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Intestinal Microbiota Composition Modulates Choline Bioavailability
from Diet and Accumulation of the Proatherogenic Metabolite
Trimethylamine-N-Oxide
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ABSTRACT Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the pro-
duction of trimethylamine (TMA), which upon absorption by the host is converted in the liver to trimethylamine-N-oxide
(TMAO). Recent studies revealed that TMAO exacerbates atherosclerosis in mice and positively correlates with the severity of
this disease in humans. However, which microbes contribute to TMA production in the human gut, the extent to which host fac-
tors (e.g., genotype) and diet affect TMA production and colonization of these microbes, and the effects TMA-producing mi-
crobes have on the bioavailability of dietary choline remain largely unknown. We screened a collection of 79 sequenced human
intestinal isolates encompassing the major phyla found in the human gut and identified nine strains capable of producing TMA
from choline in vitro. Gnotobiotic mouse studies showed that TMAO accumulates in the serum of animals colonized with TMA-

producing species, but not in the serum of animals colonized with intestinal isolates that do not generate TMA from choline in
vitro. Remarkably, low levels of colonization by TMA-producing bacteria significantly reduced choline levels available to the
host. This effect was more pronounced as the abundance of TMA-producing bacteria increased. Our findings provide a frame-
work for designing strategies aimed at changing the representation or activity of TMA-producing bacteria in the human gut and
suggest that the TMA-producing status of the gut microbiota should be considered when making recommendations about cho-

line intake requirements for humans.

IMPORTANCE Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and increased trimethyl-
amine N-oxide (TMAO) levels have been causally linked with CVD development. This work identifies members of the human gut
microbiota responsible for both the accumulation of trimethylamine (TMA), the precursor of the proatherogenic compound
TMAO, and subsequent decreased choline bioavailability to the host. Understanding how to manipulate the representation and
function of choline-consuming, TMA-producing species in the intestinal microbiota could potentially lead to novel means for
preventing or treating atherosclerosis and choline deficiency-associated diseases.
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major role played by the intestinal microbiota is to aid in the

harvest of nutrients from the diet (1). Dietary components
that are not readily absorbed in the small intestine serve as growth
substrates for members of the gut microbiota, which in turn can
modify the bioavailability and nutritional properties of those
same dietary components (1). For example, many of the beneficial
effects associated with consumption of whole grains, vegetables,
and fruits are at least in part mediated by end products of micro-
bial metabolism, including short-chain fatty acids (e.g., butyrate)
and phenolic acids (e.g., protocatechuic acid) (2—6). Likewise, gut
microbes can also convert otherwise beneficial dietary com-
pounds, such as choline, into metabolites that are detrimental to
human health (7-10).

Choline is required for a wide range of biological activities,
including maintaining the structural integrity of cell membranes,
supporting cholinergic neurotransmission, and donating methyl
groups in a number of biosynthetic reactions (11). Although cho-
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line is synthesized endogenously, this synthesis does not meet the
levels necessary for optimal health (11). Previous studies have es-
tablished that gut microbial metabolism of choline results in the
production of trimethylamine (TMA) (12-14). Once TMA is ab-
sorbed by the host, it is further metabolized by flavin monooxy-
genases 1 and 3 (FMO1 and FMO3) in the host liver to generate
trimethylamine-N-oxide (TMAO) (8, 15, 16).

Recent human studies have established that the levels of
TMAO in serum are positively correlated with impaired renal
function, colorectal cancer, and cardiovascular disease (CVD) (8,
10, 17, 18). TMAO exacerbates atherosclerosis in a genetic knock-
out mouse model, in part by promoting forward cholesterol trans-
port and by inhibiting reverse cholesterol transport (8, 10, 19, 20).
In addition, TMAO exacerbates impaired glucose tolerance,
obstructs hepatic insulin signaling, and promotes adipose tis-
sue inflammation of mice maintained on a high-fat high-sugar
diet (21).
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TABLE 1 Bacterial strains used to colonize germ-free mice

Strains introduced into germ-free mice”

In vitro TMA production in
the presence of ¥:

Bacterial strain “Core”

“Core plus C. sporogenes”

