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Abstract

Schizophrenia is a neurodevelopmental disorder associated with subtle abnormal cortical thickness
and cortical surface area. However, it is unclear whether these abnormalities exist in neonates
associated with genetic risk for schizophrenia. To this end, this preliminary study was conducted
to identify possible abnormalities of cortical thickness and surface area in the high-genetic-risk
neonates. Structural magnetic resonance images were acquired from offspring of mothers (N = 21)
who had schizophrenia (N = 12) or schizoaffective disorder (N = 9), and also matched healthy
neonates of mothers who were free of psychiatric illness (N = 26). Neonatal cortical surfaces were
reconstructed and parcellated as regions of interest (ROIs), and cortical thickness for each vertex
was computed as the shortest distance between the inner and outer surfaces. Comparisons were
made for the average cortical thickness and total surface area in each of 68 cortical ROIs. After
false discovery rate (FDR) correction, it was found that the female high-genetic-risk neonates had
significantly thinner cortical thickness in the right lateral occipital cortex than the female control
neonates. Before FDR correction, the high-genetic-risk neonates had significantly thinner cortex in
the left transverse temporal gyrus, left banks of superior temporal sulcus, left lingual gyrus, right
paracentral cortex, right posterior cingulate cortex, right temporal pole, and right lateral occipital
cortex, compared with the control neonates. Before FDR correction, in comparison with control
neonates, male high-risk neonates had significantly thicker cortex in the left frontal pole, left
cuneus cortex, and left lateral occipital cortex; while female high-risk neonates had significantly
thinner cortex in the bilateral paracentral, bilateral lateral occipital, left transverse temporal, left
pars opercularis, right cuneus, and right posterior cingulate cortices. The high-risk neonates also
had significantly smaller cortical surface area in the right pars triangularis (before FDR
correction), compared with control neonates. This preliminary study provides the first evidence
that early development of cortical thickness and surface area might be abnormal in the neonates at
genetic risk for schizophrenia.
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Introduction

Schizophrenia is a neurodevelopmental disorder (Rapoport et al. 2005), characterized by
hallucinations, delusions, and cognitive deficits, with heritability estimated at up to 80 %
(Purcell et al. 2009). The first onset of psychosis in schizophrenia usually emerges in the late
adolescence or early adulthood (Insel 2010), which is the end result of decades of interaction
between genetic and environmental factors (Ross 2010). The early infancy period is one
critical window, during which vulnerability is established; while the adolescent or young
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adult period is the other critical window, during which the conversion from vulnerability to
psychosis occurs (Ross 2010). Longitudinal studies have shown evidence of abnormalities
preceding symptom onset, including delayed developmental milestone in their first year of
life in adults with schizophrenia (Sorensen et al. 2010), and reduced 1Q in children who
destined to develop schizophrenia (Reichenberg et al. 2010; Woodberry et al. 2008). Having
an affected relative also increases the risk for schizophrenia. For example, 20-50 % of
children born to schizophrenic mothers exhibit developmental abnormalities (Marcus et al.
1993). Their risk of developing schizophrenia is about 10 times higher than that of the
normal population (Sullivan 2005). High-risk neonates born to schizophrenic mothers, with
the minimal exposure to environmental influences, are ideal candidates for increasing our
understanding of brain changes associated with vulnerability to later to schizophrenia.

Magnetic resonance (MR) imaging studies have consistently found that schizophrenia is
associated with the widespread cortical thinning, particularly affecting the prefrontal and
temporal cortices in the first-episode and chronic subjects (Kuperberg et al. 2003; Narr et al.
2005a; Rimol et al. 2012), as well as reductions of the marginal cortical surface area (Rimol
et al. 2012; Gutierrez-Galve et al. 2010). Unaffected relatives of individuals with
schizophrenia have also been shown to exhibit cortical thickness abnormalities (Goghari et
al. 2007b; Gogtay et al. 2007). Healthy relatives of schizophrenia patients show reduced
cingulate thickness (Goghari et al. 2007b) and sulcal thickness alterations in the cingulate
sulcus and superior temporal sulcus (Goghari et al. 2007a), and young healthy siblings of
schizophrenia with childhood-onset schizophrenia exhibit thinner cortices in the temporal
and prefrontal regions (Gogtay et al. 2007), though these are not the consistent findings
(Goldman et al. 2009). In addition, adolescents at ultra-high risk for psychosis exhibit more
cortical thinning in the left middle temporal cortex than controls (Ziermans et al. 2012).
Young adults at genetic risk for schizophrenia also show low cortical thickness in the right
anterior cingulate cortex, left paracingulate and posterior cingulate regions, bilateral frontal
regions, temporal regions, inferior parietal and occipital regions (Byun et al. 2012).
However, it remains unclear when the abnormalities of cortical thickness or surface area
arise in patients with schizophrenia or their unaffected first-degree relatives.

