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Abstract

The electrophysiological signature of resting state oscillatory functional connectivity within
the default mode network (DMN) during spike-free periods in temporal lobe epilepsy (TLE)
remains unclear. Using magnetoencephalographic (MEG) recordings, this study investigat-
ed how the connectivity within the DMN was altered in TLE, and we examined the effect of
lateralized TLE on functional connectivity. Sixteen medically intractable TLE patients and
22 controls participated in this study. Whole-scalp 306-channel MEG epochs without interic-
tal spikes generated from both MEG and EEG data were analyzed using a minimum norm
estimate (MNE) and source-based imaginary coherence analysis. With this processing, we
obtained the cortical activation and functional connectivity within the DMN. The functional
connectivity was increased between DMN and the right medial temporal (MT) region at the
delta band and between DMN and the bilateral anterior cingulate cortex (ACC) regions at
the theta band. The functional change was associated with the lateralization of TLE. The
right TLE showed enhanced DMN connectivity with the right MT while the left TLE demon-
strated increased DMN connectivity with the bilateral MT. There was no lateralization effect
of TLE upon the DMN connectivity with ACC. These findings suggest that the resting-state
functional connectivity within the DMN is reinforced in temporal lobe epilepsy during spike-
free periods. Future studies are needed to examine if the altered functional connectivity can
be used as a biomarker for treatment responses, cognitive dysfunction and prognosis in pa-
tients with TLE.
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Introduction

Temporal lobe epilepsy (TLE) is the most common type of focal symptomatic or cryptogenic
epilepsies, and it is characterized by recurrent, unprovoked seizures originating from the medi-
al or lateral temporal lobe. TLE mainly consists of simple partial seizures (SPS), complex partial
seizures (CPS) and secondary generalized tonic-clonic seizures (SGTCS) with or without loss
of consciousness during the ictal period. TLE is associated with various cognitive dysfunctions,
including intellectual, language, visuospatial and memory dysfunction [1-3].

The default mode network (DMN) in the brain is consistently activated during a resting-
state condition that is free from attention demands or cognitive load [4, 5]. Many anatomically
distributed and separated cortical regions constitute the DMN, including the posterior cingu-
late cortex (PCC), precuneus (PCu), inferior parietal cortex (IPC), medial temporal (MT)
lobes, medial frontal cortex (MFC), and anterior cingulate cortex (ACC) [4-6]. The DMN is as-
sociated with a variety of cognitive functions, such as the theory of mind and social cognition
[7], episodic memory [8], emotion and anxiety [9], and low-level attentional focus [10]. Abnor-
malities in the DMN have been observed in Alzheimer’s disease [11-13], schizophrenia [14],
depression and anxiety [15], autism spectrum disorder [16], attention deficit/hyperactivity dis-
order [17], and many other conditions. Further investigations into the DMN could be a prom-
ising approach to unveil the underlying pathological mechanisms of multiple diseases.

In TLE, resting functional MRI studies have explored blood oxygen level-dependent
(BOLD) signals in the epileptogenic and DMN regions [18, 19]; in addition, studies have exam-
ined the functional connectivity between epileptogenic foci, particularly within medial tempo-
ral lobe and brain areas within the DMN with [20, 21] or without [22-26] the simultaneous
recording of EEG. Of note, during interictal epileptic discharges, the amplitude of the BOLD
signal was increased in the mesial temporal lobe while decreased in the DMN [18, 19]. More-
over, disruption of the functional connectivity between the mesial temporal and DMN regions
has been found in TLE [20, 22-26]. These changes in functional connectivity may result from
the cognitive or psychiatric impairments associated with TLE. Nevertheless, the epileptic activi-
ty from the temporal lobe may spread into functionally interconnected DMN regions [19, 27,
28], which raises the question as to how the DMN works during interictal spike-free periods in
TLE. Several recent fMRI studies have begun to assess this question using simultaneously EEG
recordings [20, 21]. Notably, Lin et al. [29] reported that simultaneous magnetoencephalogra-
phy (MEG) and electroencephalography (EEG) recordings improve epileptic spike detection in
TLE because of a portion of interictal spikes that are selectively recognized by MEG or
EEG techniques.

