
RESEARCH ARTICLE

Noise-Driven Causal Inference in
Biomolecular Networks
Robert J. Prill1‡, Robert Vogel2‡, Guillermo A. Cecchi1, Grégoire Altan-Bonnet2,
Gustavo Stolovitzky1*

1 IBM T. J. Watson Research Center, 1101 Kitchawan Road, Route 134, Yorktown Heights, N.Y. 10598,
United States of America, 2 ImmunoDynamics Group, Program in Computational Biology and Immunology,
Memorial Sloan- Kettering Cancer Center, 1275 York Avenue, Box 460, New York, N.Y. 10065, United States
of America

‡ These authors contributed equally to the work.
* gustavo@us.ibm.com

Abstract
Single-cell RNA and protein concentrations dynamically fluctuate because of stochastic

("noisy") regulation. Consequently, biological signaling and genetic networks not only trans-

late stimuli with functional response but also random fluctuations. Intuitively, this feature

manifests as the accumulation of fluctuations from the network source to the target. Taking

advantage of the fact that noise propagates directionally, we developed a method for causa-

tion prediction that does not require time-lagged observations and therefore can be applied

to data generated by destructive assays such as immunohistochemistry. Our method for

causation prediction, "Inference of Network Directionality Using Covariance Elements (IN-

DUCE)," exploits the theoretical relationship between a change in the strength of a causal

interaction and the associated changes in the single cell measured entries of the covariance

matrix of protein concentrations. We validated our method for causation prediction in two

experimental systems where causation is well established: in an E. coli synthetic gene net-

work, and in MEK to ERK signaling in mammalian cells. We report the first analysis of co-

variance elements documenting noise propagation from a kinase to a phosphorylated

substrate in an endogenous mammalian signaling network.

Introduction
Correlation does not imply causation. True in general, the adage relents under technical defini-
tions of causation. For example, a time series X is Granger-causal of a time series Y if future val-
ues of Y can be significantly predicted from current and past values of X using a series of t- and
F-tests on regressions [1]. Non-temporal arguments can also support a type of causal inference.
A “surgical” intervention, according to Pearl, is the act of replacing one of the variables in a sys-
tem by a constant value [2]. Comparing pre- and post-intervention distributions can support
causal inference—e.g., X is topologically upstream of Y. In a Bayesian network, causality be-
tween variables represented by nodes is modeled as a directed acyclic graph—i.e., feedbacks are
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prohibited [3]–that represent the structure of conditional dependences between the nodes. De-
spite the appeal of these different approaches to determine causality, all causal inference meth-
ods pose some difficulties. A network with nodes interacting with vastly different time scales
can pose problems for causal interpretation by methods evoking time lag analysis that cannot
bridge the range of time scales at play in the system. A model that by design does not incorpo-
rate feedback loops, would likely fail to approximate reality when feedbacks indeed exist and
play a role in the causal relationships.

The inference of causal interactions in networks is of particular importance in the context of
biological systems. Individual cells utilize networks of interacting molecules to process environ-
mental stimuli and execute a response. To understand these systems such that we can effective-
ly control cellular behavior, it is necessary to deduce the causal relationships among the set of
interacting biomolecular species. Dunlop et al. [4] demonstrated a form of causal inference of
gene interactions by measuring temporal correlations of fluorescent proteins embedded in an
E. coli synthetic gene regulatory network. The utility of the correlation function in this context
is due to the stochasticity, “noise”, of gene expression [5] and the transmission of stochastic
fluctuations within a network [6]. Such reliance on stochastic variability to infer causality in bi-
ological networks is in fact generically applicable. Noise in gene expression is not limited to E.
coli synthetic networks [7], as single cell studies have demonstrated that proteins are expressed
in exponentially distributed bursts resulting in long tailed distributions of protein at the steady
state [8, 9]. Furthermore, long tailed distributions of gene products have been shown to be phy-
logenetically universal [7, 8]. As a result, noise based causal inference techniques may be appli-
cable to many biological systems.

In contrast to gene regulatory networks studied in E. coli and S. cerevisiae, stochasticity in
the signaling networks of mammalian cells is ill-understood. Signaling proteins can be express-
ed at thousands of copies per mammalian cell [10, 11], and therefore the substantial diversity
in signaling protein concentration that has been observed [12] is clearly not attributable to
low-copy-number mechanisms as may be the case for E. coli. It is possible that signaling net-
works propagate stochastic fluctuations in phosphoprotein activities analogous to what has
been observed in E. coli transcription, but this has yet to be demonstrated experimentally.
However, the recent progress of single cell immunohistochemical based technologies, e.g. flow
cytometry, fluorescent imaging, and mass cytometry, provide robust ensemble measurements
of protein phosphorylation states. These techniques are destructive assays, which preclude a
temporal tracking of phosphorylation states in single cells. Causal reconstructions of signaling
networks have mainly relied on integrating perturbations (interventions in the language of
Pearl [2]), and analyzing the results using a Bayesian network model [13, 14] or other statistical
tools (conditional probability and density estimate [15]).

