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Abstract

Background—African American (AA) women are diagnosed with more advanced breast 

cancers and have worse survival than white women, but a comprehensive understanding of the 

basis for this disparity remains unclear. Analysis of DNA methylation, an epigenetic mechanism 

that can regulate gene expression, could help to explain racial differences in breast tumor clinical 

biology and outcomes.

Methods—DNA methylation was evaluated at 1287 CpGs in the promoters of cancer-related 

genes in 517 breast tumors of AA (n=216) or non-AA (n=301) cases in the Carolina Breast Cancer 

Study.

Results—Multivariable linear regression analysis of all tumors, controlling for age, menopausal 

status, stage, intrinsic subtype, and multiple comparisons (FDR), identified 7 CpG probes that 

showed significant (adjusted p<0.05) differential methylation between AAs and non-AAs. 

Stratified analyses detected an additional 4 CpG probes differing by race within hormone receptor-

negative (HR−) tumors. Genes differentially methylated by race included DSC2, KCNK4, GSTM1, 

AXL, DNAJC15, HBII-52, TUSC3 and TES; the methylation state of several of these genes may be 

associated with worse survival in AAs. TCGA breast tumor data confirmed the differential 

methylation by race and negative correlations with expression for most of these genes. Several loci 

also showed racial differences in methylation in peripheral blood leukocytes (PBLs) from CBCS 

cases, indicating that these variations were not necessarily tumor-specific.
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Conclusions—Racial differences in the methylation of cancer-related genes are detectable in 

both tumors and PBLs from breast cancer cases.

Impact—Epigenetic variation could contribute to differences in breast tumor development and 

outcomes between AAs and non-AAs.
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INTRODUCTION

Breast cancer, the most common cancer among women in the United States (1), is a 

heterogeneous disease with multiple clinical, histopathologic and molecular subtypes 

exhibiting different therapeutic responses and prognoses (2-4). Racial differences exist in its 

presentation and outcome, with African American (AA) women, especially younger women, 

being diagnosed with more advanced cancers (5) and having worse survival than white 

women even after controlling for known prognostic factors or treatment (5-7). Prior work 

using protein markers to classify breast tumor intrinsic subtypes in the Carolina Breast 

Cancer Study (CBCS) found a higher prevalence of basal-like breast tumors among AA 

women compared with white women (3); however, AA women also have worse outcomes 

across all intrinsic subtypes (8).

In an effort to better understand the molecular factors contributing to breast cancer 

development, outcomes and racial disparities, we evaluated DNA promoter methylation 

profiles in invasive breast tumors from the CBCS. An epigenetic modification to DNA that 

does not alter the nucleotide sequence (9), DNA methylation usually occurs as the addition 

of a methyl group to a cytosine within a CpG dinucleotide. Aberrant hypermethylation of 

CpG islands in tumor suppressor genes can result in their silencing in cancer, while 

hypomethylation can lead to increased oncogene expression (9, 10). Such methylation 

changes and their effects on gene expression have the potential to influence breast tumor 

phenotypes and clinical outcomes (10). Several prior studies using targeted methylation 

approaches for a few genes have suggested that racial variation exists in methylation 

between AAs and non-AAs (or Caucasians) (11-14), and a recent whole-genome study using 

the Illumina 450K platform supports these earlier reports (15).

In this study, use of a cancer-focused promoter methylation array to assess methylation in a 

large population-based series of breast tumors from AA and non-AA breast cancer cases in 

the CBCS revealed differential tumor methylation of several genes, and most of these were 

also differentially methylated in white blood cells, thereby enabling a more informed 

interpretation of which epigenetic differences might potentially contribute to breast cancer 

development, influence breast tumor chemosensitivity or the disparity in outcomes.
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MATERIALS AND METHODS

Carolina Breast Cancer Study (CBCS) cases and specimens

The CBCS is a population-based, case-control study of incident invasive breast cancer in 

North Carolina. Details of the study design have been described (16). Randomized 

recruitment was used to oversample younger and African American cases to ensure that they 

comprised roughly half the study sample. Race/ethnicity was self-reported. Among non-AA 

cases, 97% self-reported as Caucasian (n=291) and the other 3% included 4 cases with 

Hispanic ethnicity, 3 American Indians, 6 Asian/Native Islanders, and 1 other; therefore, we 

refer to this group as non-AA.

Blood samples were obtained for DNA extraction from peripheral blood leukocytes (PBLs). 