“Core plus all” Choline L-Carnitine

Bacteroides caccae ATCC 43185
Bacteroides ovatus ATCC 8483
Bacteroides thetaiotaomicron VPI-5482
Collinsella aerofaciens ATCC 25986
Eubacterium rectale ATCC 33656
Anaerococcus hydrogenalis DSM 7454
Clostridium asparagiforme DSM 15981
Clostridium hathewayi DSM 13749
Clostridium sporogenes ATCC 15579
Edwardsiella tarda ATCC 23685
Escherichia fergusonii ATCC 35469
Proteus penneri ATCC 35198
Providencia rettgeri DSM 1131
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00002 0002 << <<
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|

@ Symbols: \/, species present in the community; O, species not present in the community.

b Symbols: +, TMA produced; —, TMA not produced.

Subsequent experiments with the choline-degrading sulfate-
reducing bacterium Desulfovibrio desulfuricans (i) revealed a path-
way that involves a radical C-N bond cleavage of choline to gen-
erate TMA and acetaldehyde and (ii) identified a gene cluster
encoding this activity (22). This cluster includes cutC, which en-
codes a glycyl radical enzyme with choline trimethylamine-lyase
activity; cutD, which encodes a glycyl radical-activating protein;
and genes encoding proteins involved in the assembly of micro-
compartments which may sequester the acetaldehyde generated as
a by-product during TMA production (22, 23). However, the di-
versity of gut microbes that contribute to TMA production in
humans and the impact of these species on serum TMAO levels
and choline bioavailability remain unknown.

In this study, we used ultrahigh-pressure liquid chromatogra-
phy coupled with tandem mass spectrometry (WuHPLC-MS/MS)
to identify human gut isolates able to convert choline into TMA.
Follow-up gnotobiotic mouse experiments characterized the rel-
ative contributions of these microbes, host diet, and host factors
(e.g., genotype) to choline bioavailability and TMAO accumula-
tion.

RESULTS AND DISCUSSION

In vitro screening reveals human gut isolates able to generate
TMA from choline. Seventy-nine isolates representing six phyla
found in the human intestinal tract (i.e., Bacteroidetes [21 strains],
Firmicutes [36 strains], Actinobacteria [8 strains], Proteobacteria
[12 strains], Verrucomicrobia [1 strain], and Lentisphaerae [1
strain]; see Table S1 in the supplemental material) were tested in
vitro for choline consumption and TMA production from choline
under anaerobic conditions. All strains were inoculated in a di-
luted gut medium (Table S2) supplemented with 15 mM choline
and incubated for 24 h in a 96-well plate at 37°C (24). Cell-free
supernatants were derivatized, diluted, and analyzed using uHPLC
coupled to mass spectrometry on a high-resolution mass spec-
trometer (Thermo Scientific Q Exactive) (22). We identified
eight species representing two different phyla (Firmicutes and
Proteobacteria) and six genera that showed significant choline
consumption and TMA accumulation: Anaerococcus hydrogenalis,
Clostridium asparagiforme, Clostridium hathewayi, Clostridium
sporogenes, Escherichia fergusonii, Proteus penneri, Providencia rett-
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geri, and Edwardsiella tarda (Table S1 and Table 1). These strains
generated TMA only if the medium was supplemented with cho-
line. We confirmed that TMA was derived from choline by inoc-
ulating cultures of TMA-producing strains with labeled choline
[choline chloride-(trimethyl-dy)], which resulted in the appear-
ance of labeled TMA (trimethyl-d,) (see Fig. S1 in the supplemen-
tal material). These organisms consumed more than 60% of the
choline provided in the growth media, unlike strains that did not
make TMA (Table S1). None of the identified TMA-producing
strains generated TMA from L-carnitine, another quaternary
amine linked to TMAO accumulation, under the same test condi-
tions (Table 1) (10).

Seven of the eight identified species encode components of the
choline utilization TMA-producing pathway described above (see
Fig. S2 in the supplemental material), including cutC, cutD, and
genes encoding proteins involved in assembly of microcompart-
ments. In contrast, E. tarda strain 23685 produces TMA from
choline but does not appear to contain these genes in the pub-
lished draft genome, raising the possibility that it encodes a novel
mechanism of choline metabolism. Different strains of the Ed-
wardsiella tarda species varied in their ability to consume choline
and generate TMA. While E. tarda ATCC 23685 strain generated
TMA from choline, ATCC 15947 strain did not, suggesting that
the ability of microbes to convert choline to TMA is a strain-
specific metabolic trait that may be acquired via lateral gene
transfer.