Here we introduce a new causal inference method that analyzes the structure of the covari-
ance matrix between putatively causally related molecular species without following these spe-
cies in time or requiring surgical interventions à la Pearl. Our method, which we call INDUCE
(Inference of Network Directionality Using Covariance Elements), is based on a stochastic
model that integrates experimental perturbations of the network connectivity. Similar to previ-
ous work characterizing biochemical stochasticity [16–19], our causality prediction is ground-
ed in the formalism of stochastic differential equations. We validated the method in two
experimental systems where ground truth causation is known, an E. coli synthetic regulatory
gene network [6] and MAPK signaling in T cells. While there has been several studies docu-
menting the transmission of fluctuations through mammalian signaling networks [20–22], our
study uniquely defines and experimentally validates functional relationships between elements
of the covariance matrix of signaling components. We do not attempt to derive precise numeri-
cal values for the parameters of the theory, thus in this sense our study is qualitative. Overall,
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our study provides a novel framework for deducing biochemical interactions by analyzing the
distribution of phospho-protein in single cell measurements.

Results

Theory
Our premise is that fluctuations of network elements is related to their connectivity. Therefore,
variances and covariances of the variables associated to the interconnected elements may be
used to infer some of the network connectivity structure. To determine the functional relation-
ship of covariance elements, consider a generic linear stationary stochastic dynamical system
represented by the stochastic differential equation

dxjðtÞ
dt

¼
XN
i¼1

ajixiðtÞ þ qjixiðtÞ; ð1Þ

where xi(t) is the deviation of the i-th variable from its average, ξi(t) is a white noise indepen-
dent of ξj(t) (i 6¼ j), aji xi is the rate of change of variable j due to the presence of variable i, and
qji is the magnitude of the i-th white noise acting on the j-th variable. Eq 1 is a multivariate line-
ar Langevin equation, which in this case is describing the dynamics of a system of chemical re-
actions driven by random fluctuations of scale q about its steady state. Historically, the
Langevin equation was used in the statistical description of Brownian motion; it was much
later that it was adapted to chemical systems as a first order approximation to the chemical
master equation [16–19, 23]. The delta-correlated white noise terms ξi(t) are defined as

hxiðtÞi ¼ 0

hxiðtÞxjðt0Þi ¼ dijdðt � t0Þ; ð2Þ

where brackets denote averaging over possible temporal realization of the white noise, δij is the
Kronecker delta, and δ(t) is Dirac’s delta function. Written in matrix notation, Eq 1 takes the
simpler form

dxðtÞ
dt

¼ AxðtÞ þQξðtÞ; ð3Þ

where x(t) is an N dimension column vector (dimension N × 1), A is the N × Nmatrix that de-
termines the connectivity of the network of interaction between the variables xi, and Q is an N
×Mmatrix which represents the strength of theM-dimensional noise column vector ξ(t) on
the rate of change of the dynamic variables. A formal solution to Eq 3 can be written as

xðtÞ ¼
Z t

�1
eAðt�sÞQξðsÞ ds: ð4Þ

For our linearized system, the network inference problem is the problem of reconstructing A
from x(t). From Eq 4, it would seem that solving for A requires knowingQ, which is usually
unknown. Fortunately, the inference problem can be recast such thatQ is absorbed into terms
that are observable so thatQ need not be known or estimated. Using Eq 4 we can write the
lagged covariance matrix of x(t)

SðtÞ ¼ hxðtÞxTðt þ tÞi ¼
Z t

�1
eAðt�sÞQQTeA

T ðt�sÞeA
T t ds ð5Þ
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and taking eA
T τ outside of the integral we obtain

SðtÞ ¼ So e
AT t; ð6Þ

where So � S(τ = 0) is the (unlagged) covariance matrix, which could in principle be comput-
ed from the data. Eq 6 specifies the theoretical relationship between the lagged covariance ma-
trix S(τ), the covariance matrix So, and the network matrix A. Note that the noise-strength
matrix Q is absorbed into the unlagged covariance matrix. Eq 6 suggests a possible strategy for
network inference, which can be used when the multivariate time-series x(t) is observed with
adequate temporal resolution with respect to the time constants of the linear system, contained
in the spectrum of the connectivity matrix A. Eq 6 is consistent with the common notion that
temporal observations enable causal inference because cause precedes effect. However, Eq 6
cannot be used when the time courses of the molecular entities of interest cannot be measured,
or when the measurements do not allow for a time resolution faster than the fastest time scale
of the system.