Ancestry informative markers (AIMs) to estimate the proportion of African versus European 

ancestry were previously evaluated from PBL DNA in the CBCS (17), AIMs genotypes 

were derived from 144 single nucleotide polymorphisms (SNPs), and an AIMs score ranging 

from 0 to 1.0 was generated for each case representing lower to higher African ancestry.

Formalin-fixed paraffin-embedded (FFPE) breast tumors were sectioned and mounted on 

slides, histopathologically reviewed, and tumor areas macrodissected for DNA extraction 

(18). Clinical data were obtained from medical records or histopathologic review of tumor 

tissue. Breast tumor intrinsic subtypes were identified using estrogen receptor (ER), 

progesterone receptor (PR), HER2, CK5, CK6, and EGFR protein markers (3). Hormone 

receptor (HR) positivity was considered to be ER+ and/or PR+, while tumors designated HR 

negative were both ER− and PR−.

Methylation analysis

DNA lysates prepared from breast tumors were sodium bisulfite treated using the EZ DNA 

Methylation Gold kit (Zymo Research). Methylation profiling was accomplished using the 

Illumina GoldenGate Cancer Panel I array (Illumina, San Diego, CA) on 517 breast tumors 

and 69 PBLs from cases, 61 of which were matched to individual cases. Methylation data 

were preprocessed using GenomeStudio Methylation software (Illumina). Methylation is 

represented by β, an estimate of the fraction of methylated DNA, and ranges from 0 

(unmethylated) to 1.0 (fully methylated). The array interrogated 1,505 CpG sites located in 

the upstream regulatory region (promoter or exon 1) of 807 genes. Of the 1,505 CpG probes, 

a total of 1287 CpGs (Table S1) were included in the final dataset after filtering (18), 

including probes previously identified as overlapping an underlying sequence variant (19). 

Compared with 163 cases not evaluated due to inadequate quantity or quality of DNA (of 

680 total with tumors in CBCS phase 1), the 517 breast cancer cases evaluated were younger 

(p=0.03) but did not differ in other characteristics. Array data were deposited to Gene 

Expression Omnibus under accession number GSE51557.

Statistical analyses

Statistical analyses were carried out using the R package (http://www.r-project.org/) or SAS 

9.3. CpGs differentially methylated between breast tumors of AAs and non-AAs were 

identified via generalized linear models (GLM), modeling the methylation value with logit 
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link function and including race (AA vs non-AA) as a predictor, while also adjusting for 

age, menopausal status, stage, and intrinsic subtype (20). P-values were adjusted for 

multiple comparisons via the Benjamini-Hochberg method for controlling the false 

discovery rate (FDR). A GLM model to compare methylation by race was performed first 

for all breast tumors, and then was repeated with stratification of breast tumors on hormone 

receptor (HR) status. Box and whisker plots were constructed to display the distribution of 

methylation β values for each group, and included the mean, median, and interquartile range 

of methylation values, and the group minimum and maximum values. Univariate analysis of 

methylation by race in peripheral blood leukocytes (PBLs) was determined by the Student’s 

t-test. Correlation of methylation in paired tumors and PBLs from cases was determined by 

the Spearman rank correlation coefficient. Kaplan-Meier plots and log-rank p-values were 

used to illustrate disease-specific survival according to methylation level (high, 

intermediate, low) for select probes within the AA or non-AA case groups. For each probe, 

cutpoints were based on the tertiles in the combined AA/non-AA dataset.

Validation studies

Independent validation of racial differences in breast tumor methylation and correlations of 

methylation with gene expression were conducted using breast tumor data from The Cancer 

Genome Atlas (TCGA) (21). Methylation analysis in TCGA was performed using the 

Illumina Infinium 450K methylation array, while gene expression data was generated using 

RNA sequencing. Only 371 of the 1,505 CpG probes interrogated on the Illumina 

GoldenGate methylation platform exactly match those on the 450K methylation array; 

however, prior analysis of 450K probes showed that methylation levels were concordant for 

matched probes between distinct methylation platforms (22). Therefore, we compared 

methylation at probes from the 450K array in TCGA that interrogated direct match CpG 

sites when available, or those closest within 200 base pairs upstream or downstream of the 

GoldenGate probes of interest between AA and white patients. We also tested associations 

between methylation and gene expression for these probes. Two separate subsets of TCGA 

data were used for these analyses. For comparisons of breast tumor methylation, beta values 

for each probe of interest from the 450K array were compared between 42 AA women and 