The cognitive deficits observed in TLE are related to the laterality of seizure onset. The left
TLE was reported to be prominent impairment in verbal memory; nevertheless, the right one
was impaired in nonverbal memory [30, 31]. However, many studies have found inconsistent
findings of intelligence deficits in epilepsy for the factor of lateralization [30, 32, 33]. Since the
DMN was found to be associated with cognitive function, two recent fMRI studies have shown
the effect of lateralized TLE on the DMN [34, 35]. The distinct alterations in the functional
connectivity of the DMN between the left and the right TLE were reported in these two studies;
however, there are inconsistencies between the two studies on the extent of cortical involve-
ment that warrants further investigation.

It is well known that fMRI does not directly measure neural activity [36, 37], and its signal
analysis is confined to a relatively low temporal frequency. Recent evidence [38-41] has shown
that fMRI activation was closely coupled with EEG energy modulation in the gamma and high-
frequency range (> 40 Hz). Although fMRI studies have begun to report the presence of DMN
alterations in TLE, it is unclear how the electrophysiological signatures of DMN connectivity
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in TLE relate to frequencies < 40 Hz. This information could help explain the temporal dy-
namics of ongoing brain activity and provide novel neurophysiological correlates of mental
dysfunction. Moreover, a network perspective using oscillatory functional connectivity mea-
sures is favorable for gaining insight into normal vs. pathological brain function since cognitive
processing is essentially dynamic.

To understand alterations within the DMN in TLE, we simultaneously recorded resting-
state MEG and EEG data and then extracted MEG epochs off-line that were free of epileptic
spikes and artifacts. Using a depth-weighted minimum norm estimate and imaginary coher-
ence analysis, source-based functional connectivity in the DMN was compared between con-
trols and patients with TLE. Additionally the laterality effect of TLE upon the DMN is
investigated. This work provides insight into the novel neural underpinnings of the
electrophysiological characteristics of the DMN in TLE.

Methods

2.1. Subjects

Sixteen patients with medically intractable TLE (mean age: 27.8 years, 6 females, 1 left-handed)
participated in this study. Subjects underwent a clinical evaluation in the Taipei Veterans Gen-
eral Hospital, including intensive video-scalp EEG monitoring, magnetic resonance (MR) im-
aging, and neuropsychological assessment. TLE was defined by the clinical seizure semiology
of temporal lobe onset, presence of maximal epileptic discharges on anterior temporal elec-
trodes (F7, F8, Ch1, or Ch2) or over the middle or posterior temporal electrodes (T3-T5, T4-
T6) from interictal or ictal EEG data [29]. The laterality of epileptogenic focus was based on
clinical history, interictal and ictal EEG recordings, and neuroimaging. Seizure types were doc-
umented according to the International League Against Epilepsy classification (Commission
on Classification and Terminology of the International League Against Epilepsy, 1989). The
clinical profile of the TLE patients is summarized in Table 1. The duration of epilepsy in the
right TLE patients was significantly shorter than in the left TLE patients (p = 0.017). All includ-
ed patients underwent MEG and EEG recordings.

Twenty-two healthy volunteers (mean age: 27.9 years, 9 females, 2 left-handed) were re-
cruited as controls that matched the patients in age, gender, and handedness (all p > 0.05).
None of the control subjects reported a history of symptoms of neurological or psychiatric dis-
orders. Only MEG recordings were performed in control subjects. This study was approved by
the Institutional Review Board of Taipei Veteran General Hospital. All participants gave writ-
ten informed consent prior to any MEG or EEG recordings.

2.2. MEG and EEG recordings

MEG data were recorded using a whole-scalp 306-channel neuromagnetometer (Vectorview,
Elekta Neuromag, Helsinki, Finland) composed of 102 identical triple sensor elements. Each
sensor element consisted of one magnetometer and two orthogonal planar gradiometers. The
exact position of the head with respect to the sensors was obtained by measuring magnetic sig-
nals produced by current leads to four head indicator coils at known sites on the scalp. Individ-
ual Cartesian coordinates were determined using a 3-D digitizer. The x-axis passed through the
preauricular points from left to right, the y-axis passed through the nasion, and the z-axis
pointed upward. In this study, data analysis was based on signals from the 204 planar gradiom-
eters. For EEG recordings, 21 electrodes were positioned according to the International 10-20
System with the addition of bilateral cheek electrodes [29].