Recent MR imaging studies of neonates at high genetic risk for schizophrenia have revealed
structural abnormalities in the lateral ventricle, total gray matter (GM), cerebrospinal fluid,
and intracranial volumes in male neonates (Gilmore et al. 2010a). Altered brain structural
network was also found in high-risk neonates (Shi et al. 2012). These results suggest that the
cortex developmental abnormalities in high-risk subjects may occur as early as the neonatal
stage. Due to the low tissue contrast and high noise in the neonatal brain MR images,
previous studies of high-risk neonates have been limited to the volume-based morphometric
analyses. In fact, the cortical volume is the product of the cortical surface area and cortical
thickness, which are driven by distinct cellular and genetic mechanisms (Panizzon et al.
2009; Chen et al. 2013). According to the radial unit hypothesis of cortical development, the
cortical surface area is determined by the number of neuron columns that run perpendicular
to the cortical surface, whereas the cortical thickness is influenced by the number of cells
within a column (Rakic 1988). Therefore, volume-based morphometric analyses are unable
to differentiate the cortex abnormality from either the cortical thickness or surface area, or
both. With the recent advance in techniques for neonatal brain MR image processing (Wang
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et al. 2011, 2013, 2014; Shi et al. 2010; Li et al. 2013a, 2014a), we are able to accurately
reconstruct the neonatal cortical surfaces and further measure their cortical thickness and
surface area, respectively, which is likely to provide more precise information of the
possible cortex abnormalities. In this preliminary study, with our advanced infant-specific
surface-based analysis pipeline (Li et al. 2013a, 2014a, b, ¢; Meng et al. 2014), for the first
time, we are able to measure cortical thickness and surface area of neonates at high genetic
risk for schizophrenia and matched control neonates, to identify whether the abnormalities
of cortical thickness or surface area may exist in the high-risk neonates.

Materials and methods

Participants and MR image acquisition

The Institutional Review Board of the University of North Carolina (UNC) School of
Medicine approved this study. Pregnant mothers with a confirmed diagnosis of
schizophrenia or schizoaffective disorder were recruited and underwent a Structured Clinical
Interview for DSM-IV Axis | Disorders (SCID) (Gilmore et al. 2010a). Past psychiatric
records were obtained and a final consensus diagnosis was assigned. Matched control infants
were selected from a companion study of normal brain development at UNC (Knickmeyer et
al. 2008). Control infants were matched on gender, age in terms of time since last menstrual
period at birth, age since the last menstrual period at MRI, and maternal age (Table 1).
Potential control mothers were screened for psychiatric illness using a modified SCID. All
genetic fathers and other first-degree relatives had no psychiatric illness, as confirmed by
reports from children’s mothers. The mean age of fathers was 30.8 + 4.9 years. The dataset
used in this paper has previously been used for studying brain volume differences and
structural network difference between high-risk infants and control infants (Gilmore et al.
2010a; Shi et al. 2012).

All written informed consent forms were obtained from the parents. Exclusion criteria of
infants included abnormalities on fetal ultrasound or major medical or psychotic illness in
the mother. All infants were free of congenital anomalies, metabolic disease, and focal
lesions. Detailed recruiting information can be found in Gilmore et al. (2010a) and Shi et al.
(2012). Structural MR images were acquired from offspring of mothers (N = 21) who had
schizophrenia (N = 12) or schizoaffective disorder (N = 9), and also matched healthy
neonates of mothers who were free of psychiatric illness (N = 26).

