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A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue
that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the
cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A
model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to
expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem
will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based
on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer
mono and the clonal hybrid Populus 84K (Populus alba X Populus glandulosa). The model was fitted to results with root mean
square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped

quantify the bubble pressure immediately after the fast process referred to above.

Vulnerability curves (VCs) have been viewed as a
good measure of the drought resistance of woody
stems (Cochard et al., 2013). Increasing drought in-
creases the xylem tension (T) and eventually induces
cavitation of the water in conduits when the T exceeds
a certain threshold (Sperry and Tyree, 1988; Sperry
et al., 1996). A cavitated vessel first fills with water
vapor and eventually fills with air at atmospheric
pressure because of Henry’s law, which describes gas
equilibrium at the water/air interface. The time re-
quired for the progress mainly depends on the pene-
tration rate of air into the recently cavitated vessel
lumen via diffusion through the liquid phase.

Previous studies were made about how fast bubbles
disappear in embolized stems because of the solubility
of air in water when water pressure exceeds atmo-
spheric pressure, and the process takes 10 to 100 h
depending on conditions (Tyree and Yang, 1992; Yang
and Tyree, 1992). The tempo of bubble disappearance
was measured by following the rise in stem hydraulic
conductivity (k) versus time. The theory of Yang and
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Tyree (1992) relied on the same principles used in this
article (Henry’s law, Fick’s law, and the ideal gas law),
but modeling and experiments were done at pressures
between 1 and 3 times atmospheric pressure rather
than subatmospheric pressure (negative pressure).
However, much less is known about the tempo of bubble
formation in recently cavitated vessels (Brodersen et al.,
2013). If the progress of embolus formation takes several
minutes, then no changes in conductivity could be ob-
served with available techniques, but if it takes hours,
then the tempo of bubbles can be studied by rapidly
inducing cavitation with increasing T and after cavitation
induction measuring the influence of T on stem k; as T is
reduced gradually to zero. If air bubbles are at a pressure
(bubble pressure [Py]) lower than a threshold near at-
mospheric pressure, bubbles ought to collapse when T
decreases according to the ideal gas law and Henry’s law
(see theory below). The consequence of bubble collapse
will be partial filling of vessels with water and the rest
with air bubbles. The partial filling of water in a recently
cavitated vessel ought to increase the lumen conductivity
from zero and connect the embolized vessel to adjacent
conductive vessels and, hence, ought to increase the
conductivity of the stem by an additional flow pathway
(Wheeler et al., 2005; Hacke et al., 2006). The vascular
system of stems is a complicated network with vessels of
different lengths, diameters, and orientation (Evert,
2006), and the complex vessel network makes the ad-
ditional pathway possible. Therefore, bubble collapse
could be detected through the impact of T on the k, of
the stems in a way that is very similar to the methods
used by Yang and Tyree (1992) but requires a more
sophisticated centrifuge technique to induce embolism.

Many studies have assumed that the bubble pressure
in newly cavitated vessels ought to be near atmospheric
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pressure, and no corrections for bubble pressure have
been taken in measuring percentage loss of conductivity
(PLC) when T is lower than a critical threshold (Li et al.,
2008; Wang et al., 2014a). As a result of bubble collapse,
the measured k, under a mild T should be higher than
that under high T (greater than 0.5 MPa). And the lower
the initial bubble pressure, the more bubbles collapse
with decreasing T.

The aim of this study is to construct a model that es-
timates average bubble pressure in partly embolized
stems from the functional dependence of k, on T, and
with this model, we can further our understanding of the
tempo of bubble formation in stems. Here, we will argue
that the tempo of bubble formation is in two phases: an
initial rapid phase (seconds to minutes to complete)
followed by a much slower phase (many hours to
complete). Since there is no method for measuring the
rapid phase, the rapid phase will be described theoreti-
cally below. Next, a theory will be developed that allows
the estimation of the pressure of air in recently formed
bubbles in vessels during the slow phase. An experi-
mental validation of the model will follow that will yield
values of bubble pressure within the first 1 to 2 h fol-
lowing the fast phase of embolism formation in vessels.