291 white women in the TCGA dataset. T-tests were used to identify probes that differed by 

race at p<0.05. TCGA data from 581 breast cancer patients were used to examine 

relationships between methylation and gene expression. Pearson correlation coefficients 

were calculated in all 581 TCGA breast tumors, or within hormone receptor-positive or 

hormone receptor-negative subsets, based on RNAseq (Illumina) log2 RSEM gene 

normalized expression values with methylation beta values for 450K CpG probes, with 

significance set at p<0.05. Independent validation of racial differences in methylation was 

also performed using an Illumina 450K methylation dataset in Gene Expression Omnibus on 

lymphoblastoid cell lines from healthy female African American (n=80) and Caucasian 

American subjects (n=49) (23) (accession #GSE36369). Moreover, technical validation was 

conducted to compare gene methylation from the GoldenGate array with that from 

quantitative methylation-specific polymerase chain reaction (Q-MSP) (24).

Conway et al. Page 4

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

Characteristics of breast cancer cases

Characteristics of AA and non-AA cases and their tumors evaluated for DNA methylation 

are detailed in Table 1. Breast cancer cases were mostly early stage (>86% stages 1 or 2). 

AA cases were older, more frequently postmenopausal, and more likely to have hormone 

receptor (HR)-negative, high grade, or basal-like breast tumors compared with non-AAs, as 

previously reported (3). PBL samples derived from a subset of AA and non-AA cases did 

not differ in age (p=0.44) or menopausal status (p=0.12).

Racial differences in breast tumor methylation

Comparison of β values for 1287 CpG probes in 517 breast tumors using GLM while 

controlling for age, menopausal status, stage, intrinsic subtype, and multiple comparisons 

(FDR) identified a total of 24 CpG probes that differed significantly at q<0.05 between AA 

(n=216) and non-AA (n=301) cases (Table 2). The majority of these probes (n=17), 

however, were considered technically ambiguous or unreliable because they were previously 

reported to overlap a site of a potential single nucleotide polymorphism (SNP) or repeat 

(19), or based on review of updated probe target sequence information in NCBI databases 

(e.g., Ensembl, dbSNP, Blast) were subsequently found to overlap underlying sequence 

variants or show ancestral population differences of >10% (as detailed in Table S1). In total, 

7 probes showing differential methylation by race were retained for further analysis, 

including four that had no known underlying variant (DSC2_E90_F, KCNK4_E3_F, 

GSTM1_P266_F, HBII-52_E142_F) and three that overlapped a single SNP but that was 

unlikely to impact probe performance due to its location toward the end of the target 

sequence and the lack of evidence for ancestral differences in allele frequencies 

(AXL_P223_R, DNAJC15_E26_R, and TES_P182_F) (Table 2). While the GSTM1 gene is 

polymorphic for a deletion variant, this deletion occurs within the coding sequence and does 

not involve the probe target region in the promoter (25). Importantly, racial variation in 

methylation for these 7 loci was unlikely to be appreciably related to the known racial 

differences in breast tumor subtype distribution or differences in methylation patterns 

between the major intrinsic subtypes because we adjusted for IHC-based subtype, stage, age, 

and menopausal status in the GLM. Racial variation in breast tumor methylation was evident 

for these top CpG probes whether race was self-reported or defined by ancestry informative 

markers (Figure S1).

Stratified GLM was subsequently performed to determine whether the racial differences 

initially observed in CpG methylation were evident within hormone receptor (HR)-defined 

subtypes. As shown in Table S2, 4 additional probes that did not previously meet the 

threshold of q<0.05 showed significant racial differences among cases with HR−negative 

tumors, including TUSC3_E29_R, RAF1_P330_F, SMARCA3_P17_R, and 

IMPACT_P234_R. Notably, more CpG loci showed racial variation within HR− tumors 

than HR+ tumors. Only HBII-52_E142_F showed significant differential methylation within 

HR+ tumors of AAs versus non-AAs. Box and whisker plots summarizing the distribution 

of methylation β values for probes significantly varying by race (at q<0.05), overall or 

within HR-defined tumor subsets, are shown in Figure 1A-C. Technical validation 
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comparing methylation obtained from the GoldenGate array with Q-MSP confirmed the 

comparability of the methylation measurements obtained by these two methods (Figure S2).