During the recordings, the subjects sat comfortably and kept awake with their head sup-
ported against the helmet of the neuromagnetometer. Any participant with excessive within-

PLOS ONE | DOI:10.1371/journal.pone.0128787 June 2,2015 3/18



@'PLOS ‘ ONE

Increased Intrinsic Connectivity in Temporal Lobe Epilepsy

Table 1. Clinical characteristic of TLE patients.

Patient Sex
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Type

CPS

SGTCS

CPS
CPS
SPS
CPS
SPS

CPS

SGTCS
SGTCS

CPS
CPS
SPS
CPS

SGTCS

SPS

Duration (year) Frequency (/month) MRI lesion No. of AEDs
Right TLE (n =7)
5 <0.5 Right MTS 3
10 6 Normal 2
5 8 Right MTS 2
8 45 Normal 3
1 >60 VM, RMT 1
3 1 Tumor, RT 2
5 45 Encephalom, RT 5
Left TLE (n = 9)
14 15 Left MTS 2
24 25 Normal 3
28 1.5 Tumor, F 4
22 6.5 Left MTS 4
17 2.5 Left MTS 3
14 15 Tumor, LT 2
6 5.5 Left MTS 2
4 0.5 Dysplasia, LMT 3
4 3.5 Encephalom, LT 3

R, right; L, left; T, temporal lobe; CPS, complex partial seizure

SPS, simple partial seizure; SGTCS, secondary generalized tonic-clonic seizure
MTS, mesial temporal sclerosis; VM, vascular malformation

Encephalom, encephalomalacia; F, frontal; AEDs, anti-epileptic drugs

doi:10.1371/journal.pone.0128787.t1001

run head movement based on head position indicator (HPI) or who reported sleeping was re-
run. Cortical spontaneous activities during eyes-closed and awake conditions were recorded
for approximately 5 minutes with digitization rate 600 Hz. The MEG data from the resting
state condition were extracted and fragmented into consecutive 2-s epochs in the off-line mode
[42]. To eliminate interference caused by interictal spikes in TLE, the epochs of MEG and EEG
data were visually examined off-line. For MEG spike detection in each epoch, superimposed
MEG signals from 204 gradiometer channels were screened. Sharp signals that were clearly dis-
tinguishable from ongoing background activity were rejected and regarded as probable MEG
spikes. In each epoch, EEG data were also used to identify spikes according to the definition of
The International Federation of Societies for Electroencephalography and Clinical Neurophysi-
ology (IFSECN) [43]. An epoch with a probable MEG or EEG spike was discarded in the
present study.

In addition to spike elimination, we rejected epochs with sharp signals due to a clear contri-
bution from heart beats, eye movements, or other physiological signals. For each subject, 30 ep-
ochs without spikes or artifacts were randomly selected for further analysis.

2.3. Data analysis

For the MEG data, the procedure used to analyze the resting-state functional connectivity anal-
ysis is shown in Fig 1. In addition to removing artifacts, two main analyses were performed.
The first analysis was the minimum norm estimate to obtain the distributed source model of
the MEG signals and the dynamic current strength of source activities in the DMN. The second
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Fig 1. Data analysis procedure. The procedure for resting-state MEG data analysis that was used in this study is shown.

doi:10.1371/journal.pone.0128787.g001
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analysis assessed source-based functional connectivity by calculating the imaginary coherence
between two cortical sources among all epochs and compared the degree between two groups.

2.3.1 Minimum norm estimate analysis. Depth-weighted minimum-norm estimation
(MNE) was used to obtain the dynamics of cortical sources from the MEG data [44]. MNE of-
fers fine spatial accuracy by using depth weighting [45] and is able to obtain simultaneous cor-
tical sources that are distributed onto the brain surface [44, 46].