We also identified two species—Providencia alcalifaciens and
Providencia rustiganii—predicted to encode key components of
the choline utilization TMA-producing pathway that did not gen-
erate TMA in our original screen (see Table S1 and Fig. S2 in the
supplemental material) (22). Further uHPLC-MS/MS analysis of
these two organisms grown individually in Hungate tubes con-
firmed that they do not accumulate TMA after 24 h of incubation
in the medium mentioned above, despite reaching high cell den-
sities; however, P. rustiganii showed TMA accumulation after 72 h
of incubation, whereas P. alcalifaciens did not generate TMA un-
der any of the tested conditions (Table S1). Altogether, these re-
sults highlight the importance of functional studies when inquir-
ing about the metabolic activities of a microbe and suggest that
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FIG 1 Colonization with TMA-producing bacteria affects the levels of choline and TMAO in serum. (A) COPRO-Seq (community profiling by sequencing)
analysis of cecal contents from male mice colonized with (i) the “core” community, (ii) the “core plus C. sporogenes” community, and (iii) the “core plus all”
community. The pie charts depict the combined abundance of TMA-producing species and non-TMA-producing species in the community. The color bar chart
(right) shows the partial contribution of each TMA producer to the total TMA-producing fraction in “core plus all” community. A. hydrogenalis was not
detectable in the cecal samples of mice colonized with the “core plus all” community (10,000 to 60,000 reads/sample). (B to E) TMA abundance (in arbitrary
units) in cecum (B), serum levels of TMAO (C), fecal levels of choline (D), and (E) serum levels of choline in mice colonized with various communities. Values
are averages plus standard errors of the means (SEMs) (error bars) (4 or 5 animals in each experimental group). Values that were significantly different by an
unpaired two-tailed Student’s t test are indicated by a bar and asterisk as follows: *, P value of <0.05; **, P value of <0.01; ****, Pvalue of <0.0001. Similar results
were observed in adult female mice (i.e., TMA and TMAO levels were detected only when animals were colonized with TMA-producing bacteria).

phylogeny is a poor predictor of microbial TMA production from
choline.

Colonization with TMA-producing bacteria modulates
TMAO accumulation in gnotobiotic mice. Germ-free mouse
models are of critical value for characterizing the properties and
functions of gut microbes. We tested whether introducing defined
changes in the composition of the gut microbiota can modulate
cecal TMA and serum TMAO levels. Three groups of adult germ-
free male C57BL/6]J mice (5 mice/group) were orally gavaged with
the following microbial mixtures: (i) the “core” community which
included five species that do not produce TMA from choline in
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vitro, Collinsella aerofaciens, Bacteroides caccae, Bacteroides ovatus,
Bacteroides thetaiotaomicron, and Eubacterium rectale (Table 1);
(ii) the “core plus C. sporogenes” community that added one TMA
producer (C. sporogenes) to the “core” community mixture; and
(iii) the “core plus all” community that included the “core” com-
munity plus the eight TMA-producing species listed in Table 1. All
mice were fed a purified diet containing 1% (wt/wt) choline (Har-
lan TD.140179; see Table S3 for diet composition) for a week
before and 2 weeks after colonization. At sacrifice, serum, feces,
and cecal contents were collected for analyses of metabolite con-
centration and microbial community composition.
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FIG 2 Gender modulates TMAO accumulation in serum. (A to D) Serum TMAO levels (A), cecal TMA abundance (B), total hepatic FMO enzymatic activity
levels (C), and microbial community composition in cecal contents from male and female adult NMRI mice that were colonized with the “core plus all”
community (Table 1) (D) and maintained on a choline-supplemented diet (4 or 5 mice in each experimental group). Samples with less than 10,000 reads were
not used for analysis. COPRO-Seq results shown in the pie charts are the average abundance of TMA-producing species and non-TMA-producing species in the
community. The color bar charts show the partial contribution of each TMA producer to the total TMA-producing fraction. Statistical significance was calculated
by an unpaired two-tailed Student’s ¢ test and indicated by a bar and asterisks as follows: *, P value of <0.05; ****, P value of <0.0001.