Next we explore the possibility of extracting information of the connectivity matrix A from
the covariance matrix without temporal information. The stochastic dynamic equation, Eq 1,
was developed as a stationary process and therefore its covariance matrix is time invariant.
Therefore, taking the derivative with respect to t in both members of Eq 5 and using that
d
dt
S ðtÞ ¼ 0 we find that

ASðtÞ þ SðtÞAT þQQTeA
T t ¼ 0: ð7Þ

We are interested in the unlagged covariance matrix, for which we set τ = 0. Therefore from Eq
7 it follows that

ASo þ SoA
T þQQT ¼ 0: ð8Þ

Eq 8, a version of the Lyapunov equation [17], specifies the theoretical relationship between
the network matrix A, the (unlagged) covariance matrix So, and the matrix Q. Eq 8 will form
the basis of our network inference strategy. Assuming for the moment thatQQT is known (it is
not known in general), there are N2 unknowns in the matrix A but only N(N+1)/2 equations in
Eq 8, considering the symmetry in the equations. This is, in our restricted case, the reason why
correlation does not imply causation: the covariance matrix So is consistent with an infinite
number of choices for A. Indeed, a general solution for Eq 8 can be written as:

A ¼ � 1

2
QQT þU

� �
S�1

0 ; ð9Þ

where U is an undefined antisymmetric matrix. Therefore Eq 8 restricts the solution A up to
the N(N−1)/2 parameters needed to determine U. When A is known to be symmetric Eq 8 is
sufficient to determine A. A is symmetric, for example, when we are considering the dynamics
of a conservative physical system around its equilibrium point. In such case A is the Hessian of
the potential energy of the system at the assumed fixed point. Eq 8 can be easily solved if be-
sides the symmetry of A, we assume that the noise terms represent a thermal bath of a physical
system. In that case QQT is an isotropic matrix, that isQQT = β−1 I, where β = 1/kB T, kB is the
Boltzmann constant, T is the bath temperature and I is the identity matrix. In this case

A ¼ �S�1
o kBT ð10Þ

From the point of network reconstruction Eq 10 is a curious result, as the intuition suggests
that the strength of the connection between i and j is proportional to the correlation between i
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and j. However, Eq 10 clearly shows that an i-j connection is proportional to the ij element of
the inverse of the covariance matrix.

In summary, temporal measurements of x(t) can be used to calculate the lagged covariance
matrix S(τ), enabling a reconstruction of a non-symmetric network matrix A via Eq 6. If time
lagged experiments are not possible, x(t) can be used to calculate the unlagged covariance ma-
trix So, which however doesn’t have enough information to determine A via Eq 8, unless we
have reasons to assume that A is symmetric. Even when A is not symmetric, we can still use Eq
9 and choose U by optimization techniques under the constraint that A is maximally sparse.
We will not pursue this heuristic idea in this paper.

The original contribution in what follows is the adaption of Eq 8 for causal inference—i.e.,
to infer a non-symmetric network matrix A—using our novel inference method we call
INDUCE.

INDUCE: Inference of Network Directionality Using Covariance
Elements
The key insight of our inference method is that the covariance matrix changes in a theoretically
predictable way (specified by Eq 8) in response to changes in strength of the network connec-
tivity caused by external perturbations. A simple example illustrates the basic idea behind IN-
DUCE. Consider a network composed of single directional edge spanning two nodes, and a
diagonal noise matrix,

A ¼
�l1 0

k �l2

" #
; Q ¼

q1 0

0 q2

" #
:

Setting λ1 = λ2 = λ to improve clarity and solving Eq 8 for So gives

So ¼
a ak

2l

ak
2l bþ ak2

2l2

2
64

3
75 ð11Þ

where a ¼ q2
1

2l and b ¼ q2
2

2l are components of the variances that do not depend on the

network connectivity.
Next, we analyze how So depends on the strength of the interaction k. Let’s denote the co-

variance between x1 and x2 as σ12 and the respective variances as s2
i . When k = 0 (i.e., the nodes

are disconnected), σ12 = 0 and s2
2 ¼ b. For k 6¼ 0, s2

2 is proportional to k
2 whereas s2

1 does not
depend on k. Of particular importance for causal inference, s2

1 and s
2
2 are differentially sensitive

to changes in k. Taking advantage of this theoretical result, a strategy for causal inference is to
observe So(k) for a collection of networks that differ only in the magnitude of the connection
strengths (parameterized by k). This strategy might be exploited in a number of real-world sys-
tems in which the connection strengths can be controlled externally. To implement this strate-
gy, we only require a means of changing k; knowing the actual value of k is not required.
Rearranging the previous result we have

So ¼
a s12

s12 bþ 2s2
12=a

2
64

3
75 ; ð12Þ

the theoretical covariance matrix expressed in terms of σ12 for a network composed of a single
directed edge spanning two nodes. For this connectivity, Eq 8 predicts that s2

2 is a quadratic
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function of σ12 whereas s2
1 does not depend on σ12. This analysis can be performed for any hy-

pothetical network connectivity, though beyond three to four nodes, the analytical expressions
for So are cumbersome.

