia 

and the control infants on mean cortical thickness of left or right hemisphere. ROI-based 

analysis revealed that there were significant group differences between the genetically high-

risk infants and the control infants on the cortical thickness of the left transverse temporal 

gyrus (p = 0.009), left banks of superior temporal sulcus (p = 0.035), left lingual gyrus (p = 

0.019), right lateral occipital cortex (p = 0.014), right paracentral cortex (p = 0.017), right 

posterior cingulate cortex (p = 0.041), and right temporal pole (p = 0.042), with the high-risk 

infants having thinner cortical thickness than the control infants (Table 3). In addition, the 

left frontal pole exhibited significantly larger cortical thickness in the high-risk infants (p = 

0.048), compared with the control infants. Scatterplots of the mean cortical thickness in 

these ROIs are shown in Fig. 2a.

ROI-based subgroup analysis further revealed strong group differences. The male high-risk 

infants had significantly thicker cortical thickness in the left frontal pole (p = 0.014), left 

cuneus cortex (p = 0.002), and left occipital cortex (p = 0.043) than the male control infants 

(Table S1; Fig. 2b). In addition, the male high-risk infants also had significantly thinner 

cortical thickness in the right temporal pole (p = 0.002) than the male control infants. The 

female high-risk infants had significantly thinner cortical thickness in the left paracentral (p 

= 0.033), right paracentral (p = 0.002), left lateral occipital (p = 0.010), right lateral occipital 

(p = 0.0004), left pars opercularis (p = 0.013), left transverse temporal (p = 0.028), right 

cuneus (p = 0.037), and right posterior cingulate (p = 0.034) cortices than the female control 

infants (Table S2; Fig. 2c). The right lateral occipital cortex remained significant even after 
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multiple comparison correction (FDR corrected p = 0.028). In addition, the female high-risk 

infants had significantly thicker cortical thickness in the right medial orbitofrontal frontal 

cortex (p = 0.046) than the female control infants. However, group × gender interaction 

effects (for testing whether two groups have different cortical thickness for both genders) 

were only found to be significant in the left cuneus cortex (p = 0.001), right cuneus cortex (p 

= 0.022), left lateral occipital cortex (p = 0.002), right lateral occipital cortex (p = 0.034), 

and right temporal pole (p = 0.009).

Cortical surface area

The total cortical surface area and the SE of each group were provided in Table 4. No 

significant group difference was found between the high-risk infants and control infants on 

the total surface areas of left and right hemispheres. ROI-based group analysis found 

significantly smaller surface area in the right pars triangularis (p = 0.028) in the high-risk 

infants, compared with the control infants (Table 5; Fig. 3a). Subgroup analysis further 

revealed strong group differences on regional surface area. Specifically, male high-risk 

infants exhibited significantly smaller surface area in the right pars triangularis (p = 0.032) 

and right fusiform gyrus (p = 0.026), compared with the male control infants (Table S3; Fig. 

3b). In contrast, no significant difference was found between female high-risk infants and 

female control infants on the surface area in any ROI (Table S4). However, group × gender 

interaction effect was only significant in the right fusiform gyrus (p = 0.007).

Discussion

This is the first preliminary study investigating the cortical thickness and surface area 

separately in the neonates at high genetic risk for schizophrenia. Previous imaging 

morphometric studies of high-risk neonates have focused on measurement of brain volumes, 

which is unable to differentiate the possible cortex abnormality from either the cortical 

thickness or surface area, or both. With the state-of-the-art methods for neonatal brain MRI 

segmentation and cortical surface reconstruction (Wang et al. 2013; Li et al. 2014a), for the 

first time, we are able to accurately compute the cortical thickness and surface area, and 

perform advanced surface-based analysis of the whole cortex in neonates. The cortical 

surface-based analysis is particularly appropriate for studying the highly convoluted cortical 

structures than volume-based morphometric methods, as it respects the topology of the 

cortex and facilitates alignment, analysis and visualization of buried cortical regions (Van 

Essen 2005; Fischl et al. 1999).