MR images were acquired on a Siemens head-only 3T scanner with a circular polarized head
coil. For T1-weighted images, 160 axial slices were obtained using the 3-dimensional
magnetization-prepared rapid gradient-echo sequence: TR = 1,820 ms, TE = 4.38 ms, flip
angle = 7°, and resolution = 1 x 1 x 1 mm3. For T2-weighted MR images, 70 axial slices
were acquired with turbo spin-echo sequences: TR = 7,380 ms, TE = 119 ms, flip angle =
150°, and resolution = 1.25 x 1.25 x 1.95 mm3. The duration of T1 scan was 5:51 min, and
the duration of T2 scan was 5:36 min. T2-weighted images were linearly aligned onto their
respective T1-weighted images and further resampled to be 1 x 1 x 1 mm3. Before scanning,
infants were fed, swaddled, and fitted with ear protection. All infants were unsedated during
scanning. Our current success rate for obtaining usable MRIs was approximately 90 % for
neonates (Li et al. 2014c). All images in this study were visually checked and rated for
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motion artifacts using a 4-point visual scale [none (1), mild (2), moderate (3), severe (4)]
based on Blumenthal et al. (2002) and Lyall et al. (2014). The average motion artifact rating
was less than 1.4.

Image processing

All MR images were preprocessed using the same infant-specific pipeline in Li et al. (2013a,
b), including: (1) skull stripping, followed by manual editing to ensure the accurate removal
of non-brain tissues; (2) removal of the cerebellum and brain stem; (3) correction of
intensity inhomogeneity; (4) rigid alignment of all images onto the neonatal brain atlas (Shi
et al. 2011). Tissue segmentation of neonatal brain MR images into gray matter (GM), white
matter (WM) and cerebrospinal fluid (CSF) was performed by an infant-specific patch-
driven coupled level sets method (Wang et al. 2013). After tissue segmentation, non-cortical
structures were masked and filled, and each brain was separated into left and right
hemispheres.

Based on tissue segmentation results, topologically correct and geometrically accurate
cortical surfaces of each hemisphere for each subject were reconstructed using a deformable
surface method (Li et al. 2012, 2014a). Specifically, the WM of each hemisphere was first
topologically corrected to ensure having a spherical topology, and then the corrected WM
was tessellated to form a triangulated surface mesh. Lastly, the triangular surface mesh of
each hemisphere was deformed towards the reconstruction of the inner, central and outer
cortical surfaces by preserving its initial topology. Note that the reconstructed cortical
surfaces were spatially smooth and not constrained to voxel grids, thus achieving
submillimeter accuracy (Li et al. 2014a). All inner cortical surfaces, with vertex-to-vertex
correspondences to the outer cortical surfaces, were smoothed, inflated, and mapped to the
standard sphere (Fischl et al. 1999). Each cortical surface was parcellated into 34 gyral-
based regions of interest (ROIs) using Free-Surfer (Desikan et al. 2006). The cortical surface
reconstruction and parcellation results were visually inspected for accuracy and further
manually edited when needed. As major cortical folding is established at term birth and
preserved during postnatal development (Li et al. 2013a, 2014c), the adult-based surface
atlases in FreeSurfer, which encode major cortical folding information, achieve reasonable
accuracy for parcellation of infant cortical surfaces (Li et al. 2013b), however, infant age-
specific surface atlases would further improve the parcellation accuracy. The cortical
thickness for each vertex was computed as the average value of the minimum distance from
inner to outer surfaces and the minimum distance from outer to inner surfaces (Li et al.
2014a), similar to Fischl and Dale (2000). The mean cortical thickness value for each
cortical region was then computed. The total surface area for each cortical region was
computed based on the central cortical surface, which was defined as the surface lying in the
geometric center between the inner and outer surfaces, for providing a balanced
representation of gyral and sulcal regions (Van Essen 2005). The automated cortical surface
measure computation results have been validated on five neonates with manual
segmentation by a single rater. Intra-class correlations were calculated for regional cortical
thickness and surface area, with the average value of 0.87 for cortical thickness and 0.91 for
surface area, respectively (Lyall et al. 2014). Figure 1 shows the cortical surface
reconstruction and parcellation results of a representative neonate.
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Statistical analysis