Note that this theory applies to a single cell observed over time where the sampling of x(t) en-
ables estimating So. To apply this theory to situations in which protein concentrations in single
cells are not followed over time but rather are measured frommany clonal cells under the same
conditions (e.g., as done in flow cytometry, mass cytometry, and fluorescence imaging) we need
to evoke the assumption of ergodicity. This assumption postulates that the statistics resulting
from sampling many identical cells at one time-point is equivalent to the statistics resulting
from sampling one cell at many time-points during a stationary phase. The ergodic assumption
enables the estimation of So from a population of identical cells (e.g., genetic clones). This as-
sumption is commonly evoked when modeling and analyzing biochemical noise [6].

Biomolecular networks
In several cellular processes the response caused by the presence of specific molecules, such as
rate of transcription of a gene as a function of the concentration of its transcription factor, or
the rate of phosphorylation of a protein as a function of the concentration of its kinase, is typi-
cally a nonlinear, saturating function of the concentration of the causative molecule. It is cus-
tomary to model the response fji of molecule j in terms of the concentration xi of a causative
molecule i (e.g., the transcription factor or the kinase), using a Hill equation

fjiðxi; ~yjiÞ ¼ nji
x
nji
i

K
nji
ji þ x

nji
i

; ~yji ¼ fnji; nji;Kjig ð13Þ

where ~yji represents the parameters of the response function, in this case νji (the saturated size

of the response), Kji (the concentration of xi producing half the response), and nji (the Hill coef-
ficient modeling a source of biochemical nonlinearity such as cooperativity between the causa-
tive molecules). In general, the strength of the biochemical interaction between the response
molecule and the causative molecule can in many cases be experimentally manipulated using
external perturbations such as receptor ligands, or intracellular drugs and toxicants.

It is customary to approximate the stochastic dynamics of chemical products in chemical re-
actions by the chemical Langevin equation (CLE), which incorporates the fluctuations arising
from the small number of discrete interacting chemical species [23]. While an attractive start-
ing point, this approach fails to describe two important experimental observations, namely the
often observed lognormal nature of the distribution of biochemical reaction products, and the
observed non-vanishing fluctuations even for large numbers of molecules (Fig 1 and Fig. A in
S1 text). To remedy these insufficiencies we extended the CLE formalism in two ways. First, we
account for the logarithmic fluctuations of biochemical products by modeling the dynamics of
the logarithm of the concentration for each species. In this case, Eq 13 can model the response
function in log-coordinates. Secondly, we account for the stochasticity originating from fluctu-
ations in biochemical reaction rate parameters. (The complete derivation is provided in Section
B in S1 text.) After invoking these considerations and linearization we derive a stochastic dif-
ferential equation equivalent to Eq 3.

ddyj
dt

¼ P
i 6¼j
ðajidyiÞ � hljidyj þ qj�j ð14Þ

Where δyj is the logarithmic deviation from the mean of biochemical species j, aji ¼
hlji@lnðfjiÞ=@lnðxiÞjxi¼hxii is the logarithmic rate of production of species j dependent on
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species i, λj is the biochemical decay constant of species j, qj is the magnitude of the intrinsic
logarithmic fluctuations of species j, and �j is a white noise random variable. The equivalence
of the above equation with Eq 3 permits the utilization of the INDUCE analysis for the causal
inference in biomolecular networks.

We applied the INDUCE analysis to small network motifs intended to represent plausible
connectivities linking a pair of measured proteins. Our approach is represented graphically in
Fig 2, where we show the dependence of the covariance matrix elements to changes in connec-
tivity strength induced by a dose-response experiment (i.e., sampling along the response func-
tion shown in Fig 2A).

First, we studied the interdependence of the covariance matrix elements for a single source-
target protein pair (Fig 2A). We plot the values of the covariance matrix entries predicted by
Eq 11, the solution of Eq 8 for a single network connection and diagonal noise matrix, where
the reaction rate (k in Eq 11) is the instantaneous slope of the response function, shown in Fig
2B. The effect of the parameter k (renamed a2,1 in the figure to remove ambiguity in larger net-
works) is explored in the parametric plots of the entries of the covariance matrix (Fig 2C and
2D). As indicated in Eq 12, the variance of the deviations of the source protein (s2

1) does not de-
pend on the covariance (σ12) whereas the variance in the deviations of the target protein (s2

2) is
a quadratic function of σ12.

Next, we analyzed a network in which protein 2 is co-regulated by proteins 1 and 3 additive-
ly (Fig 2E and 2H). As might be anticipated, the source variance (s2

1) is unaffected by down-
stream changes to the network connectivity. However, the effect of dual-regulation of protein 2
on s2

2 is more complex, in that s2
2 is now a quadratic with respect to σ12 and σ32 (Equation S15c

in S1 text). Differences in the sensitivity of protein 1 and protein 3 to the stimulus will cause s2
2

to change values independent to σ12, manifesting as a deviation from the two node covariance
path. The absolute magnitude of the deviation from the two node predictions is dependent on
the biomolecular system parameters. It is intriguing that an analysis of the dependence of the
covariance matrix elements performed for a pair of interacting proteins might be used to infer
the existence and connectivity of a third unmeasured protein.