We found that the female high-risk neonates had significantly thinner cortical thickness in 

the right lateral occipital cortex than the female control neonates after multiple comparisons 

correction. In the high-risk adult subjects, the reduced cortical thickness in the occipital 

cortex has been found (Byun et al. 2012), although previous studies of both high-risk adults 

and healthy siblings of schizophrenia have mainly found the reduced cortical thickness or 

volume in the prefrontal and temporal regions (Thermenos et al. 2013). In addition, cortical 

thinning in the occipital cortex has also been found in the first-episode schizophrenia (Narr 

et al. 2005b; Sprooten et al. 2013), and also smaller GM volumes in the occipital lobe were 

exhibited in the schizophrenia patients with good outcomes than the patients with poor 

Li et al. Page 7

Brain Struct Funct. Author manuscript; available in PMC 2016 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



outcomes (Mitelman et al. 2003). Moreover, visual processing abnormalities have also been 

found in schizophrenia (Butler et al. 2008), and the abnormal neuronal density has been 

shown in the occipital cortex in postmortem schizophrenic brains (Selemon et al. 1995). Our 

finding provides the first evidence that cortical thickness may be abnormal in the neonates at 

high genetic risk for schizophrenia. The abnormal cortical thickness in the high-risk 

neonates may potentially reflect abnormalities of neuronal migration and mini-columnar 

formation for the cortex during gestation (Keshavan and Hogarty 1999). However, as 

children of parents with schizophrenia are at high risk, not only for schizophrenia but also 

for a variety of psychiatric disorders, including attention-deficit/hyper-activity, anxiety 

disorders, and depression (Ross and Compagnon 2001; Keshavan et al. 2008), our finding 

most likely reflects the genetic liability, or a genetic effect relevant to early brain 

development.

Before correction of multiple comparisons, we found more additional significant regions. 

For example, high-risk neonates had significantly thinner cortical thickness in the temporal 

cortex, including the left transverse temporal gyrus (Heschl’s gyrus, primary auditory 

cortex), left superior temporal sulcus, and right temporal pole. Our findings are generally 

consistent with the existing finding in the healthy siblings and high-risk subjects of 

schizophrenia. For example, young healthy siblings of patients with childhood-onset 

schizophrenia showed significant GM deficits in the bilateral temporal cortices, compared 

with the controls (Gogtay et al. 2007). The adult unaffected siblings of schizophrenia 

patients showed GM decreases in the superior temporal cortex (but not significant after 

correction for multiple comparisons) (Honea et al. 2008). Young individuals at high familial 

risk for schizophrenia showed significant cortical thinning in the left middle temporal gyrus 

(Sprooten et al. 2013). In the adults, cortical thinning in the Heschl’s gyrus has been found 

in the genetically high-risk subjects for schizophrenia (Byun et al. 2012). Reduced cortical 

thickness in the superior temporal sulcus was also found in the genetically high-risk adults 

(Gogtay et al. 2007), and reduced superior temporal gyral volume was found in young 

offspring of patients with schizophrenia (Rajarethinam et al. 2004). In addition, our finding 

of cortical thinning in the lingual gyrus in high-risk neonates was also consistent with the 

findings in high-risk adults (Byun et al. 2012). Our result was consistent with the hypothesis 

that the early infancy period is one critical window, during which vulnerability is established 

(Ross 2010; Thermenos et al. 2013).

Note that there might exist dynamic interactions across time and vulnerable regions. During 

the first 2 years of life, the cerebral cortex exhibits the regionally heterogeneous and 

dynamic development (Gilmore et al. 2012; Hanson et al. 2013; Nie et al. 2012, 2013; 

Knickmeyer et al. 2008; Li et al. 2013a; Lyall et al. 2014; Yap et al. 2011), due to the rapid 

growth of synaptic connections and dendritic complexity, abnormities of which have been 

shown in postmortem studies in schizophrenia (Glantz and Lewis 2000; Black et al. 2004). 

