Skip to main content
. 2015 Jun 1;10(6):e0128827. doi: 10.1371/journal.pone.0128827

Table 4. Logistic regression models explaining exposure of 196 white-tailed deer (Odocoileus virginianus) to Leptospira interrogans pomona from two sites in Wisconsin, USA, 2010–2013.

Model a AICc b ΔAICc c w i d K e ROC f
LT 184.89 0.00 0.278 2 0.64
CS, LT, CS*LT 185.61 0.72 0.194 4 0.66
IBR, PI3, LT 186.44 1.55 0.128 4 0.63
LT, Age 186.71 1.82 0.112 3 0.66
LT, CY, LT*CY 187.09 2.20 0.093 6 0.70
CS, Age, LT 187.10 2.21 0.092 4 0.67
CS 188.49 3.60 0.046 2 0.61
CS, Age 190.46 5.57 0.017 3 0.62
CS, CY 191.37 6.48 0.011 4 0.63
CS, Age, Sex 192.20 7.31 0.007 4 0.61
Global (Age, Sex, CS, LT, CY, PI3, IBR) 192.61 7.72 0.006 9 0.69
Sex 192.77 7.87 0.005 2 0.55
Site, Age, Sex, Site*Age*Sex 193.17 8.28 0.004 5 0.62
PI3 194.38 9.49 0.002 2 0.50
PI3, IBR, PI3*IBR 194.65 9.76 0.002 4 0.53

aLT = land type (public vs. private); CS = capture site; IBR = exposure to infectious bovine rhinotracheitis virus; PI3 = exposure to parainfluenza 3 virus; Age = deer age; Year = capture year; Sex = male or female.

bAkaike’s Information Criterion corrected for small sample size [31].

cDifference in AICc relative to minimum AIC.

dAkaike weight [31].

eNumber of parameters.

fArea under the receiver operating characteristic curve.