Results

To compare control and high-risk groups, we performed analysis of covariance (ANCOVA)
procedure (Montgomery 2013). In this study, all analyses were implemented in SAS 9.3
software (SAS Institute, Cary NC) using generalized linear model (GENMOD) procedure to
fit the ANCOVA. For each cortical region, we fit the following model

yi=Po+1age;+P2group;+pPsgender;+pB4group; X gender;+ Gsbirthage,; +¢;,

where, the subscript i represents the ith subject, y; is the mean cortical thickness or total
surface area, agej is the gestational age in days at MRI acquisition, birthage; is the
gestational age in days at birth, group; is 0 if control group and 1 if high-risk group, gender;
is 0 if male and 1 if female, and & is an error term. For each ROI, we computed the least
squares (LS) means and their standard errors (SE) for control and risk groups. By testing the
differences of LS means between two groups, we obtained the z values and the
corresponding p values. For each gender, we then followed the same procedure. Unless
otherwise stated, p values were not corrected for multiple comparisons, as this study is
primarily exploratory, hypothesis generating, and in need of replication.

Cortical thickness

The mean cortical thickness and their SE of each group were provided in Table 2. No
significant group difference was found between infants at high genetic risk for schizophrenia
and the control infants on mean cortical thickness of left or right hemisphere. ROI-based
analysis revealed that there were significant group differences between the genetically high-
risk infants and the control infants on the cortical thickness of the left transverse temporal
gyrus (p = 0.009), left banks of superior temporal sulcus (p = 0.035), left lingual gyrus (p =
0.019), right lateral occipital cortex (p = 0.014), right paracentral cortex (p = 0.017), right
posterior cingulate cortex (p = 0.041), and right temporal pole (p = 0.042), with the high-risk
infants having thinner cortical thickness than the control infants (Table 3). In addition, the
left frontal pole exhibited significantly larger cortical thickness in the high-risk infants (p =
0.048), compared with the control infants. Scatterplots of the mean cortical thickness in
these ROIs are shown in Fig. 2a.

ROI-based subgroup analysis further revealed strong group differences. The male high-risk
infants had significantly thicker cortical thickness in the left frontal pole (p = 0.014), left
cuneus cortex (p = 0.002), and left occipital cortex (p = 0.043) than the male control infants
(Table S1; Fig. 2b). In addition, the male high-risk infants also had significantly thinner
cortical thickness in the right temporal pole (p = 0.002) than the male control infants. The
female high-risk infants had significantly thinner cortical thickness in the left paracentral (p
= 0.033), right paracentral (p = 0.002), left lateral occipital (p = 0.010), right lateral occipital
(p =0.0004), left pars opercularis (p = 0.013), left transverse temporal (p = 0.028), right
cuneus (p = 0.037), and right posterior cingulate (p = 0.034) cortices than the female control
infants (Table S2; Fig. 2¢). The right lateral occipital cortex remained significant even after
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multiple comparison correction (FDR corrected p = 0.028). In addition, the female high-risk
infants had significantly thicker cortical thickness in the right medial orbitofrontal frontal
cortex (p = 0.046) than the female control infants. However, group x gender interaction
effects (for testing whether two groups have different cortical thickness for both genders)
were only found to be significant in the left cuneus cortex (p = 0.001), right cuneus cortex (p
=0.022), left lateral occipital cortex (p = 0.002), right lateral occipital cortex (p = 0.034),
and right temporal pole (p = 0.009).

Cortical surface area

The total cortical surface area and the SE of each group were provided in Table 4. No
significant group difference was found between the high-risk infants and control infants on
the total surface areas of left and right hemispheres. ROI-based group analysis found
significantly smaller surface area in the right pars triangularis (p = 0.028) in the high-risk
infants, compared with the control infants (Table 5; Fig. 3a). Subgroup analysis further
revealed strong group differences on regional surface area. Specifically, male high-risk
infants exhibited significantly smaller surface area in the right pars triangularis (p = 0.032)
and right fusiform gyrus (p = 0.026), compared with the male control infants (Table S3; Fig.
3b). In contrast, no significant difference was found between female high-risk infants and
female control infants on the surface area in any ROI (Table S4). However, group x gender
interaction effect was only significant in the right fusiform gyrus (p = 0.007).