Figure 1A shows microbial community composition in the
three groups of mice as determined by COPRO-Seq (community
profiling by sequencing) analysis of cecal contents. With the excep-
tion of A. hydrogenalis, all species introduced into the mice were
detected in cecal samples at a sequencing depth of =10,000 reads/
sample, which allows us to detect microbes that represent at least
0.1% of the community. uHPLC-MS/MS analysis indicates that
colonization with the “core” community did not result in the ac-
cumulation of TMA or TMAO (Fig. 1B and C). Addition of the
TMA-producing species C. sporogenes, which represented only
0.15% = 0.01% (average = standard error of the mean [SEM]) of
the cecal community, resulted in the significant reduction of fecal
choline, accumulation of TMA in the cecum, and appearance of
TMAO in serum (Fig. 1B to D). Colonization with the “core plus
all” community resulted in >100-fold increase in the relative
abundance of TMA-producing bacteria in the distal gut compared
to “core plus C. sporogenes” community (Fig. 1A). Despite this,
cecal levels of TMA, fecal levels of choline, and serum levels of
TMAO were not significantly different between these two groups
of mice (Fig. 1B to D). These results demonstrate a causal link
between gut microbial TMA-producing status and TMAO accu-
mulation in vivo and suggest that other factors (e.g., host geno-
type) besides the abundance of TMA-producing bacteria may ac-
count for differences in TMAQO accumulation (25).

Colonization with TMA-producing bacteria decreases levels
of choline available to the host. As mentioned above, coloniza-
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tion with TMA-producing bacteria results in a dramatic decrease
in the abundance of choline in feces relative to mice colonized
with only the “core” community (Fig. 1D). COPRO-seq analysis
revealed that TMA-consuming bacteria were present in the small
intestines of mice (the main site of choline absorption) (see
Fig. S3, top row, in the supplemental material). We therefore
tested whether colonization with TMA-producing species modu-
lates choline bioavailability to the host. We measured serum levels
of choline in the three groups of mice described above. Results
disclosed a significant decrease in the serum levels of choline as the
relative abundance of TMA producers increased (Fig. 1E). Similar
trends were also seen in experiments performed in female mice
(Fig. S4).

Significant reduction in choline consumption leads to organ
dysfunction and failure along with an increased risk of the devel-
opment of heart disease, cancer, and liver disease (11, 26). Cur-
rently, only an estimated 10% of the U.S. population consistently
meets or exceeds the daily recommended intake of choline estab-
lished by the Institute of Medicine (11). Furthermore, the compo-
sition of the gut microbiota and the representation of choline-
consuming TMA-producing bacteria are not currently considered
when developing daily recommended values at the population
level. While further experimentation is required to determine
whether the reduction in the bioavailability of choline observed
here recapitulates the biochemical and pathological manifesta-
tions of choline deficiency, our findings suggest that determining
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personalized values could be required for optimal health for indi-
viduals.

Host gender affects FMO activity and TMAO accumulation
in gnotobiotic mice colonized with the same microbiota. We
examined TMAQ accumulation in serum samples obtained from
adult male and female gnotobiotic mice colonized with the “core
plus all” community. uHPLC-MS/MS analysis of serum revealed
that TMAO accumulated at significantly higher levels in females
than in their male counterparts (Fig. 2A). Although females har-
bored increased levels of TMA-producing bacteria, cecal levels of
TMA were not significantly different between the two groups
(Fig. 2B and D). As mentioned above, microbiota-derived TMA is
further metabolized by flavin monooxygenases (FMO) in the host
liver to generate TMAO (8, 15, 16). FMO activity measurements
in hepatic tissue homogenates indicated significantly higher enzy-
matic activity in females than in males (Fig. 2C). These data sug-
gest that gender-associated differences in TMAO accumulation
are likely not derived from higher levels of microbiota-generated
TMA (Fig. 2B), but rather higher FMO activity in females, consis-
tent with previous studies in conventionally raised mice which
demonstrated that FMO3 is expressed at higher levels in females
than in males (8, 27).