THEORIES AND MODELS

The Theory of Fast Embolus Equilibrium following
Cavitation Events

Water-filled vessel lumina usually occupy about
10% (8.6% in Acer mono and 15.1% in Populus 84K
[Populus alba X Populus glandulosa]) of the volume of
wood. The remainder of the wood can be divided
between air, water, and solids distributed between
living and dead cells in woody xylem tissue; how
much of the volume is air depends on prior history.
Immediately following the rapid cavitation of a frac-
tion («) of the water volume (vessels), the vessel lu-
mina will be filled primarily with water vapor. Some
simple calculations demonstrate that, within a few
seconds or minutes, a cavitated vessel will reach a
quasi-stable pressure below atmospheric pressure by
drawing from air dissolved in the immediate vicinity
of the cavitated vessel. Three mechanisms are consid-
ered for air entry into a newly cavitated vessel: (1) the
air derived from the dissolved air in the water of the
cavitated vessel before the cavitation event happened,
(2) mass flow through the pit pore that seeds cavita-
tion, and (3) diffusion of air from surrounding tissue.

Based on the equilibrium partial pressure of water
vapor above liquid water plus the solubility of air in
water (Henry’s law), the first mechanism contributes
about 3.2 kPa of water vapor (at 298 K), 1.2 kPa of
nitrogen, and 0.6 kPa of oxygen if the water in the
embolized vessel is saturated with air and if all of it
contributes to the embolus following the cavitation
event. The nitrogen and oxygen partial pressures have
to be viewed as upper bound estimates, because some
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of the dissolved air may be drawn up into the transpi-
ration stream before it can escape into the cavitated vessel.
For the second mechanism, we can suppose that the
mechanism of cavitation is air seeding from an adjacent
vessel already filled with air. Air seeding is supposed to
occur through the largest pit membrane pore at the T that
is big enough to pull the air/water interface through a
hypothetical pore of the pit membrane. If this pore re-
mains filled with air following the cavitation event, then
the pore could deliver air by pneumatic flow of air from
the vessel that seeds the cavitation to the newly cavitated
vessel. Calculation based on this model of pneumatic
flow reveals that the process would take days to com-
pletely fill the cavitated vessel and, hence, can be ignored
(Supplemental Appendix S1), and most researchers as-
sume that the pore-seeding embolism will fill with
water within seconds after the cavitation event.
The third mechanism requires us to invoke Henry’s
law to calculate how much air might be delivered from
endogenous sources (from within the stem excluding the
cavitated vessels). Here, we will assume that no air co-
mes from exogenous sources (from outside the stem).
First, we consider the final equilibrium from endoge-
nous sources, then we will approximate the time to
reach this early equilibrium. It is worth noting that the
air in fibers and extracellular spaces may also be a major
source of air in this progress; however, we followed the
standard practice of flushing stems with degassed water
to eliminate air in vessels and surrounding fibers.
Solving Henry’s law for a void forming a volume frac-
tion « of space surrounded by air-saturated water yields
the following relationship (Supplemental Appendix S1):

(1—a)KcPg
Pg=— 105G 1
CT 2T (1-a)kKe M)

where P is the partial pressure of gas species G at
equilibrium, Pg is the partial pressure of nitrogen or
oxygen in the atmosphere, K is the Henry’s law con-
stant of gas G, RT is the gas constant times Kelvin
temperature, and « is the fraction of the water volume
that has cavitated. The final bubble pressure in the
embolized vessels should be P} = Po, + Pn, + Pi,0,
where Po, and Py, can be computed from Equation
1 and Py,0 is the saturated water vapor pressure (3.2
kPa at 298 K). Figure 1 shows the relationship between
a and the theoretical initial bubble pressure in stem.
The curves in Figure 1 are upper bounded estimates of
the early equilibrium pressure, because it is assumed
that the surrounding water was saturated with air, as
determined by PZ . But in the experiments presented
below, stems were flushed with partly degassed solu-
tion, so the amount of gas in the surrounding tissue
would have been below the saturation level (Pg).