Discussion

This is the first preliminary study investigating the cortical thickness and surface area
separately in the neonates at high genetic risk for schizophrenia. Previous imaging
morphometric studies of high-risk neonates have focused on measurement of brain volumes,
which is unable to differentiate the possible cortex abnormality from either the cortical
thickness or surface area, or both. With the state-of-the-art methods for neonatal brain MRI
segmentation and cortical surface reconstruction (Wang et al. 2013; Li et al. 2014a), for the
first time, we are able to accurately compute the cortical thickness and surface area, and
perform advanced surface-based analysis of the whole cortex in neonates. The cortical
surface-based analysis is particularly appropriate for studying the highly convoluted cortical
structures than volume-based morphometric methods, as it respects the topology of the
cortex and facilitates alignment, analysis and visualization of buried cortical regions (Van
Essen 2005; Fischl et al. 1999).

We found that the female high-risk neonates had significantly thinner cortical thickness in
the right lateral occipital cortex than the female control neonates after multiple comparisons
correction. In the high-risk adult subjects, the reduced cortical thickness in the occipital
cortex has been found (Byun et al. 2012), although previous studies of both high-risk adults
and healthy siblings of schizophrenia have mainly found the reduced cortical thickness or
volume in the prefrontal and temporal regions (Thermenos et al. 2013). In addition, cortical
thinning in the occipital cortex has also been found in the first-episode schizophrenia (Narr
et al. 2005b; Sprooten et al. 2013), and also smaller GM volumes in the occipital lobe were
exhibited in the schizophrenia patients with good outcomes than the patients with poor
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outcomes (Mitelman et al. 2003). Moreover, visual processing abnormalities have also been
found in schizophrenia (Butler et al. 2008), and the abnormal neuronal density has been
shown in the occipital cortex in postmortem schizophrenic brains (Selemon et al. 1995). Our
finding provides the first evidence that cortical thickness may be abnormal in the neonates at
high genetic risk for schizophrenia. The abnormal cortical thickness in the high-risk
neonates may potentially reflect abnormalities of neuronal migration and mini-columnar
formation for the cortex during gestation (Keshavan and Hogarty 1999). However, as
children of parents with schizophrenia are at high risk, not only for schizophrenia but also
for a variety of psychiatric disorders, including attention-deficit/hyper-activity, anxiety
disorders, and depression (Ross and Compagnon 2001; Keshavan et al. 2008), our finding
most likely reflects the genetic liability, or a genetic effect relevant to early brain
development.

Before correction of multiple comparisons, we found more additional significant regions.
For example, high-risk neonates had significantly thinner cortical thickness in the temporal
cortex, including the left transverse temporal gyrus (Heschl’s gyrus, primary auditory
cortex), left superior temporal sulcus, and right temporal pole. Our findings are generally
consistent with the existing finding in the healthy siblings and high-risk subjects of
schizophrenia. For example, young healthy siblings of patients with childhood-onset
schizophrenia showed significant GM deficits in the bilateral temporal cortices, compared
with the controls (Gogtay et al. 2007). The adult unaffected siblings of schizophrenia
patients showed GM decreases in the superior temporal cortex (but not significant after
correction for multiple comparisons) (Honea et al. 2008). Young individuals at high familial
risk for schizophrenia showed significant cortical thinning in the left middle temporal gyrus
(Sprooten et al. 2013). In the adults, cortical thinning in the Heschl’s gyrus has been found
in the genetically high-risk subjects for schizophrenia (Byun et al. 2012). Reduced cortical
thickness in the superior temporal sulcus was also found in the genetically high-risk adults
(Gogtay et al. 2007), and reduced superior temporal gyral volume was found in young
offspring of patients with schizophrenia (Rajarethinam et al. 2004). In addition, our finding
of cortical thinning in the lingual gyrus in high-risk neonates was also consistent with the
findings in high-risk adults (Byun et al. 2012). Our result was consistent with the hypothesis
that the early infancy period is one critical window, during which vulnerability is established
(Ross 2010; Thermenos et al. 2013).