We also analyzed a linear cascade in which protein 3 regulates protein 1, and protein 1 regu-
lates protein 2 (Fig 2I and 2L). The complex path of s2

1 and s
2
2 is unique of the INDUCE analy-

sis of noise propagation from a common source with disparate sensitivity to the stimulus.
Some of the fluctuations in protein 3 propagate to protein 2 via protein 1. As in the case of the

Fig 1. Biological noise is well approximated by the lognormal distribution. (A) Single-cell quantification
of fluorescent CFP in E. coli treated with 2 mM IPTG. (B) Flow cytometry measurements of ERK1/2
phosphorylated at (T202, Y204) in mouse T cells treated with 50nM PMA.

doi:10.1371/journal.pone.0125777.g001
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previous example, the extent of the deviation from the two-node covariance path depends on
the particular biomolecular parameterization. It is intriguing that the INDUCE method might
be used to infer the existence and connectivity of previously unknown and unmeasured pro-
tein, using the complexity of s2

1 and s
2
2 as a indicator that an unknown and unmeasured source

of fluctuations is upstream of proteins 1 and 2.
“Open loop” trajectories in the variance-covariance plot (such as those in Fig 2H, 2K, and

2L) do not occur for all parameterizations of the three node network motifs (see Fig. B in S1
text for additional parameterizations). The presence of an open-loop trajectory in the variance-
covariance plot is sufficient to implicate an unmeasured noise source. The absence of an open
loop trajectory, however does not discount the existence of an unmeasured node. The theory
and modeling experiments clarify that multiple noise sources have the potential to interact, or
not, in the generation of the covariance matrix of the measured nodes, depending on the bio-
molecular parameterization. Of practical utility, it may be possible to treat a network

Fig 2. INDUCE (Inference of Network Directionality Using Covariance Elements) analysis for hypothetical model networks. (A-D) INDUCE analysis
of an isolated network connection. From left to right, (A) the Hill equation model of log concentration transfer function is color registered to y2. (B) The
derivative of the transfer function is the network connection strength a2,1, which peaks at half-maximal activation. (C-D) Variance versus covariance plots, the
solution to Eq 8 applied at closely-spaced fixed points along the transfer function shown in A. (E-H) INDUCE analysis of a convergent (additive) regulation of
node 2. The transfer function y2 versus y3 shown in black. (F) The connection strength a2,3 shown in black. (H) Var(y2) versus Cov(y1, y2) has a loop, a
hallmark of differential sensitivities to a stimulus. (I-L) INDUCE analysis of a linear cascade. (K, L) Both variance versus covariance plots exhibit loops, a
hallmark of differential sensitivities to a stimulus. In all examples, biochemical parameters were chosen to illustrate qualitative differences in the variance
versus covariance plots for different connectivities (see Section D in S1 text for parameter values).

doi:10.1371/journal.pone.0125777.g002
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connection in a larger network as if it is an isolated network connection from the perspective of
noise propagation when the interaction of multiple noise sources is minimal.

Similar analysis can be performed for other connectivities. These results show that an analy-
sis of the interdependences of the covariance matrix elements can in principle discriminate the
directionality of information transfer between two nodes, even in the context of additional un-
measured protein affecting the source or the target proteins.

E. coli gene expression
We analyzed a published gene expression dataset generated with an E. coli plasmid encoding a
three gene synthetic transcriptional network. The parent gene in the network (G0) encodes the
lac repressor and is constitutively transcribed. Unless exogenous IPTG (a lactose analog) is
present, the lac repressor inhibits the transcription of gene 1 (G1). G1 bicistronically tran-
scribes tetR (tetracycline repressor) and cfp (Cyan Fluorescent Protein) which serve two func-
tions, first a repressor of gene 2 (G2) transcription and second a measure of G1 activity. G2
exclusively encodes for the Yellow Fluorescent Protein (YFP), providing a measurable quantity
of G2 activity [6]. This simple genetic circuit was implemented as a synthetic experimental net-
work and therefore the ground truth connectivity underlying the measured concentrations
was known.

Our analysis of E. coli gene expression is shown in Fig 3. Fig 3A and 3B are the dose-
responses of G1 and G2 as a function of IPTG concentration. G1 is a repressor of G2

Fig 3. E. coli synthetic transcriptional network. (A) IPTG dose-response of G1. (B) IPTG dose-response of G2. (A-B) Averages of the log of the
normalized G1 (A) and G2 (B) concentrations ±1 s.d. (C) Transfer function of G1 versus G2 (log scale). The negative slope is indicative of the repression of
G2 by G1. (D) INDUCE analysis showing the fit of a two-node network model (solid curves). Error bars are 1 s.d. in computed in 1000 bootstraps of the data.

doi:10.1371/journal.pone.0125777.g003
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transcription. This repressive functional relationship is clearly seen from the decreasing sig-
moidal function fitted to the average concentrations of log G1 versus log G2 (panel C). The
slope of the transfer function is proportional to the strength of the regulatory effect of G1 on
G2. It is crucial to realize that neither the dose-responses nor the transfer function contain any
signal supporting a causal inference.