The initial equilibration time was calculated using a
simplified model for the diffusion of gas from a cy-
lindrical shell surrounding recently cavitated vessels
(Supplemental Fig. S1). Assume that a of the water
volume instantly cavitated and that the cavitated
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Figure 1. Relationship between the fraction of embolized water vol-
ume and partial pressure in the embolized vessels. The dotted line
represents the partial pressure of nitrogen, the dashed line represents
that of oxygen, and the solid line represents the sum of the partial
pressure of oxygen, nitrogen, and saturated water vapor pressure (3.2
kPa at 298 K). This figure ignores the 1% contribution of argon to the
gas mix in air.

vessels are evenly distributed throughout the stem. In
a 1-cm segment of wood, each cavitated vessel of ra-
dius r would draw air from a cylindrical shell of water
of radius R, such that the volume of the water shell =
1 em w(R* — r»)B ecm?® of water, where B is the fraction
of the wood volume that is water and 2R is the average
distance between cavitated vessels. The maximum
distance that air in solution would have to diffuse to
the cell surface is x = R — r. The mean time ¢ that it
takes for half of the air molecules to diffuse through
water at dlstance x is proportional to the distance
squared: x* = = 2D¢t, where Dg is the diffusion coeffi-
cient of gas species G in water (D of oxygen and
nitrogen in water are 2.10E-5 and 1.88E-5, respec-
tively). Using a typical value of vessel radius = 15 um,

= 0.05 (5% of water embolized) and D can be
assigned an estimated maximum distance of diffusion
to be about x = 55 um and the time for more than half
the air to diffuse into the newly cavitated vessel to be
22 s, 50 99% equilibrium would occur in less than 14 s
(about six half-times). A more rigorous solution of the
problem produced a result that was quite close to this
estimate (Supplemental Fig. S2; Supplemental Appendix
S1). If a smaller percentage of vessels cavitate, then the
diffusion distance, x, for endogenous gas would be in-
creased, making the f increase proportional to the square
of x. For example, if 15% of the vessel cavitated instead of
50%, then x would increase by a factor of 3 and t would
increase by a factor of 9.
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We argue here that there should be a fast and a slow
equilibrium phase. The fast phase is caused by local-
ized equilibrium over a short x distance. By the time
the fast equilibrium is completed, all subsequent
Henry’s law equilibrium has to be satisfied by diffu-
sion over a much longer distance. For a 1-cm-diameter
stem, this distance is roughly 5 mm (versus about 0.05
mm for the fast equilibrium) for air to diffuse from
exogenous sources outside the stem. Since the time for
equilibrium is proportional to the square of x, it fol—
lows that the slow equilibrium time will be (5/0. 05)* =
10* times longer. So 1f the fast phase takes 10 s, the
slow phase will be 10° s, or about 1 d.

In conclusion, we expect the initial equilibration of
bubble pressure to be quite fast (10-100 s), depending
on the percentage of vessels cavitated. In contrast, the
time for exogenous sources of air (outside the stem) to
diffuse into the stem should be much longer. The back
of the envelope calculation in the previous paragraph
suggests that this time is quite long. Some experi-
mental validation about the time it might take can be
gained from the time it takes air bubbles to dissolve in
stems (Tyree and Yang, 1992). From tables 2 and 3 in
Tyree and Yang (1992), it can be seen that the time for
all bubbles to dissolve when the applied pressure is 14
kPa is about 150 h, and it is about 15 h when the ap-
plied pressure is 150 kPa for stems about the size used
in the cavitron. If we equate full recovery to about
three half-times, as measured by Tyree and Yang
(1992), then the time for recovery will be up to 16 h
near atmospheric pressure. We anticipated similar
half-times for the reverse process of bubble formation.
In the second article in this series, we measured the
tempo experimentally, and the time needed was more
than 1 d. The experimental conclusions of the above
experiments were in agreement with theoretical models
based on Henry’s and Fick’s laws.