The details of our calculations of the forward model and inverse operator have been recently
published [46]. An MRI-derived surface model of each participant's brain was automatically re-
constructed by BrainVISA software (4.0.2, http://brainvisa.info) from the T1-weighted struc-
tural volumetric images. All images were acquired using a GE Discovery MR 750 3T (TR 9.4
msec, TE 4 msec, recording matrix 256 _256 pixels, field of view 256 mm, slice thickness 1
mm). The noise covariance was calculated from empty-room background activities which
lasted ~30s in the beginning session of MEG recording. In the present analysis, the activation
at each vertex (an equilateral triangle in the tessellation of the cortical surface) was estimated
every 1.67 ms.

To measure the strength of cortical sources and calculate the functional connectivity in the
common space across individuals, the reconstructed surface of each subject was morphed into
the same source space, which was defined as the cortex from Colin27's anatomy. The morphing
process first aligned the anterior commissure/posterior commissure axis of both cortical sur-
faces and then smoothed them to preserve only the main features. Next, the individual surface
was deformed to match the MNI surface using an iterative closest point algorithm (BrainStorm
Tutorials, http://neuroimage.usc.edu/brainstorm/Tutorials). Shepard’s method (weighted com-
bination of a few nearest neighbors) was performed for the interpolation of the source strength
from the subject surface to the Colin27 surface. The 12 regions of interest (ROIs) within the
DMN included the posterior cingulate cortex (PCC), precuneus (PCu), inferior parietal cortex
(IPC), medial temporal (MT), medial frontal cortex (MFC), and anterior cingulate cortex
(ACQ) in the bilateral hemispheres. The ROIs were selected from the cortical surface of default
anatomy (MNI/Colin27) according to the automatic anatomical labeling template [47].

MNE presents each grid point of cortical source as a current dipole. The time series of the
ROI was obtained from the averaged dynamic source strength across the current dipoles in the
ROL. For averaged cortical activation measures, the current strength across time and epochs
was calculated for each ROI within each subject. For functional connectivity analysis, the time-
varying source strengths from each epoch were extracted for each ROI and subject. The MNE
analysis was performed with Brainstorm [48], which is a documented program that is available
for free download online under the GNU general public license (http://neuroimage.usc.edu/
brainstorm).

2.3.2 Source-based functional connectivity analysis. Imaginary coherence (IC) was used
to estimate the functional connectivity to minimize any crosstalk effects between sources [49].
In addition, this technique has been suggested to effectively reveal altered functional connectiv-
ity in cases of brain lesions [42], brain tumors [50], and in AD patients [13] during a resting-
state condition. IC rejects the spurious connectivity between two cortical sources with no time
delay, which could be attributed to a common source or volume conduction. Thus, IC repre-
sents the interactions between brain regions with a specific time lag [49]. The IC was calculated
according to the following formula:

i XY (F)
VELIK DS V()

where L(f) is the IC between a given paired-ROIs for each frequency bin, I is the imaginary

L(f) =
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part of the complex production, X and Y} are the source-based spectrums from two ROIs
(Hanning-windowed, Fourier transformed time-varying source strengths), * denotes the com-
plex conjugate, and K is the number of 2-s epochs.

The calculation of IC was programmed using Matlab computing software (The Math
Works, Natick, MA), which could be freely downloaded on Google Drive (https://drive.google.
com/folderview?id=0B6YoD6P0j9GEkVYyWTLROIMHBYMjdzS291ME91XzBvaTFmNEx0
SjhXLXB4TUJRbVZATEO&usp=sharing). The frequency bands of the IC were classified into
delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-25 Hz), and gamma (25-40 Hz). The
IC values for each frequency band were calculated from the average of 30 epochs. The IC values
for every subject were computed for all ROIs and the full 12x12 adjacency matrix was estimat-
ed. The mean IC value, which is computed from the average of the IC values between one ROI
and the other 11 ROIs (average of 11 paired IC values), denotes the mean functional connectiv-
ity within the DMN for each of the 12 ROIs.