At term birth, the cortical thickness in the prefrontal and temporal regions is less matured 

than that in the occipital cortex (Lyall et al. 2014). During this critical developmental stage, 

the prefrontal and temporal regions exhibit the most dynamic cortical thickness growth, 

while the occipital cortex exhibits the least amount of cortical thickness growth (Lyall et al. 

2014). Moreover, multiple genes contribute to risk for schizophrenia (Aberg et al. 2013), 

and also genetic effects on the cortex development increase with the age in infants (Gilmore 
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et al. 2010b). Therefore, cortical thickness alterations in the high-risk neonates might 

become evident or shown in other regions, e.g., the prefrontal cortex, during the brain 

development in this stage. Studying the longitudinal developmental trajectories of the 

cortical thickness in these high-risk neonates will further critically increase our 

understanding of schizophrenia.

Subgroup analysis revealed significant gender effects (before correction of multiple 

comparisons), with the male high-risk neonates having thicker cortical thickness than the 

male control neonates in the left frontal pole, cuneus cortex, and lateral occipital cortex; 

while the female high-risk neonates had significantly thinner cortex than the female control 

neonates in bilateral paracentral, bilateral lateral occipital, left transverse temporal, left pars 

opercularis, right cuneus, and right posterior cingulate cortices. Our previous study found 

that neonatal males at risk for schizophrenia had larger brain volume and about 6 % larger 

cortical GM volume, compared to the controls (Gilmore et al. 2010a). Several cortical 

regions did show larger cortical thickness in high-risk male neonates, and the left 

hemisphere had quantitatively larger cortical thickness, which is consistent with the previous 

findings (Gilmore et al. 2010a). Note that the image processing for each analysis was 

different (surface-based vs volume-based), which may explain the differences between the 

studies.

We found significantly smaller surface area in the right pars triangularis in high-risk 

neonates (before multiple comparisons correction). In the adolescent high-risk studies, this 

region has shown significant reduction of the cortical surface area in 1-year follow-up 

(Prasad et al. 2010). Our results are consistent with findings with other schizophrenia studies 

of high-risk subjects and patients that the reduction in cortical volume was mainly driven by 

cortical thinning, although marginal surface area reduction had also been found in the 

circumscribed regions (Rimol et al. 2012; Gutierrez-Galve et al. 2010; Thermenos et al. 

2013). In addition, our results are also consistent with the cortex developmental theory that 

the cortical surface area and cortical thickness are driven by distinct cellular and genetic 

mechanisms (Panizzon et al. 2009; Chen et al. 2013).

In this study, we mixed the schizophrenia and schizoaffective disorder, which differs from 

schizophrenia in terms of the presence of distinct mood episodes. In the previous studies, 

schizoaffective probands were often intermingled with schizophrenia case subjects and 

showed similar GM characteristics (Cannon et al. 1998; Radonic et al. 2011). For example, 

schizophrenia and schizoaffective probands showed overlapping GM reductions in 

numerous cortical and subcortical regions (Ivleva et al. 2013). However, it should be noted 

that, mixing schizophrenia and schizoaffective disorder may run at risk of mixing two 

disorders, which might have substantially different genetic architectures.

This preliminary study has several limitations. First, given the heterogeneity of 

schizophrenia and schizoaffective disorder, the sample size in this study is limited due to the 

difficulty in recruiting pregnant mothers with schizophrenia and their infants and also the 

difficulty in imaging high-risk infants (Gilmore et al. 2010a). Large sample size and 

longitudinal studies are expected to further confirm the findings. Second, as the fathers are 

young (30.8 ± 4.9 years of age), it is possible that fathers may have developed schizophrenia 
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subsequent to the study. This would have an effect of increasing the genetic loading risk of 

the child. Third, high-risk infants were more likely to be exposed to medications such as 

antipsychotics, anti-depressants, and cigarette smoking, as well as alcohol during pregnancy. 