Host genotype and community composition modulate FMO
activity and TMAO accumulation in female mice. We compared
serum TMAO levels in two strains of mice (C57BL/6] and NMRI)
colonized with the same “core plus all” community. uHPLC-
MS/MS analysis disclosed similar levels of TMAO among males of
the two strains (P > 0.1) (see Fig. S5 in the supplemental mate-
rial). In contrast, NMRI females showed a 2-fold increase in serum
TMAO levels compared to their C57BL/6] counterparts (Fig. 3A).
Similar differences in TMAO levels were observed between
C57BL/6] and NMRI adult females colonized with the “core plus
C. sporogenes” community (Fig. 3A). Consistent with these find-
ings, hepatic FMO enzyme activity assays showed higher FMO
activity in NMRI females than in C57BL/6] females (Fig. 3B).

Measurements of serum TMAO levels as a function of micro-
biota composition revealed that both strains of female mice colo-
nized with the “core plus all” community accumulated lower se-
rum levels of TMAO and exhibited lower hepatic FMO activity
than their counterparts colonized with the “core plus C. sporo-
genes” community (Fig. 3A and B). A similar trend in serum
TMAO levels was observed in male mice colonized by these two
communities (Fig. 1C). These results suggest that gut microbiota
composition affects TMAO levels, independently of TMA pro-
duction, and that at least one species present in the “core plus all”
community reduces FMO activity.

Expression of the main FMO enzyme involved in TMAO pro-
duction from TMA, FMO3, is induced by bile acids via a mecha-
nism that involves the farnesoid X receptor (FXR) (27). Specifi-
cally, cholic acid stimulates FMO3 expression (27). Genome
analysis for members of the “core plus all” community, using the
curated database for metabolic pathways MetaCyc, disclosed that
Clostridium hathewayi carries genes that encode proteins (3-a-
hydroxysteroid dehydrogenase/carbonyl reductase and 3-oxo-
cholyl-coenzyme A [CoA] oxidoreductase) predicted to be in-
volved in the metabolism of cholic acid that were not detected in
members of the “core plus C. sporogenes” community (28). Thus,
itis plausible that the decreased levels of TMAO detected in sera of
mice colonized with the “core plus all” community (Fig. 1C and
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FIG 3 Host genotype and community composition modulate FMO activity
and serum TMAO levels. (A and B) Serum TMAO levels (A) and total hepatic
FMO enzymatic activity levels (B) measured in adult female C57BL/6J and
NMRI mice colonized with the “core plus C. sporogenes” community and with
the “core plus all” community(average plus SEM; 3 to 6 animals in each ex-
perimental group). Significance was calculated by an unpaired two-tailed Stu-
dent’s t test as follows: *, P value of <0.05; ****, P value of <0.0001.

Fig. 3A) are caused by increased microbial degradation of cholic
acid, which would result in lower levels of o3 expression (27).
Dietary choline is necessary for TMA production but does
not impact the abundance of TMA-producing bacteria in a low-
complexity gut microbial consortium. To determine the impact
of dietary choline on community composition and serum levels of
TMAO, adult male C57BL/6] germ-free mice were inoculated by
oral gavage with the “core plus all” community. Mice were main-
tained for 2 weeks on either the 1% (wt/wt) choline diet described
above or the same diet formulated without choline (i.e., choline-
deficient diet; see Table S4 in the supplemental material). uHPLC-
MS/MS analysis of samples collected at the time of sacrifice
showed that mice with choline in their diet showed detectable
levels of TMAO in their serum, whereas mice fed the choline-
deficient diet did not (Fig. 4A). There were no significant differ-
ences in the total abundance of TMA-producing bacteria in the
cecum in the two groups of mice (24.7% * 2.2% for the choline-
deficient mice and 24.1% = 1.8% for the mice given choline [av-
erage = SEM]) despite significant changes in the relative abun-
dance of specific TMA-producing species (C. hathewayi and
P. rettgeri; P < 0.05 by Student’s ¢ test) (Fig. 4B). Both C. hathe-
wayi and P. rettgeri increased in their abundance in response to
dietary choline together with C. asparagiforme (P = 0.10), whereas
E. tarda (P = 0.06), and E. fergusonii (P = 0.09) showed decreased
abundance, although these changes did not reach statistical signif-
icance in our experiments. These results suggest that dietary cho-
line is not necessary for colonization of choline-consuming TMA-
producing bacteria and that dietary choline does not seem to
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FIG 4 Dietary choline is required for TMAO accumulation. (A) Levels of
TMAQO in serum from adult male C57BL/6] mice colonized with the “core plus
all” community (Table 1) and fed a 1% (wt/wt) choline-supplemented diet or
a choline-deficient diet for 2 weeks after colonization. Data shown are averages
plus SEMs (3 mice per group). Similar results were observed when the exper-
iment was conducted in NMRI mice (4 or 5 mice per group; see Fig. S6 in the
supplemental material). (B) COPRO-Seq analysis of cecal contents from the
mice described above for panel A. Samples included in the analysis have
>10,000 reads. The pie charts depict combined abundance of TMA-producing
species and non-TMA-producing species in the community. The color bar
charts show the partial contribution of each TMA producer to the total TMA-
producing fraction. Values that were statistically significant (P value of <0.01)
by an unpaired two-tailed Student’s ¢ test are indicated (**).