In the transfer function plot (Fig 3C), most IPTG doses are clustered at the high or low satu-
ration points. Four IPTG doses are the in the most rapidly changing region of the transfer func-
tion. The transfer function plot indicates that five different network connection strengths were
observed for the E. coli network, zero connectivity at saturation, and four intermediate connec-
tion strengths in the dynamic range of the transfer function.

Fig 3D shows the INDUCE analysis using a two-node network model (see Fig 2B). As pre-
dicted by the model, the variance of G1 does not depend on the covariance between G1 and
G2, Cov(G1, G2), whereas the variance of G2 is well fitted by a quadratic function of Cov(G1,
G2). Interpreted through the lens of the INDUCE analysis, the data predicts that G1 regulates
G2, as is indeed the case in this system. That the regulation is a repression can be inferred from
the negative sign of Cov(G1, G2).

A criticism of the model fit is that a denser sampling in the dynamic range of the transfer
function would be desirable to more thoroughly trace out the covariance matrix sensitivity to a
changing connectivity strength. Since this is a re-analysis of a historical data set, this was not
possible. In the next validation experiment, we were able to sample the dynamic region of the
transfer function more thoroughly using our own experimental setup. (Details of the data nor-
malization and fitting procedures are provided in Section F in S1 text.)

MAP kinase signaling
MEK and ERK participate in a well-characterized phosphorelay signaling system within the
MAP kinase pathway [24]. We measured the concentrations of the phosphoproteins MEK-pS
(pMEK) and ERK-pTpY (ppERK) in mouse T cells using immunostaining and multiparameter
flow cytometry as previously described [12]. We stimulated the T cells with phorbol 12-myris-
tate 13-acetate (PMA), a chemical activator of protein kinase C (PKC), part of the canonical
MAP kinase pathway, PKC! Ras! Raf!MEK! ERK. Then, we measured the concentra-
tions of pMEK and ppERK ten minutes after PMA stimulation. The PMA stimulus is specific
in the sense that pre-treatment with a MEK inhibitor completely blocks ERK phosphorylation.
Using flow cytometry we quantified the intensity of fluorescent dyes bound to antibodies di-
rected against the phosphoproteins pMEK and ppERK in individual mouse T cells. Previously,
we verified that fluorescence intensity in our experimental protocol scales linearly with protein
concentration over many decades of dynamic range [12]. The data can be downloaded [25, 26].

Our analysis of the MEK-ERK phosphorelay is shown in Fig 4. Fig 4A and 4B are the dose-
responses of phosphorylated MEK (pMEK) and double-phosphorylated ERK (ppERK) as a
function of PMA concentration, respectively. A smooth positively sloped transfer function is
representative of the steady state single cell response to PMA (Fig 4C) and consistent with the
widely-accepted fact that MEK phosphorylates ERK. As in the case of the E. coli data, we reiter-
ate that neither the dose-responses nor the transfer function contain any signal supporting a
causal inference.

Fig 4D is the INDUCE analysis using a two-node network model (compare to Fig 2A and
2D). As predicted by the model, the variance of pMEK hardly depends on Cov(pMEK, ppERK)
whereas the variance of ppERK is quadratic in Cov(pMEK, ppERK). Interpreted through the
lens of INDUCE analysis, the data is consistent with the causation prediction that MEK
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phosphorylates ERK. That the regulation is an activation can be inferred from the positive sign
of Cov(pMEK, ppERK).

Given that MEK and ERK are at the terminus of a signaling cascade downstream of the ef-
fector of PMA ligand (PKC! Ras! Raf!MEK! ERK): should we expect open loop tra-
jectories predicted by the cascade network model in Fig 2I and 2L? The theory and modeling
experiments show that open loop trajectories, resulting from the interaction of two or more
noise sources (e.g, Ras and MEK), only occur for certain biochemical parameterizations of the
cascade network motif (Fig. B in S1 text). The INDUCE analysis shows no sign of an open loop
trajectory, therefore we conclude that potential noise sources upstream of MEK exhibit vari-
ance-covariance characteristics similar to Fig. B(m-p) in S1 text, which is indistinguishable
from an isolated two-node network. Fitting the simpler two node model as a criterion for edge
directionality prediction simplifies the analysis for causality prediction and can be used for
edges embedded in different network topologies when there is empirical support for the
simplification.