Previous studies have shown that the use of antipsychotics during pregnancy does not appear 

to significantly increase the risk of birth defects and other adverse outcomes (Einarson and 

Boskovic 2009), although the influence of antipsychotics on prenatal cortex development is 

unclear. Brain volume studies do not find significant differences between the high-risk 

neonates exposed to maternal cigarette smoking and those who were not exposed (Gilmore 

et al. 2010a). Prenatal exposure to maternal cigarette smoking has been shown to cause the 

thinner orbitofrontal, middle frontal, and parahippocampal cortices in adolescents (Toro et 

al. 2008; Lotfipour et al. 2009). Previous studies have also shown that children and the 

youth with heavy prenatal alcohol exposure have thicker cortical thickness in the frontal, 

temporal, and parietal regions than the control subjects (Sowell et al. 2008; Yang et al. 

2012). All these factors could have confounded the results. Fourth, high-risk infants born to 

schizophrenic mothers are likely to be in worse living conditions, such as poor nutrition. 

This could also have confounded the results. Lastly, the majority of individuals born with 

vulnerability will never develop the full clinical disorder (Ross 2010). Although cortical 

thickness and surface area abnormalities may exist in the high-risk neonates, only 10 % 

among them are expected to ultimately develop schizophrenia (Gilmore et al. 2010a).

In summary, using the infant-specific cortical surface-based morphometry, this preliminary 

study provides the first evidence of possible abnormal cortical thickness and surface area 

development in the high-risk neonatal subjects. This suggests the possible need of early 

identification, prevention, and intervention strategies for schizophrenia (and other 

psychiatric disorders) to target this critical period of early brain development.
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Fig. 1. 
Cortical surface reconstruction and parcellation of a representative neonate. a Is an axial 

slice of reconstructed inner (green color) and outer (red color) cortical surfaces overlaid on 

the T2 MR image. b and c Are the lateral and medial views of the parcellation of the outer 

surface on the left hemisphere
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Fig. 2. 
p values and scatterplots of regional mean cortical thickness between infants at high genetic 

risk for schizophrenia and the control infants. The color bar of p values is provided on the 

right. White colors indicate non-significant regions
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Fig. 3. 
p values and scatterplots of regional surface area between infants at high-risk for 

schizophrenia and the control infants. White colors indicate non-significant regions. No 

significant difference of regional surface area was found in two female groups
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Table 1

Demographic characteristics, prenatal and perinatal conditions of infants at high genetic risk for schizophrenia 

and comparison infants

Characteristic, prenatal and perinatal conditiona Comparison infants (N = 26) High-risk infants (N = 21)

N % N %

Gender

 Male 12 46.2 10 47.6

 Female 14 53.8 11 52.4

Ethnicity

 Caucasian 16 61.5 11 52.4

 African American 10 38.5 10 47.6

Medication exposure

 Antipsychotic* 0 0.0 19 90.5

 Antidepressant* 0 0.0 5 23.8

 Lithium 0 0.0 2 9.5

 Other medication 16 61.5 16 76.2

Substance exposure

 Tobacco smoking* 1 3.8 9 42.9

 Alcohol 0 0.0 2 9.5

 Marijuana 0 0.0 2 9.5

Cesarean section 7 26.9 8 38.1

 Premature birth (< 37 weeks) 8 30.8 6 28.6

 Stay in neonatal intensive care unit 2 7.7 6 28.6

Mean SD Mean SD

Maternal age (years) 28.1 3.7 27.3 3.9

Maternal education (years)* 13.9 2.9 10.0 3.5

Infant age (days since mother’s last menstrual period)

 At birth 268.7 17.4 265.0 23.1

 At MRI 299.0 16.2 300.7 24.8

Birth weight (g) 3,121 647.4 3,147.8 1,006.3

Apgar scoreb

 1 min 7.92 1.26 7.1 2.3

 5 min 8.92 0.48 8.5 1.2

*
Significant difference between groups (p < 0.05)

a
Detailed recruiting information can be referred to Gilmore et al. (2010a)

b
Apgar score is to assess the condition and prognosis of newborn infants, taken 1 and 5 min after birth. Apgar score ranges from 0 to 10, and 

neonates scoring 7 or above are generally considered in good health (Shi et al. 2012)
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