provide these species with a major fitness advantage, atleast in our
simplified gnotobiotic mouse model of the human gut ecosystem.

Altogether, the presented results highlight the multiple factors,
i.e., microbial, host, and environmental factors, that modulate
metabolism of choline to TMAO. Future studies aimed at under-
standing how to manipulate the representation of choline-
consuming TMA-producing bacteria in the gut microbiota or at
identifying species that modulate host conversion of TMA to
TMAO might lead to novel interventions for preventing or treat-
ing atherosclerosis and/or choline deficiency-associated diseases.

MATERIALS AND METHODS

Growth medium. All bacteria were grown on Mega Medium (see Ta-
ble S2 in the supplemental material) (24). This medium was filter steril-
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ized and stored in a Coy anaerobic chamber (5% H,, 20% CO,, and 75%
N,) at least 24 h prior to use.

Gnotobiotic husbandry. All experiments involving mice were per-
formed using protocols approved by the University of Wisconsin—
Madison Animal Care and Use Committee. Both C57BL/6] and NMRI
strains were maintained in a controlled environment in plastic flexible
film gnotobiotic isolators under a strict 12-h light cycle and received ster-
ilized water and food ad libitum. Experimental diets were sterilized by
irradiation. Table S3 and Table $4 in the supplemental material show the
compositional information for the choline-supplemented and choline-
deficient diets used in our experiments. Sterility of germ-free animals was
assessed by incubating freshly collected fecal samples under aerobic and
anaerobic conditions using standard microbiology methods.

Gnotobiotic mouse colonization. Strains used to colonize mice were
grown as monocultures on Mega Medium agar plates anaerobically for 48
to 72 h at 37°C. Single colonies were then inoculated into 3 ml of Mega
Medium and grown anaerobically for 36 h at 37°C. After 36 h, strains
belonging to the same treatment group were combined in an equal vol-
ume ratio in a Hungate tube. Germ-free 6- to 16-week-old mice were
inoculated by oral gavage with ~0.2 ml of mixed bacterial culture inside
the gnotobiotic isolator, using a mix of 5, 6, or 13 strains as shown in
Table 1. Mice were maintained on the experimental diet for a week before
and for 2 weeks after colonization. The mice were then sacrificed, and
their intestinal contents were immediately collected, frozen, and stored at
—80°C.

uHPLC-MS/MS analysis of metabolites. Twenty-five microliters of
frozen bacterial cultures were inoculated into 1 ml of Mega Medium sup-
plemented with 15 mM choline chloride (Sigma-Aldrich) in a 96-well
deep-well plate sealed with sterile foil, and incubated anaerobically for
48 hat 37°C. Cell culture supernatants were harvested by centrifugation at
4°C and then derivatized according to published methods with minor
modifications to accommodate the large number of samples being run in
parallel (22). Samples were filtered through a 0.2-um filter (Millipore)
and diluted with uHPLC-grade H,O. Supernatant used to measure cho-
line was not derivatized before being filtered with a 0.2-um filter and
diluted 1:10,000 using uHPLC-grade H,O. Samples were analyzed using a
uHPLC coupled to a high-resolution mass spectrometer (Thermo Scien-
tific Q Exactive) (see “uHPLC-MS/MS parameters” below).