Although there were too few genes differentially methylated by racial group to perform 

formal gene ontology or pathway analyses, several of the genes showing epigenetic racial 

differences have roles in DNA repair, transcription, or mediate other DNA interactions 

(GSTM1, DNAJC15, SMARCA3/HLTF), are involved in cell adhesion (DSC2, TES), or are 

kinases important in signal transduction (AXL, RAF1).

Because AAs experience more adverse breast cancer outcomes than non-AAs, we 

determined whether the top candidate CpG markers might be differentially associated with 

disease-specific survival among AAs versus non-AAs. Kaplan-Meier plots in Figure S3 

indicate that a low or intermediate (versus high) level of methylation at several probes 

(HBII-52_E142_F, TES_P182_F, DNAJC15_P65_F, DNAJC15_E26_R, DSC2_E90_F) 

was marginally associated with worse survival in AAs but not in non-AAs.

Validation in TCGA breast tumors

Breast tumor methylation and gene expression data from The Cancer Genome Atlas 

(TCGA) (21) were used to validate both our methylation findings and to test for correlations 

with expression for genes differentially methylated by race in CBCS. Comparison of 450K 

methylation beta values for probes that either directly matched or were located within 200 

base pairs of GoldenGate probes in 42 AA and 291 white TCGA patients confirmed our 

findings of racial differences in methylation for AXL, GSTM1, KCNK4 and DNAJC15 

(Table 3 and Figure 1D). Methylation was also significantly inversely correlated with gene 

expression for the majority of our candidate genes (Table S3).

Racial differences in methylation in PBLs or matched tumor/PBL pairs

Methylation patterns are considered to be tissue-specific, yet, if methylation at certain loci 

differs by race rather than tissue type, we expect that these differences might also be 

detectable in other normal cells, even if derived from a different tissue. To determine 

whether the racial differences in CpG methylation were restricted to tumors or occurred 

more broadly, we compared methylation in PBLs from 29 AAs and 40 non-AA cases 

matched on age and menopausal status. As shown in Table 4, the majority of CpG markers 

that were differentially methylated by race in tumors also differed significantly in PBLs, and 

the directionality of the difference in PBLs reflected that of the tumors. For example, similar 

to the pattern in tumors, DSC2_E90_F, GSTM1_P266_F, KCNK4_E3_F and AXL_P223_R 

all showed higher methylation in PBLs of AAs than in non-AAs even though the absolute 

levels of methylation varied somewhat between tumor and PBL. Differential methylation by 

race was also observed for CpG sites in AXL, GSTM1, DSC2, and DNAJC15 in an 

independent series of lymphoblastoid cell lines from 80 female AAs compared with 49 

female Caucasian Americans described by Heyn et al (23) (Table S4).

We also compared methylation between matched pairs of breast tumors and PBLs within 

individual AA and non-AA cases (n=61) for several probes exhibiting the largest 

methylation differences by race. Methylation in tumor/PBL pairs was significantly 
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correlated (with p<0.05) for the majority of probes (not shown). The box and whisker plots 

in Figure 2A show that among the 61 cases for whom tumor and PBL samples are matched, 

the methylation differences observed in tumors are also evident within PBLs. The bar chart 

in Figure 2B provides a comparison of individual β values in matched tumors and PBLs 

from breast cancer cases, further highlighting the differential methylation detected between 

AAs and non-AAs.

DISCUSSION

In this study, using a methylation array targeted to the promoters of genes important in 

cancer, we identified several genes differing in tumor DNA methylation between AAs and 

non-AAs even after controlling for potential confounders, including intrinsic subtype 

distributions which are known to vary by race (3). Previous studies, including the CBCS, 

have shown that breast tumor methylation varies between intrinsic subtypes (10, 18, 21, 26) 

or hormone receptor status (27), and by clinicopathologic characteristics such as tumor size 

and grade (18). Importantly, most of the CpG loci differing by race in CBCS breast tumors 

were also similarly differentially methylated in normal white blood cells of cases, although 

the absolute levels of methylation were not necessarily the same. A recent study that used 

the whole-genome Illumina 450K methylation array to assess racial differences in breast 

tumor methylation excluded probes that overlapped SNPs or that were otherwise ambiguous 

(15); however, we opted to retain such probes but to note their status. The impact of a probe 

that overlaps a target sequence potentially containing a SNP is difficult to predict, as it 

would depend on the SNP frequency in a given population as well as the probe sequence and 

precise location of the underlying SNP. Because many probes on the Illumina methylation 

arrays often overlap multiple CpG sites, the effect of an additional SNP-based single 

nucleotide mismatch on probe binding and methylation detection may be minimal. 