2.3.3 Statistical analysis. An independent t-test was performed to examine significant dif-
ferences between groups (TLE and control) in the averaged cortical activation within each ROL
The difference between groups with respect to the mean IC values was tested in each frequency
band. The Bonferroni correction for multiple comparisons was conducted on the IC values with
the factors of ROI and frequency band. The IC values in the left TLE and the right TLE were
compared statistically to controls using the Wilcoxon rank-sum test. Statistical analyses were per-
formed using Matlab toolbox (version 7.10, R2010b, http://www.mathworks.com/) or the SPSS
software package (SPSS Inc, Chicago). A p-value < 0.05 was considered statistically significant.

Results
3.1 Cortical activation measurements

We calculated the grand-averaged activation on cortical surfaces with top and medial views of both
hemispheres across the controls and TLE subjects. The activation maps over the frontal, parietal,
temporal, occipital and midline regions were similar between the two groups (Fig 2(A)). The nor-
malized source strength of underlying cortical sources was color coded. The normalized averaged
strengths of 12 ROIs within the DMN showed no significant differences between the two groups
(all p > 0.05). As shown in Fig 2(B), the color-coded maps display the p values for each ROL

3.2 The mean functional connectivity within the DMN

For each frequency band, distinct mean IC values (within the DMN) were compared between
TLE patients and controls (Fig 3, on the MRIs; S1 Fig, on the cortical surfaces). The corrected p
values for each ROI in each frequency band were mapped onto the coronal, sagittal, and axial
MR images. In the delta band, a significantly larger mean IC value was found in the right MT
in TLE patients when compared with control subjects (corrected p = 0.006, TLE = 0.144+0.001,
controls = 0.133+0.002). Moreover, in the theta band, the mean IC value was significantly larg-
er in the bilateral ACC of TLE patients when compared with control subjects (left ACC: cor-
rected p = 0.026, TLE = 0.197£0.002, controls = 0.186+0.002; right ACC: corrected p = 0.037,
TLE = 0.195+0.002, controls = 0.184+0.002). No significant differences between groups were
observed for each ROI with respect to the alpha, beta, and gamma bands (all p > 0.05).

3.3 The effect of laterality on the mean functional connectivity within the
DMN

To determine the effect of lateralized TLE on the DMN, the mean IC values for patients were
compared with controls (Fig 4). We found that the left TLE patients showed a larger mean IC
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Control
(n=22)

)

P values maps
(Control vs. TLE)

Fig 2. Cortical activation during resting state condition. (a) The distribution of the average cortical activation during an eyes-closed resting-state
condition in 22 control subjects and 16 TLE patients. The activation maps are shown from the top and medial views. The source values were smoothed after
re-interpolation (the size of the smoothing kernel = 5). Only the cortical sources which strength is larger than 60% of maximal value are displayed. The current
strength for cortical sources shown is color coded with large values represented in white. (b) The p-value maps from the activation comparisons between
control subjects and TLE patients are shown. The maps are color coded with significance represented in white and light yellow.

doi:10.1371/journal.pone.0128787.9002

value in the delta band in the bilateral MT when compared with controls (all p < 0.05). For
right TLE patients, an increased mean delta IC value was only found in the right MT

(p < 0.001). For both left and right TLE patients, a larger mean IC value at theta band in the bi-
lateral ACC was found when compared with controls (all p < 0.05).

Discussion

During interictal spike-free periods, an alteration of resting-state functional connectivity with-

in the DMN was observed in TLE patients. This was shown by increases in the mean functional
connectivity at specific rhythms. In TLE patients, there was an increased mean IC values in the
right MT region at delta band (TLE: 0.1439+0.0013, controls: 0.1337+0.002) and in the bilateral
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Fig 3. Difference of functional connectivity between control subjects and TLE patients. The p-value maps on the sagittal, coronal and axial MR images
show the significant differences in mean functional connectivity within the DMN between control subjects and TLE patients in the delta, theta, alpha, beta and
gamma bands. Cortical areas encircled by dashed circles indicate cortical areas with significant changes. The maps are color coded with significant values
(p < 0.05) denoted in white. The number above the image indicates the slice number.

doi:10.1371/journal.pone.0128787.g003

ACC region at theta band (left ACC, TLE: 0.197+0.0022, controls: 0.1867+0.0021; right ACC,
TLE: 0.1949+0.0023, controls: 0.1844+0.0023). With regard to the effect of lateralized TLE,
asymmetric increased delta connectivity with right MT was found in right TLE patients, while
symmetric increased theta connectivity with bilateral ACC was observed in left and right

TLE patients.