Serum samples were prepared for analysis by precipitating proteins
with 4 volumes of ice-cold methanol spiked with 2.5 uM deuterium-
labeled choline and TMAO internal standards. Samples were centrifuged
at 18,213 X gat 4°C for 3 min. The recovered supernatants were diluted
1:1 in uHPLC-grade water prior to screening. Feces and intestinal con-
tents were homogenized with a 40:40:20 mixture of ice-cold acetonitrile,
methanol, and water (20 ul/mg of sample). Samples were centrifuged for
5 min at 4°C at 7,227 X g, and supernatants were prepared as described
above for TMA or diluted 1:10,000 for choline quantification.

Liver homogenate samples were prepared and incubated according to
previously published methods with minor modifications (27). Briefly,
protein was extracted from liver samples in radioimmunoprecipitation
assay (RIPA) buffer (25 mM Tris-HCl [pH 7.6], 150 mM NaCl, 1% NP-
40, 1% sodium deoxycholate, 0.1% SDS) spiked with a protease inhibitor
cocktail (catalog no. 97036-010; VWR) and quantified using a Brad-
ford assay kit (Bio-Rad) after a 1:100 dilution in double-distilled water
(ddH,0). Determination of FMO enzymatic activity was conducted in
250-ul reaction mixtures containing 1 mg protein homogenate, 100 uM
TMA, and 100 uM NADPH in 10 mM HEPES (pH 7.4). The reactions
were quenched with 100 ul acetonitrile after 1, 5, 15, 60, and 120 min of
incubation at 37°C. FMO activity was determined by calculating the con-
version rate of TMA to TMAO during the first 5 min of incubation.

uHPLC-MS/MS parameters. After sample preparation, identification
and quantitation of TMA, TMAO, and choline was performed using a
uHPLC (Dionex 3000) coupled to a high-resolution mass spectrometer
(Thermo Scientific Q Exactive). Liquid chromatography separation was
achieved on a Dikma Bio-Bond C, column (150 mm by 2.1 mm; 3-um
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particle size) using a 7-min isocratic gradient (50:50 methanol [MeOH]—
water, 5 mM ammonium formate, and 0.1% formic acid). A heated elec-
trospray ionization interface, working in positive mode, was used to direct
column eluent to the mass spectrometer. Quantitation of TMA, Dy-TMA,
TMAO, and D,-TMAO was performed via targeted MS/MS using the
following paired masses of parent ions and fragments: TMA (146.118 and
118.0865), Do-TMA (155.1740 and 127.1434), TMAO (76.0762 and
58.0659), and Dy-TMAO (85.1318 and 68.1301). Quantitation of choline
and dy-choline was performed in full-MS scan mode by monitoring their
exact masses: 104.1075 and 113.1631, respectively.

COPRO-Seq analysis. Bacterial communities resulting from inocula-
tion of germ-free animals were analyzed using Illumina sequencing ac-
cording to the COPRO-Seq (community profiling by sequencing) method
(29). In short, DNA isolated from contents of the intestine via bead beat-
ing was used to prepare libraries for shotgun Illumina sequencing. Five
hundred nanograms of DNA from each sample was fragmented by soni-
cation and subjected to enzymatic blunting and adenine tailing. Custom-
ized Illumina adapters containing maximally distant 8-bp bar codes were
ligated to the poly(A)-tailed DNA. Gel-extracted DNA (size selection
~250 to 300 bp) was amplified by PCR using primers and cycling condi-
tions recommended by [llumina. Purified PCR products were submitted
to the UW-Madison Biotechnology Center for a single end 50-bp Illumina
MiSeq run. Results were processed using the software pipeline detailed by
McNulty et al. (29).

Data deposition. The data reported in this paper have been deposited
in the Gene Expression Omnibus (GEO) database (www.ncbi.nlm.nih-
.gov/geo) under accession number GSE63461.
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