Consistent with this, we have previously observed in CBCS that some probes overlapping a 

SNP performed similarly in their detection of methylation (i.e., generated similar β values) 

to nearby probes in the same gene that do not (22). Genotyping for SNPs located within 

gene promoters was not performed in the CBCS and thus we could not rule out that racial 

variation in methylation might be related to the effects of underlying SNPs for certain 

probes; however, for most probes that overlapped a SNP, the variant alleles were relatively 

rare (minor allele frequency <10%) but in some cases differed by ancestry. Thus, to focus on 

CpG probes that would most reliably detect methylation differences (rather than underlying 

SNPs), we reviewed all probe target sequences against NCBI databases, assessed reported 

racial differences in allelic frequencies if available, and then removed those for which the 

underlying feature was likely to impede a reliable measurement of methylation. In the end, a 

total of 11 CpG probes were retained that were likely to provide a reasonably accurate 

assessment of racial variation in methylation.

Several prior studies using targeted methylation approaches to examine a small number of 

candidate genes known to be involved in breast cancer reported differences in breast tumor 

methylation between AAs and those of European ancestry. Consistent with our findings of 

more methylation differences by race within HR− tumors, Mehrotra et al (14) found 

significantly higher methylation in AAs than in Caucasian woman for four genes within a 

five-gene marker panel (HIN-1, TWIST1, CCND1, RASSF1A); these differences were only 
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evident within ER-negative tumors and among women diagnosed before age 50 years. 

Similarly, Wang et al (13) examined a nine-marker panel (p16, RASSF1A, RARβ2, ESR1, 

CDH13, HIN1, SFRP1 and LINE1) and reported differential methylation for CDH13 

between ER-negative tumors from younger AAs and European American (EA) women. 

Using the Illumina 450K whole-genome methylation array, the same array platform 

employed in TCGA, Ambrosone et al (15) also reported that many more loci were 

differentially methylated in AAs compared with EAs in ER-negative than in ER-positive 

breast cancers. The genes exhibiting differential promoter methylation by race in the CBCS 

are unique, and not among the candidate markers examined previously or the top loci 

reported from the 450K analysis in the Ambrosone study (15). Importantly, it should be 

noted that our analyses controlled for differences in intrinsic subtype, stage and age, whereas 

these prior studies did not. Therefore, it is unclear whether some loci reported previously as 

varying by race or ancestry may actually reflect differences in tumor intrinsic subtype 

distributions between the racial groups, such as within ER-negative tumors that are 

comprised of the basal-like, claudin-low and HER2+/ER− subtypes. Intriguingly, several 

genes showing racial variation in tumor methylation (HBII-52, TES, DNAJC15, DSC2) may 

be associated with differences in survival among AAs, while no such differences were 

observed among non-AAs. Further work is needed to confirm these results and to assess the 

possibility that underlying copy number or other changes contributed to these findings.

In the CBCS, we also observed racial differences in methylation in normal PBL samples 

from cases, with the overall patterns of tumor and PBL methylation for these probes being 

correlated, although the absolute levels of methylation in tumor versus PBL differed for 

some loci. Differences in the quality of DNA derived from FFPE tumors versus PBLs could 

potentially contribute to such methylation differences; however, PBL samples did not 

consistently show higher or lower methylation levels than in tumors. Although variation in 

PBL methylation profiles primarily reflect the admixture of white blood cell populations 

(28, 29), we still observed epigenetic differences by race. The finding of racial variation in 

methylation in both tumor and PBLs suggests underlying ancestral differences in the 

epigenetic state of some genes, with about half of differentially methylated loci being 

potentially explained by known sequence variations that could disrupt probe binding and 

methylation measurements. This is consistent with several prior studies noting that such 

genetic variants contributed to a substantial portion of racial differences in DNA 

methylation (23, 30-32). Racial differences in DNA methylation patterns in normal tissues 

have also been detected in PBLs from women in a multi-ethnic New York City Birth Cohort 

(33), in umbilical cord blood from newborns (34), and in breast tissue from reduction 

mammoplasty (11), raising the question of whether such normal epigenetic variation 

contributes to cancer risk. In a study of normal human prostate tissue and prostate cancer, 

several genes exhibited differential methylation between African Americans and EAs (12).