4 1 Cortical activation in the DMN

A similar activation pattern within the DMN was found between controls and TLE patients.
Previous TLE studies have reported that the brain regions within the DMN may be decreased
or increased BOLD responses in fMRI [27, 51, 52], enhanced neural activities in MEG [28],
and high gamma power increase in intracranial EEG [41, 53]. These phenomena may be the ef-
fect or spreading of epileptic spikes from the epileptogenic zone [19, 52]. In the present study,
no significant difference of the DMN activation between TLE patients and controls suggests
that the resting-state MEG epochs with our spike elimination may be notably free of epileptic
activities. Moreover, the activation of DMN was thought to support consciousness [4]. The
level of consciousness during resting state recording could be similar between groups.

4.2 The alterations of mean functional connectivity in TLE patients

Without the contamination of interictal spike activities, increased functional connectivity in
TLE patients was found in the right MT region at delta band and in the bilateral ACC regions
at theta band. An increased level of functional connectivity during a resting-state condition
was reported in various types of epilepsy in the EEG [54, 55], MEG [56], and fMRI studies [57-
64]. These evidences are in line with the consistent morphological changes involved in distinct
brain regions in TLE patients [65], or between and within hemispheres in epilepsy [66], which
was attributed to an altered configuration of grey matter regions and interconnecting white
matter tracts in TLE [23]. Moreover, it has been suggested that an enhanced connection may
be the consequence of functional reorganization or plasticity [57, 60, 64] and cortical inhibitory
mechanisms [56] in epilepsy. Apart from an enhanced connectivity, the association between
disruption of cortical connections in the DMN and cognitive impairment of epilepsy patients
was noted in previous fMRI studies [23, 57, 62, 66, 67]. This discrepancy of the DMN alter-
ations might stem from (1) the fundamental methodological difference between MEG and
fMRI [36, 37], (2) the frequency range studied, or (3) the effect of interictal spike activities [27,
51, 52]. Of note, previous morphometric analysis showed a bilateral increase in gyral complexi-
ty in TLE patients [68], which represented the increase of fiber connectivity. Luo and colleagues
[57] speculated that increased cortical connectivity may reflect the chronic, abnormal, func-
tional integration in the brain in epilepsy. We suggest that reinforced links within the DMN
characterize the cortical alteration during resting state condition in TLE patients. It could be re-
lated to maintain the brain functioning or facilitate the formation of the epileptogenic network.

4.3 The effect of lateralized temporal lobe epilepsy on the functional
connectivity of the DMN

A larger mean connectivity in the right MT region at delta band is consistent with prior studies
that found abnormal hub properties or strongly connected network nodes in the epileptogenic
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Fig 4. Bar plots for the laterality effect on functional connectivity. (a) The difference in the delta
functional connectivity in the left and right MT regions between controls, and left and right TLE patients is
shown. (b) There were significant differences in the theta functional connectivity in the left and right ACC
regions between controls, and left and right TLE patients. Each error bar represents the standard error of the
mean (SEM). * p <0.05; ** p <0.01; *** p <0.001.

doi:10.1371/journal.pone.0128787.9g004
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regions [61, 66, 69]. Notably, the left TLE patients showed enhanced connectivity in the bilater-
al MT regions, whereas the right TLE patients had an increased connectivity only in the right
MT region. Bilateral hemispheric alterations of cortical activation or functional connectivity in
TLE patients could be the consequence of unilateral damage in the M T region [25, 70, 71]. It
suggests that although no structural change in the MT region contralateral to the seizure focus
was observed, functional brain plasticity could occur in the bilateral MT regions [25].