Single-Vessel Model without T Gradients

The single-vessel model could be an ideal gas law
model provided that the number of moles of gas in the
bubble is constant. In this special case, the bubble
volume (V) or bubble length (L,) can be computed
from absolute bubble pressure (P,) and absolute water
pressure (P,) in or adjacent to the vessel. Assuming
cylindrical geometry for vessels, we can say that:

Ve Ly Py

V. L P 22)
When the bubble completely fills the entire vessel, it
has a pressure = P and it occupies the entire length of
the vessel (L,). As the bubble collapses to L, < L,, the
bubble pressure increases (P, > Py) according to the
ideal gas relation in Equation 2a. However, we have
already argued above that gases quickly equilibrate
between a vacuum void and surrounding tissue and
that the equilibration time is generally less than 10 s
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(for more exact solutions, see Supplemental Appendix
S1). But the time required to do measurements of
changes in k;, resulting from changes in L, is much
greater than 100 s. Bubble pressure will equilibrate
with water adjacent to the bubble, and any increase in
bubble pressure will result in the rapid movement of air
from the bubble to the surrounding solution, which
would invalidate the application of the ideal gas law.
So we have to appeal again the Henry’s law to explain
changes in bubble size.

Taking into account Henry’s law solubility together
with the ideal gas law yields the following solution,
where the numbers of moles of water and air are
conserved in the vicinity of the embolus:

KART> (l;—E + 1) (2b)

with the restriction that L, = L, if the right terms yield
a larger value of L. Equation 2a is similar to Equation
2b except for the last term generated by Henry’s law
considerations, where a = the initial fraction of embol-
ized volume with initial bubble pressure, P, and K, is
the equivalent Henry’s law constant for air = a value
based on 20% oxygen and 80% nitrogen. Equation 2b is
maybe wrong by 1% or 2%, because it does not account
for the amount of air/water entering the vessel as the
bubble collapses. The bubble collapse could be a little
more if water enters with air dissolved below the equilib-
rium concentration for P, or could collapse less if the wa-
ter that enters is more saturated with air. But in most
solutions, the error will be just a few percentage points.
At final equilibrium, P, should be higher than P,
because of the surface tension (y) and contact angle ()
between the water/air interface and the vessel wall of
the lumen with diameter D,. In this article, we
assigned 6 = 45° as typical, which ranged between 42°
and 55° in various species (Zwieniecki and Holbrook,
2000). Hence, the bubble pressure is always higher
than the water pressure by capillary pressure (P):

Vo L, Py (1—a
Ve L, P,

4ycosO
Pe =" (32)
P, = Py, + Pc (3b)

T is typically reported relative to barometric pressure
(Pparo), Whereas P, is the absolute pressure; hence, we
have P, = —T + barometric pressure, and hence:

Pb:_T+Pbaro+PC (3C)

The bubble pressure will change depending of changes
in P, (or T) and the number of moles of air in the
bubble. In this article, the bubble volume change is
computed by assuming that Henry’s law equilibration
happens continuously between P, and the surround-
ing water.
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The total resistance of a vessel (R,) consists of lumen
resistance (R;) and pit resistance (Rp). The lumen re-
sistance is proportional to the length of water in the
lumen, while the pit resistance is proportional to the
reciprocal length of water (Hacke et al., 2006). So, re-
sistance of a vessel with L, and water length (L,,) will be:

L
RL = L_W'RL,O (4&)
L
Rp = L*V'RP.,O (4b)
w
Ry = Ry + Rp (4C)

where R; ; and Rp, represent the lumen resistance and
pit resistance of a nonembolized vessel, respectively.
We use the generally accepted and empirical approxi-
mation that lumen resistance is equal to pit resistance
in any vessel regardless of L, (Hacke et al., 2006);
hence, when we assume that RL 0=Rpyand from Equa-
tions 4a, 4b, and 4c, we get:

L2+ L3
Re=—p 1. Rvo ()

where R, = R; o + Rp. The value of water length =L, — [,
can be substituted into Equation 5. If we want an expres-
sion for single-vessel conductivity (k,,), then by defini-
tion of conductivity and resistance k, ; = L,/R,, we have:

_ 2LyLy Ly 2(Ly—Ly)-Le Ly 6
" T I2412 R (L, —Lp) + L2 Ruo

Ultimately, the value of k ; depends on P, or T. The
conductivity of a stem segment can be equated to the
sum of many kj ; values in series and parallel. When k;,
is measured in a conductivity apparatus (gravimetric
method; Li et al., 2008), P,, is above barometric pres-
sure and it changes linearly with distance in the stem,
so that embolized vessels at different locations in the
stem would have only slightly different values of k, ..
In contrast, if k, is measured in a cavitron, then T or P, is
a quadratic function of radial position in the stem
relative to the axis of rotation in the centrifuge
(Cochard, 2002; Cai et al., 2010; Hacke et al., 2015),
so the location of the vessel affects the value of P,
and, hence, the value of k;,  changes more dramatically
with position, as shown in Figure 2. In this article, k;, of
whole stems was measured in a centrifuge; hence, in-
dividual vessel kj, ; values were modulated by changes
in T near the vessel. Most readers can skip the detailed
derivation of how k;, of a whole stem depends on the
collective behavior of individual k;, ; values in the cavi-
tron (Supplemental Fig. S3; Supplemental Appendix
S2), because the most important thing is to realize
that k;, measured in a Cochard cavitron will change
with the maximum tension at the center of rotation
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Figure 2. Pressure distribution in a cavitron and the pattern of bubble
collapse due to pressure distribution. A, Absolute pressure distribution
of three different T_ values: 0.05, 0.1, and 0.2 MPa. Average T values
are always two-thirds of the T_ T. B, Bubble collapse in vessels located
in different regions in stems.

(T.) at the axis of rotation in a cavitron and that other
values of T in the stem will be a quadratic function of
T.. Another important thing to remember is that T, is
consistently more than the average tension (T) experi-
enced by vessels. The ratio of Tto T is always equal to 2:3.

The behavior of Equation 6 is plotted in Figure 3.
When T > Ppuo + Pc — P, the vessel lumen is fully
embolized and the k,; = 0, but as soon as T <
Pparo + Pc — P}, the theoretical k;, begins to rise because
of bubble collapse. Each curve in Figure 3 represents
how k;, will change with T from low to high initial
bubble pressure, Py, in Henry’s law equilibrium with
surrounding tissue; at the three lowest bubble pres-
sures, the bubble completely dissolves as T approaches 0.
In contrast, at high P values, the bubble is only partly
dissolved in the surrounding tissue. The reader should
note that the recovery of conductivity happens only if the
restored water in embolized vessels is adjacent to func-
tional vessels. In a highly embolized stem, say PLC
greater than 90%, this assumption may not be true, but
for simplicity, we ignore this issue in the rest of this
article. Addressing this real case would require specific
knowledge of the three-dimensional interconnectivity of
vessels, and such knowledge is not available.

RESULTS
Sensitivity Analysis of the Hydraulic Recovery Model

Standard sensitivity analysis of the model output
(k) to the model parameters is needed to reveal which
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model parameters are most important in a hydraulic
recovery curve (i.e. a plot of how much k; increases in
response to a decline in T). As discussed above and in
Supplemental Appendix S2, we know that four pa-
rameters affect the final output of the model: (1) av-
erage bubble pressure, (2) fraction of embolized vessels
in the stem, (3) L,, and (4) vessel diameter, which de-
termines the capillary pressure. The relationship between
the model output and the parameters can be studied
by keeping three of them constant while changing the
fourth parameter.