The genes displaying racial variation in tumor methylation in the CBCS included several 

involved in transcription or interactions with DNA (DNAJC15, SMARCA3 or HLTF), signal 

transduction (AXL, RAF1), carcinogen detoxification (GSTM1), cell adhesion (DSC2), or are 

known tumor suppressors (TUSC3, TES). Desmocollin 2 (DSC2), a membrane glycoprotein 

involved in cell-cell adhesion and maintenance of normal epithelial architecture is an 
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independent prognostic marker for esophageal (35) and pancreatic cancers (36), and high 

DSC2 expression may be a marker of basal-like breast tumors (37). The carcinogen 

detoxifying enzyme, GSTM1, exhibits an intragenic deletion variant resulting in loss of 

enzyme activity (25), elevated cancer risk, and shows racial variation between blacks and 

whites (38); however, whether the variant is linked with promoter methylation state is 

unclear. Testin (TES) and TUSC3 are tumor suppressor genes that are silenced in part via 

promoter methylation (39); loss of expression of TES is an independent poor prognostic 

marker in breast cancer (40), while silencing of TUSC3 may be a poor prognostic factor in 

ovarian cancer (41). AXL is a receptor tyrosine kinase and an epithelial-to-mesenchymal 

transition (EMT)-induced regulator of breast cancer metastasis and patient survival (42-45). 

AXL expression is regulated in part by Sp1 transcription factor binding and methylation (42, 

44, 46). In contrast to most other genes showing epigenetic racial variation in the CBCS, 

AXL methylation was not inversely correlated with mRNA expression in the TCGA tumor 

set, most likely because the 450K AXL CpG probes analyzed in relation to gene expression 

appear to be outside of these critical Sp1 binding sites. Intriguingly, AXL was reported to be 

aberrantly hypermethylated in association with prenatal tobacco smoke exposure (47), 

suggesting that epigenetic racial variation may be associated with lifestyle or environmental 

exposures and could potentially contribute to cancer risk.

The strengths of this study include the large, well-characterized population-based series of 

mostly early-stage breast cancer cases, providing the power to detect even modest 

differences in methylation. Epigenetic racial differences for several of the genes in CBCS 

were independently confirmed in TCGA breast tumors although the number of AAs in this 

dataset was limited. Moreover, the availability of demographic, clinical and subtype 

information allowed us to control for factors that are known to vary by patient or tumor 

subsets. However, our study was limited by use of the targeted cancer-focused array rather 

than a whole-genome methylation array.

The implications of the racial differences in methylation discovered in this study for breast 

cancer development, progression or outcomes in AA or non-AA women are unclear, and 

further work is needed to confirm these findings. It is of interest that the epigenetic 

differences were most evident within HR-negative tumors despite controlling for intrinsic 

subtype; however, it is possible that these racial variations signify different proportions of 

HR-negative subtypes in AA and non-AA women. Interestingly, most of the genes 

exhibiting differential tumor methylation by race in the CBCS (DSC2, AXL, DNAJC15, TES, 

TUSC3) are among the genes defining subclasses of triple-negative breast cancer as reported 

by Lehmann et al (48). Whether the prevalence of triple negative subtypes, which were not 

defined within CBCS, vary between AAs and non-AAs is presently unknown. The results of 

this study highlight the possibility that methylation patterns of breast tumors, particularly the 

more aggressive HR− tumors, may differ by ancestry, and that the racial differences may not 

be a tumor-specific phenomenon, suggesting that such variations could also contribute to 

cancer risk. Clearly, more research is needed to validate these findings and determine 

whether they contribute to the known racial disparity in breast cancer survival.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Box and whisker plots showing CpG probes exhibiting racial differences in breast 
tumor methylation
CpG probes shown differed significantly (at q<0.05) in tumor methylation between AA and 

non-AA cases in GLM after controlling for age, menopausal status, stage, intrinsic subtype 

and multiple comparisons (FDR). Each box plot shows the median β-value (dark bar within 

box), the inter-quartile range (outer boundaries of box), and the whiskers extend to the group 

minimum and maximum β values. Probes shown either do not overlap a sequence variant or 

overlap a single SNP that is likely to have negligible impact on probe performance. Probes 

show significant racial differences in methylation in (A) all CBCS breast tumors (n=517), 

(B) HR+ positive breast tumors (n=337), and (C) HR− negative breast tumors (n=163). 