Previous studies found that the side of seizure onset has distinct effect on the connectivity
and structural abnormalities in TLE [72, 73]. In this study, the asymmetric connectivity in-
crease in the right TLE patients may be due to a difference in cortical plasticity patterns be-
tween the left and the right TLE patients [25]. Another possibility is that the contralateral
compensatory mechanism was correlated with the duration of epilepsy [21, 60, 61]; therefore,
the contralateral compensation in the right TLE patients with shorter epilepsy duration in this
study remained deficient. The increased connectivity pattern in the right MT region for both
the right and left TLE patients suggests that this region may act as a vigorously connected node
even during spike-free resting-state condition.

4.4 The oscillatory characteristics of the altered functional connectivity in
TLE patients

Delta activity is a neuropathological oscillation of the brain [74-78]. Increases in delta connec-
tivity was related to the loss of intracortical inhibition [79-81] and an abnormal cortical hyper-
coupled state [54, 82, 83]. During interictal period without spikes or ictal discharges, enhanced
delta connectivity is consistent with a prior EEG study [83]. It may indicate that the resting-
state dynamics in a reorganized network for TLE are synchronized at delta band as the hub in
the right MT region.

In the bilateral ACC regions, enhanced theta connectivity was observed in the right and the
left TLE patients. This result is concordant with the altered ACC connectivity in epilepsy in the
previous studies [54, 60-62]. The ACC region has been shown as a predominant hub that
might be activated during affective, cognitive and motor tasks requiring attention in the
healthy brain [84-87], and it might be involved in the spreading and generalization of epileptic
discharge and the thalamocortical network in the epilepsy patients [88, 89]. Moreover, frontal
theta activity was associated with the cortical processes of working memory [90], associative
learning, attention and integrative cognition and association [91]. We speculate that the altered
connectivity in the bilateral ACC at theta band might underlie the neurophysiological mecha-
nisms of cognitive processes and epileptogenic network in TLE patients.

4.5 Limitations

With regard to the methodology of resting state MEG analysis, the preprocessing adapted in
the present study simply identified and removed the data epochs with artifacts through visual
inspection or automatic detection, which is one of the two general strategies for dealing with
artifacts in MEG [92], without the independent component analysis (ICA) or signal space pro-
jection (SSP) methods. This preprocessing method in resting-state MEG studies has been re-
ported that the functional connectivity between cortical regions could be well measured [93,
94]. Moreover, the nature of imaginary coherence analysis could be robust to spurious connec-
tivity caused by linear signal leakage [95, 96]. It is of note that Gross and coauthors [92] have
not concluded the priority of all the above artifact correction methods, since the effect of arti-
fact correction methods on resting state MEG analysis still needs to further studies to clarify.
In the present study, if the responses were contaminated with strong ECG artifacts and
clean responses could not be obtained through visual inspection or automatic detection, we
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would set 8-12 lateral temporal channels as bad channels. Of course they were ignored from
the source estimation. The effect of removed channels on the minimum norm solution depends
on their number and the positions in relation to individual’s brain and the regions of interest.
In the present study, it is hard to answer the true impact of bad channels on functional connec-
tivity measures, even if no significant difference of cortical activation between groups was
found. However, the impact may be negligible due to few subjects with strong ECG contamina-
tions in this study (controls: 3/22; patients: 2/16).

In this study, TLE patients with distinct brain lesions and seizure types were included. Al-
though the altered electrophysiological connectivity patterns for a specific symptom type or le-
sion may be of concern, the present findings from the heterogeneity of the TLE patients may
provide the common underlying electrophysiological mechanism. Further studies are needed
to confirm our present results and extend the investigation to include larger populations.
Moreover, our experimental design did not control the confounding effects from anti-epileptic
drugs (AED). However, the effect of AED on connectivity remains unresolved [21]. A longitu-
dinal follow-up study is needed to elucidate the impact of AED upon the DMN connectivity.

Conclusion

Independent of interictal or ictal spike activities, TLE patients showed aberrant DMN connec-
tivity, especially with the MT and ACC regions at delta and theta bands. These findings suggest
that there are reinforced links to maintain brain functioning or form the epileptogenic network.
These findings provide important functional and electrophysiological results related to the
pathological mechanism of TLE. Further investigation of the association between the intrinsic
neural network changes and the progression of disease or cognitive dysfunction in TLE patients
is warranted.
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