Note that there might exist dynamic interactions across time and vulnerable regions. During
the first 2 years of life, the cerebral cortex exhibits the regionally heterogeneous and
dynamic development (Gilmore et al. 2012; Hanson et al. 2013; Nie et al. 2012, 2013;
Knickmeyer et al. 2008; Li et al. 2013a; Lyall et al. 2014; Yap et al. 2011), due to the rapid
growth of synaptic connections and dendritic complexity, abnormities of which have been
shown in postmortem studies in schizophrenia (Glantz and Lewis 2000; Black et al. 2004).
At term birth, the cortical thickness in the prefrontal and temporal regions is less matured
than that in the occipital cortex (Lyall et al. 2014). During this critical developmental stage,
the prefrontal and temporal regions exhibit the most dynamic cortical thickness growth,
while the occipital cortex exhibits the least amount of cortical thickness growth (Lyall et al.
2014). Moreover, multiple genes contribute to risk for schizophrenia (Aberg et al. 2013),
and also genetic effects on the cortex development increase with the age in infants (Gilmore
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et al. 2010b). Therefore, cortical thickness alterations in the high-risk neonates might
become evident or shown in other regions, e.g., the prefrontal cortex, during the brain
development in this stage. Studying the longitudinal developmental trajectories of the
cortical thickness in these high-risk neonates will further critically increase our
understanding of schizophrenia.

Subgroup analysis revealed significant gender effects (before correction of multiple
comparisons), with the male high-risk neonates having thicker cortical thickness than the
male control neonates in the left frontal pole, cuneus cortex, and lateral occipital cortex;
while the female high-risk neonates had significantly thinner cortex than the female control
neonates in bilateral paracentral, bilateral lateral occipital, left transverse temporal, left pars
opercularis, right cuneus, and right posterior cingulate cortices. Our previous study found
that neonatal males at risk for schizophrenia had larger brain volume and about 6 % larger
cortical GM volume, compared to the controls (Gilmore et al. 2010a). Several cortical
regions did show larger cortical thickness in high-risk male neonates, and the left
hemisphere had quantitatively larger cortical thickness, which is consistent with the previous
findings (Gilmore et al. 2010a). Note that the image processing for each analysis was
different (surface-based vs volume-based), which may explain the differences between the
studies.

We found significantly smaller surface area in the right pars triangularis in high-risk
neonates (before multiple comparisons correction). In the adolescent high-risk studies, this
region has shown significant reduction of the cortical surface area in 1-year follow-up
(Prasad et al. 2010). Our results are consistent with findings with other schizophrenia studies
of high-risk subjects and patients that the reduction in cortical volume was mainly driven by
cortical thinning, although marginal surface area reduction had also been found in the
circumscribed regions (Rimol et al. 2012; Gutierrez-Galve et al. 2010; Thermenos et al.
2013). In addition, our results are also consistent with the cortex developmental theory that
the cortical surface area and cortical thickness are driven by distinct cellular and genetic
mechanisms (Panizzon et al. 2009; Chen et al. 2013).

In this study, we mixed the schizophrenia and schizoaffective disorder, which differs from
schizophrenia in terms of the presence of distinct mood episodes. In the previous studies,
schizoaffective probands were often intermingled with schizophrenia case subjects and
showed similar GM characteristics (Cannon et al. 1998; Radonic et al. 2011). For example,
schizophrenia and schizoaffective probands showed overlapping GM reductions in
numerous cortical and subcortical regions (lvleva et al. 2013). However, it should be noted
that, mixing schizophrenia and schizoaffective disorder may run at risk of mixing two
disorders, which might have substantially different genetic architectures.