Shown are adjusted p-values and q-values from GLM. (D) Validation of racial variation in 

methylation for candidate genes in TCGA breast tumors. Data is shown for 450K CpG 

probes that exactly matched or were closest to (within 200 base pairs) probes on the 

GoldenGate array. P-values were determined by the T-test.
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Figure 2. Methylation in matched pairs of breast tumors and PBLs from AA and non-AA cases 
in the CBCS
(A) Box and whisker plots showing the distribution of methylation β values in 61 matched 

pairs of breast tumors and PBLs from AA and non-AA cases. (B) Bar charts showing 

individual methylation β values of matched tumor (black) and PBL (gray) pairs by race (26 

AA, 35 non-AA) and age group (40 <50 years, 21 50+ years).
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Table 1

Demographic, tumor and clinical characteristics of the African American and non-African American breast 

cancer cases evaluated for DNA methylation

Characteristic African
No.

American
%

Non-African
No.

American
% p-value

a

Cases with tumors

Total N 216 301

Age

50+ years 97 44.9 102 33.9 0.01

<50 years 119 55.1 199 66.1

Menopausal Status

Postmenopausal 113 52.3 129 42.9 0.03

Premenopausal 103 47.7 172 57.1

Stage
b

I 69 34.5 109 38.8 0.64

II 104 52.0 141 50.2

III 22 11.0 23 8.2

IV 5 2.5 8 2.8

Primary Tumor Size

≤2 cm 98 47.1 152 52.6 0.23

>2 cm 110 52.9 137 47.4

Lymph Node Status

Negative 115 55.6 176 60.5 0.27

Positive 92 44.4 115 39.5

Hormone Receptor Expression

ER+/PR+ 88 42.5 162 55.3 0.01

ER+/PR− 20 9.7 28 9.5

ER−/PR+ 15 7.2 24 8.2

ER−/PR− 84 40.6 79 27.0

Intrinsic Subtype
c

Luminal A 81 47.9 131 53.7 0.04

Luminal B 22 13.0 43 17.6

HER2+/HR− 13 7.7 13 5.3

Basal-like 46 27.2 40 16.4

Unclassified 7 4.1 17 7.0
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Characteristic African
No.

American
%

Non-African
No.

American
% p-value

a

Cases with PBLs

Total N 29 40

Age

50+ years 9 31.0 16 40.0 0.44

<50 years 20 69.0 24 60.0

Menopausal Status

Postmenopausal 9 31.0 20 50.0 0.12

Premenopausal 20 69.0 20 50.0

a
Chi-Square p-values.

b
According to the AJCC breast tumor staging guidelines.

c
Intrinsic subtypes determined by a panel of immunohistochemical markers included luminal A (ER+ and/or PR+, HER2−), luminal B (ER+ and/or 

PR+, HER2+), basal-like (ER−, PR−, HER2−, cytokeratins CK5+ and/or CK6+, or epidermal growth factor receptor+), HER2+ (ER−, PR−, 
HER2+), and unclassified (all markers negative).
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Table 3

TCGA validation of differential breast tumor methylation in genes showing racial variation in CBCS