Statistical test for causation
To quantify our statistical confidence in our causation predictions, we compared the fits of two
competing causation hypotheses. Model 1 corresponds to the hypothesis that MEK regulate

Fig 4. MAP kinase signaling. (A) PMA dose-response of pMEK. (B) PMA dose-response of ppERK. (A-B) Averages of the log of the normalized protein
concentrations ±1 s.d. (C) Transfer function of pMEK versus ppERK. The positive slope is indicative of ERK activation by MEK. (D) INDUCE analysis
showing the fit of two-node network model (solid curves). Error bars show 1 s.d. in 1000 bootstraps of the data.

doi:10.1371/journal.pone.0125777.g004
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ERK. Alternatively, model 2 assumes that ERK regulates MEK. Let �Model1
i represent the errors

in the fit associated with the first model at the i-th of the 23 applied PMA doses, that is

�Model1
i ¼ ½VarðpMEKactual

i Þ � VarðpMEKModel1
i Þ�2þ

½VarðppERKactual
i Þ � VarðppERKModel1

i Þ�2;
ð15Þ

and let �Model2
i be similarly constructed representing the errors in the fit associated with the sec-

ond model. If model 1 results in a significantly better fit to the data than model 2, we expect

�Model1
i to be consistently smaller than �Model2

i . As the data points to be fitted by the two models
are the same, this is a paired comparison between Model 1 and Model 2. Therefore we can use
the non-parametric Wilcoxon signed rank test to test the null hypothesis that the two models
have statistically similar fitting errors. If the null hypothesis is rejected, then we favor the alter-
native hypothesis that corresponds to the Model which has consistently the smaller errors, and
compute its p-value using a one-sided version of the Wilcoxon signed-rank test. The statistical
significance of our causation predictions for both the MEK-ERK and the G1-G2 examples pre-
sented previously are shown in Table 1. In both cases we reject the null hypothesis with a very
small and significant p-value, with the favored alternative hypotheses corresponding to the
known correct model of the respective system.

Discussion
The insight of the INDUCE analysis is that the covariance matrix undergoes predictable and
measurable changes in response to changes in the connectivity strength of the network, and
that this phenomenon can be applied to causation prediction. Changing connectivity strength
via dose-response is a very mild type of intervention (in the sense of Pearl [2]). Protein concen-
tration changes evoke a natural property of biomolecular networks: connectivity strength is a
nonlinear function of protein concentration. Chemical ligands (e.g., drugs) provide a conve-
nient experimental handle for modulating connectivity strength in biochemical networks. A
limitation to our analysis is our assumption that the noise affecting different nodes (matrix Q
in Eq 3) does not depend on the chemical ligand. While this is an approximation, it may not be
true in general. A criterion to rule out this possibility is discussed in Section G of S1 text.

We report the first description of noise propagation using the experimentally measured co-
variance matrix of single cell phospho-protein in an endogenous mammalian signaling net-
work. More than simply detecting the phenomenon, our method enables inferences about the
network neighborhood of the measured species. Convergent activation of ERK by regulators
other than MEK was ruled-out by complete absence of ERK activation given pre-treatment
with MEK inhibitor. Prior to this analysis it was unknown whether noise propagates over mul-
tiple “hops.” Though the intracellular ligand, PMA, stimulates the pathway a few hops up-
stream of MEK (at the level of PKC), the experimental data showed no evidence of multi-hop
noise propagation—there was no discernible complexity beyond the predicted two-node co-
variance matrix sensitivity plot (compare Figs 3 and 4 to Fig 2A and 2D). (See Section E in S1
text for extended discussion). It may be a robust feature of the MAP kinase pathway that noise

Table 1. Statistical significance test for causation.

Inference p-value N

G1 ! G2 (E. coli) 1.2 × 10−7 23

MEK ! ERK (T cell) 1.5 × 10−5 24

doi:10.1371/journal.pone.0125777.t001
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does not propagate beyond direct interactions. Alternatively, more physiologically realistic ac-
tivation (e.g., ligands targeting trans-membrane receptors) might have different noise
propagation characteristics.

Empirically, we observed that the concentration distributions of signaling proteins in mam-
malian cells are better approximated by the lognormal rather than the normal distribution. Be-
cause signaling proteins are expressed at thousands of copies per cell, signaling noise can not
be attributed to low-copy-number effects as modeled by the chemical Langevin equation. We
found it necessary to include stochastic reaction rate constants in our equations as a source of
fluctuations to recapitulate the empirical lognormal distributions of protein concentrations.
Because of the multiplicative structure of chemical processes, small differences in reaction rate
constants result in large deviations in protein concentration from average. In summary, we
model the logarithm of protein concentration as the output of a linear stochastic dynamical
system driven by additive white noise (Eq 3). Though the model was motivated by empirical
lognormal protein concentrations in mammalian cells, it happens to also to be generally appli-
cable to low-copy-number fluctuations in E. coli gene expression since the chemical noise
terms in the CLE formulation are absorbed into the dominating reaction rate noise terms.