Impact of the Bubble Pressure

According to the fast embolus equilibrium model,
when the stem is under high T, say 1 MPa in the center,
cavitated vessels will be filled with a mixture of water
vapor and a subatmospheric partial pressure of nitro-
gen and oxygen. The model predicts that the k;, mea-
sured in a cavitron should increase as the centrifugal
T decreases, because the bubbles will collapse in re-
sponse to the rise of the P,. The impact of initial
bubble pressure on how the stem k;, changes with T is
shown in Figure 4. Figure 4 also provides the theo-
retical basis for measuring bubble pressure through
curve fitting, as explained in “Results.”

According to the analysis in Figure 1, it seems likely
that the initial P} should be around 30 kPa when about
5% of the water volume is embolized (about 50% PLC,
assuming that vessels make up 10% of the water vol-
ume). Figure 3 clearly shows that k; should be nearly

L0 — 10.0 kPa |]
— 20.0 kPa
— 30.0 kPa
0.8 40.0 kPa |]
— 50.0 kPa
. 60.0 kPa
o 0:6 70.0 kPa |
@ — 80.0 kPa
. — 90.0 kPa
204 — 101.3 kPa|
w
0.2 1
0.0 1
1073 107 10? 10°

Tension (MPa)

Figure 3. Solution of Equation 6. This single-vessel model shows how
k., changes with T. The y axis is the ratio of an embolized vessel to the
k, of a water-filled vessel. In this solution, P- = 7 kPa and P* was
assigned values of 10 to 101.3 kPa, as shown in the key.
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Figure 4. Prediction of the k; curve versus T. Each curve is based on a
different initial P} value (10, 30, 50, 70, and 90 kPa) in the embolized
vessels in the theoretical stem. Maximum k, was set to 1E-4 kg m MPa™ " for
each curve; average L, was 5 cm; capillary pressure was 12 kPa; and the
fraction of embolized vessels (¢) was 50% in the embolized segment
(regions B-D in Supplemental Fig. S4, namely the portion of the segment
that is not immersed in water).

independent of T, until T_ fell below 0.2 MPa. Then, k;
sharply increased with decreased T, from 0.2 to 0.01
MPa. The T axis is plotted on a log scale to display the
data more clearly; otherwise, the plots would just
show rapidly rising curves near the origin of the plot
without much separation in the curves (plot not
shown). The curves of k, versus T rose faster in Figure
4 than in Figure 3 because, in a cavitron, the vessels far
from the rotation axis were at lower T than near the
axis of rotation, so the bubbles far from the axis start
collapsing before the bubbles in vessels near the axis of
rotation.

Impact of the Fraction of Embolized Vessels

Based on the argument in Figure 1 (Eq. 1), it seems
unlikely that & could change without P} changing as well,
since & affects the fraction of embolized water, a.
Figure 5 shows the prediction assuming that it is
possible to change ¢ independently of P{. It is worth
noting that there should be a fairly close correlation
between ¢ and the PLC observed at any given T..

Impact of L,

Figure 6 demonstrated that the modeled value of k;,
was relatively independent of L. This is probably be-
cause we assumed that lumen resistance and pit-
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membrane resistance were equal independent of the
L,, which agrees with the general empirical results
(Hacke et al., 2006).

Impact of Vessel Diameter

Vessel diameter affects the capillary pressure in cav-
itated vessels; hence, it had some impact on the theo-
retical hydraulic recovery curve. According to Equation
3a, P. is inversely proportional to vessel diameter.
Figure 7 demonstrated that the maximum error caused
by P is about 0.6% kPa™". Bubbles collapsed more with
small-diameter vessels than with large-diameter vessels
because of the higher values of P.