450K
Probe Chr Gene GoldenGate

Probe

Distance b/w
GG & TCGA

probes (bp)
a

Mean β
AA

Mean β
Non-AA p-value

b

cg10564498 19 AXL AXL_P223_R 53 0.223 0.182 0.05

cg03247049 19 AXL AXL_E61_F 14 0.086 0.063 0.22

cg12722469 19 AXL AXL_E61_F 169 0.189 0.147 0.12

cg05035143 13 DNAJC15 DNAJC15_P65_F 0 0.086 0.818 0.002

cg12504148 13 DNAJC15 DNAJC15_P65_F 34 0.610 0.690 0.02

cg14729962 13 DNAJC15 DNAJC15_E26_R 177 0.151 0.222 0.02

cg00566759 18 DSC2 DSC2_E90_F 58 0.065 0.055 0.34

cg13870990 18 DSC2 DSC2_E90_F 121 0.207 0.207 0.99

cg00196671 18 DSC2 DSC2_E90_F −58 0.062 0.060 0.87

cg11680055 1 GSTM1 GSTM1_P266_F 76 0.410 0.490 0.04

cg24275769 18 IMPACT IMPACT_P234_R −2 0.137 0.108 0.18

cg13981356 18 IMPACT IMPACT_P234_R −78 0.205 0.196 0.69

cg03400437 18 IMPACT IMPACT_P234_R 7 0.059 0.036 0.21

cg22757447 18 IMPACT IMPACT_P234_R −132 0.170 0.148 0.45

cg01352108 11 KCNK4 KCNK4_E3_F 0 0.329 0.281 0.05

cg09396196 11 KCNK4 KCNK4_E3_F 176 0.104 0.046 0.06

cg06129498 11 KCNK4 KCNK4_E3_F 59 0.169 0.142 0.09

cg14673256 11 KCNK4 KCNK4_E3_F 179 0.105 0.046 0.04

cg02830576 3 RAF1 RAF1_P330_F 0 0.255 0.246 0.40

cg18568714 3 RAF1 RAF1_P330_F −2 0.072 0.061 0.27

cg13703021 3 RAF1 RAF1_P330_F 157 0.146 0.125 0.21

cg11297934 3 RAF1 RAF1_P330_F −139 0.020 0.018 0.12

cg24506533 3 RAF1 RAF1_P330_F −122 0.022 0.022 0.93

cg23032965 3 RAF1 RAF1_P330_F −173 0.023 0.022 0.49

cg15438497 3 HLTF SMARCA3_P17_R 46 0.103 0.081 0.20

cg24621354 7 TES TES_P182_F −17 0.077 0.094 0.15

cg20879085 7 TES TES_P182_F 42 0.061 0.063 0.93

cg19743881 7 TES TES_P182_F 39 0.092 0.094 0.92

cg16379337 7 TES TES_P182_F 51 0.084 0.070 0.60

cg00254079 7 TES TES_P182_F −23 0.035 0.049 0.16

cg03127174 8 TUSC3 TUSC3_E29_R −28 0.079 0.083 0.83

cg18145877 8 TUSC3 TUSC3_E29_R −30 0.057 0.061 0.88

cg03032098 8 TUSC3 TUSC3_E29_R 140 0.112 0.094 0.46

c This 450K probe interrogates a CpG site (cg12504148) that is 55 bp upstream of the CpG targeted by the DNAJC15_E26_R GoldenGate probe.

a
Infinium 450K probes targeting CpG loci within 200 bp of the GoldenGate probes were assessed for racial differences in methylation in breast 

tumors from 42 African Americans and 291 whites in TCGA; negative value indicates the 450K probe was 5’ of the GoldenGate probe.

b
P-values determined by the T-test. There were no 450K probes for HBII-52 (alias SNORD115-1) within 200 bp of the GoldenGate probe.
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Table 4

Differential methylation in PBLs of AA versus non-AA cases in CBCS

CpG probe
AA

Mean β
(n=29)

Non-AA
Mean β
(n=40)

Delta
β

Unadjusted
p-value

Adjusted

p-value
a

Overlapping
variant

DSC2_E90_F 0.4721 0.2904 0.1817 <0.0001 <0.0001 None

KCNK4_E3_F 0.5203 0.4144 0.1059 <0.0001 <0.0001 None

GSTM1_P266_F 0.3252 0.4637 −0.1385 0.004 0.01 None

TUSC3_E29_R 0.1552 0.1040 0.0512 0.001 0.001 None

SMARCA3_P17_R 0.1079 0.0898 0.0181 0.003 0.002 None

IMPACT_P234_R 0.0972 0.0727 0.0245 0.001 0.001 None

RAF1_P330_F 0.0901 0.1105 −0.0204 0.43 0.19 None

HBII_52_E142_F 0.5930 0.7702 −0.1772 0.0001 <0.0001 None

AXL_P223_R 0.6699 0.5306 0.1393 <0.0001 <0.0001
SNP

b

DNAJC15_E26_R 0.1308 0.1582 −0.0274 0.0003 <0.0001 SNPb

DNAJC15_P65_F 0.9427 0.9565 −0.0138 0.0003 <0.0001 SNP

TES_P182_F 0.1642 0.1439 0.0203 0.10 0.05
SNP

b

Comparison of transformed beta values in AAs versus non-AAs were performed using the T-test.

a
Adjusted for age and menopausal status.

b
Probe overlaps one SNP, but impact may be negligible due to SNP location at end of probe, rarity of the minor allele, and/or no appreciable 

difference in population (African vs European) frequencies reported.
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