This preliminary study has several limitations. First, given the heterogeneity of
schizophrenia and schizoaffective disorder, the sample size in this study is limited due to the
difficulty in recruiting pregnant mothers with schizophrenia and their infants and also the
difficulty in imaging high-risk infants (Gilmore et al. 2010a). Large sample size and
longitudinal studies are expected to further confirm the findings. Second, as the fathers are
young (30.8 + 4.9 years of age), it is possible that fathers may have developed schizophrenia
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subsequent to the study. This would have an effect of increasing the genetic loading risk of
the child. Third, high-risk infants were more likely to be exposed to medications such as
antipsychotics, anti-depressants, and cigarette smoking, as well as alcohol during pregnancy.
Previous studies have shown that the use of antipsychotics during pregnancy does not appear
to significantly increase the risk of birth defects and other adverse outcomes (Einarson and
Boskovic 2009), although the influence of antipsychotics on prenatal cortex development is
unclear. Brain volume studies do not find significant differences between the high-risk
neonates exposed to maternal cigarette smoking and those who were not exposed (Gilmore
et al. 2010a). Prenatal exposure to maternal cigarette smoking has been shown to cause the
thinner orbitofrontal, middle frontal, and parahippocampal cortices in adolescents (Toro et
al. 2008; Lotfipour et al. 2009). Previous studies have also shown that children and the
youth with heavy prenatal alcohol exposure have thicker cortical thickness in the frontal,
temporal, and parietal regions than the control subjects (Sowell et al. 2008; Yang et al.
2012). All these factors could have confounded the results. Fourth, high-risk infants born to
schizophrenic mothers are likely to be in worse living conditions, such as poor nutrition.
This could also have confounded the results. Lastly, the majority of individuals born with
vulnerability will never develop the full clinical disorder (Ross 2010). Although cortical
thickness and surface area abnormalities may exist in the high-risk neonates, only 10 %
among them are expected to ultimately develop schizophrenia (Gilmore et al. 2010a).

In summary, using the infant-specific cortical surface-based morphometry, this preliminary
study provides the first evidence of possible abnormal cortical thickness and surface area
development in the high-risk neonatal subjects. This suggests the possible need of early
identification, prevention, and intervention strategies for schizophrenia (and other
psychiatric disorders) to target this critical period of early brain development.
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Fig. 1.
Cortical surface reconstruction and parcellation of a representative neonate. a Is an axial

slice of reconstructed inner (green color) and outer (red color) cortical surfaces overlaid on
the T2 MR image. b and c Are the lateral and medial views of the parcellation of the outer
surface on the left hemisphere
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Fig. 2.
p values and scatterplots of regional mean cortical thickness between infants at high genetic

risk for schizophrenia and the control infants. The color bar of p values is provided on the
right. White colors indicate non-significant regions
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schizophrenia and the control infants. White colors indicate non-significant regions. No
significant difference of regional surface area was found in two female groups
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Table 1

Demographic characteristics, prenatal and perinatal conditions of infants at high genetic risk for schizophrenia
and comparison infants

Characteristic, prenatal and perinatal condition® ~Comparison infants(N =26)  High-risk infants (N = 21)

N % N %

Gender

Male 12 46.2 10 47.6

Female 14 53.8 11 52.4
Ethnicity

Caucasian 16 61.5 11 52.4

African American 10 385 10 47.6
Medication exposure

Antipsychotic* 0 0.0 19 90.5

Antidepressant* 0 0.0 5 238

Lithium 0 0.0 2 9.5

Other medication 16 61.5 16 76.2
Substance exposure

Tobacco smoking* 1 38 9 42.9

Alcohol 0 0.0 2 9.5

Marijuana 0 0.0 2 9.5
Cesarean section 7 26.9 8 38.1

Premature birth (< 37 weeks) 8 30.8 6 28.6

Stay in neonatal intensive care unit 2 7.7 6 28.6

Mean SD Mean SD

Maternal age (years) 28.1 37 273 3.9

Maternal education (years)* 139 29 100 3.5

Infant age (days since mother’s last menstrual period)

At birth 268.7 174 265.0 23.1
At MRI 299.0 16.2  300.7 24.8
Birth weight (g) 3,121 6474 3,147.8 1,006.3

Apgar scoreP
1 min 7.92 126 7.1 23
5min 8.92 048 85 12

Significant difference between groups (p < 0.05)
aDetaiIed recruiting information can be referred to Gilmore et al. (2010a)

bApgar score is to assess the condition and prognosis of newborn infants, taken 1 and 5 min after birth. Apgar score ranges from 0 to 10, and
neonates scoring 7 or above are generally considered in good health (Shi et al. 2012)
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