Causation prediction using our method is accessible to experimentalists in the form of an
easy-to-implement graphical technique and statistical test. The INDUCE analysis enables cau-
sality inference even using destructive assays that preclude the acquisition of time series data.

Materials and Methods

Data analysis
To facilitate comparing different dose-response experiments and/or combining data from mul-
tiple dose-response experiments in a single analysis, fluorescence values were normalized in
the linear scale by the Kji and maximum amplitude of the response. The logarithm of the nor-
malized fluorescence values were further analyzed. The covariance matrix of the log-fluores-
cence was estimated at each ligand dose by fitting the bivariate normal distribution. The
covariance matrix elements were then used to estimate three noise parameters in the model for
an isolated network connection. (See Section F in S1 text for details.)

Mice, antibodies, and reagents
Splenocytes and lymphocytes were isolated from B10A.CD3�-/- mice (Taconic farms) or 5C.
C7 TCR transgenic mice (Taconic) on a Rag-2-/- background and used to prepare cultures of
primary cells (see below). E10 antibody against ERK[pT202pY204] and 166F8 antibody against
MEK1/2[pS221] were purchased from Cell Signaling Technology (Beverly, Massachusetts,
United States); 30-F11 antibody against CD45 was from eBioscience (San Diego, California,
United States). Secondary antibodies coupled to fluorescent dye were from Jackson ImmunoR-
esearch (West Grove, Pennsylvania, United States). FACS buffer consisted of 10% fetal bovine
serum (MSKCC tissue culture core facility) and 0.1% sodium azide in PBS. DAPI was pur-
chased from Dojindo. All cell cultures were prepared in complete medium prepared by the
MSKCC core media preparation facility (this medium contained RPMI-1640 augmented with
10% fetal bovine serum + 10μg/ml penicillin-strep + 2mMol glutamine + 10mMHEPES
(pH7.0) + 1mMol sodium pyruvate + 0.1mMol non-essential amino acids + 50μMol β-mercap-
toethanol. Recombinant mouse IL-2 was obtained from eBioscience (San Diego CA).

The animal protocol was reviewed and approved by the Institutional Animal Care and Use
Committee (IACUC) of the Memorial Sloan Kettering Cancer Center (New York NY). The
protocol number is 05-12-031 (last renewal data: December 23rd 2013). Mice (older than
4-week old) were exposed to 100% carbon dioxide at 5 PSI for a minimum of 3 minutes in a
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cage or euthanasia chamber as recommended in RARC’s Euthanasia Guidelines for Investiga-
tors. The mice were left undisturbed for an additional 15 minutes. Prior to disposal or tissue
collection, death was confirmed by palpating for the absence of an apex heart beat and a lack
of respiration.

Preparation of stimulated primary T lymphocytes
5C.C7 T cell cultures were prepared as follows. B10A.CD3�-/- splenocytes were irradiated with
3000rad, washed once, and used as stimulator/feeder cells. 5C.C7 T cells were harvested from
axillary, lateral auxiliary and inguinal lymph nodes as well as spleen, and mixed with MCC
peptide and B10A.CD3�-/- splenocytes in complete RPMI. After two days, cells were expanded
by diluting 2 fold into medium containing 100 pM IL-2. After four days, the cells were again
expanded by 2 fold dilution into medium with IL-2. After one more day of culture, cells were
harvested and spun through a Ficoll-Paque Plus gradient (GE Healthcare) to remove dead
cells. T cells were recovered, washed twice in complete medium and resuspended at 1 million/
ml in complete medium with 100pM IL-2. Cells were used for experiments between 6 and 8
days after primary stimulation.

T cell activation and antibody staining protocol
T cells were activated in their medium of culture in a V-bottom 96-well plate (Corning). Serial
dilution of PMA (in a serial dilution of DMSO) was added to the cells. Plates containing T
+PMA solutions were placed on a water bath at 37°C and incubated for 10 min. After activa-
tion plates were put on ice with 4% ice-cold paraformaldehyde added directly to T+PMA solu-
tion for 15 minutes (final working dilution 1.6% paraformaldehyde). Cells were then
permeabilized with ice-cold 90% methanol for 15 min on ice, and washed twice with FACS
buffer. Cells were then labeled with a combination of anti-ppERK, and anti-pMEK primary an-
tibodies for 30 min at room temperature, followed by a combination of secondary antibodies
and anti-CD45 for 30 minutes at room temperature.

FACS analysis of cellular signaling response
Cells were loaded in FACS buffer with DAPI and their immunofluorescence acquired on a
LSRII instrument (BDBioscience). Electronic compensation and pre-data processing was per-
formed to select singlet cells (based on light scattering characteristics) with positive expression
of CD45 (a T cell marker) and positive DAPI staining. Further analysis was performed with ad
hoc computing tools.

Supporting Information
S1 text. Supporting Information. Consolidated supporting information document.
(PDF)
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