Experimental Results: Curve Fitting to Yield Py

The hydraulic recovery model (Supplemental
Appendix S2) was used to fit the results of six A. mono
and six Populus 84K stems, as shown in Figures 8 and
9. The fitting involved finding the bubble pressure
before bubble collapse, Py, that minimized the root
mean square error in the fitted line. The average root
mean square error was generally less than 3%, as
shown in Table I. The mean * sp bubble pressure in
Table I was 54 * 14 kPa. All the bubble pressures es-
timated were lower than the atmospheric pressure.

The results of 12 fittings showed that more than 70%
of the k, change happened when the T, was lower than
0.1 MPa. In terms of P, a T, of 0.1 MPa corresponds to

i et : ;

0.9

0.5

0.4 L ;
107 107 10° 10*
Tension (MPa)

Figure 5. Prediction of the k, curve with different values of . The
relationship between PLC and the fraction of vessels cavitated is given
by PLC/100 = &. Each curve is based on a different € value (40%, 50%,
and 60%). Maximum k; is 1E-4 kg m MPa~' s™'; average L, is 5 cm;
capillary pressure is 12 kPa; and P is 50 kPa.
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Figure 6. Prediction of the k, curve with different average L, values.
Each curve is based on a different average L, of the stem (1, 3, 5, 7, and
9 cm, as shown in the key). Maximum k; is 1E-4 kg m MPa™' s™';
average P) is 50 kPa; capillary pressure is 12 kPa; and & in the
embolized segment is 50%.

P, of 0 kPa. The k, value was stable when T was
higher than 0.3 MPa. On average, the k, recovered
31% £ 8% and 68% = 14% (means = sE) of theoretical
maximum recovery in A. mono and Populus 84K, re-
spectively, when we decreased the T as shown in Fig-
ures 8 and 9. The minimum value of T, used for
measuring k, was 0.045 MPa. The T profile is quadratic
(Fig. 2), so T, = 0.045 corresponded to a mean T of 0.030
MPa, because the mean was always two-thirds of T..

L, and vessel diameter distributions measured in
A. mono and Populus 84K are shown in Figures 10 and
11, respectively. A. mono had significantly shorter
vessels at 2.851 + 0.030 cm (1 = 6) than Populus 84K at
5.797 £ 0.144 cm (n = 6). The mean vessel diameters
were also significantly less in A. mono than in Populus
84K, 20.07 = 0.09 um (n = 3,575) versus 28.70 * 0.11
pm (n = 4,307), respectively.

DISCUSSION
Impact of the Model Parameters and Estimation of P

Sensitivity analysis of our hydraulic recovery model
revealed little impact of L, on the determination of k.
The estimated impact of using the mean L, above
rather than a L, distribution biased our results by less
than 0.1% (data not shown).

Vessel diameter distributions were as shown in
Figure 11, and from Figure 7, we know that the max-
imum error caused by capillary pressure is 0.6% kPa .
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Therefore, using the arithmetic mean of diameter
generated a 0.09% error on the result compared with
using a vessel diameter distribution (data not shown).

As shown in Figures 4 and 5, the primary factors
controlling hydraulic recovery curves were P and «.
The value of £ was equated to the initial PLC at high T,
before the T was reduced (with the segment under
water excluded). As the hydraulic recovery model
predicted, the lower the Py, the more bubbles col-
lapsed and the more k, recovered in a stem at constant
€ values. As a result, the relative change of k, was
mainly determined by Py. However, it must be re-
membered that P} and ¢ are not totally independent of
each other (Fig. 1; Eq. 1) after the fast phase of embo-
lism formation.

Only the conductivity values measured in the cavi-
tron were used to predict P} in stems. Data used to fit
k,, versus T curves cover a sufficient range of values to
make accurate predictions of P¥ (T, from 0.032 to
1 MPa). Within the T range, k, recovered 31% and 68%
of the theoretical maximum recovery in A. mono and
Populus 84K, respectively. The P# calculated for Pop-
ulus 84K was more accurate than for A. mono; but the
likely error was not enough to alter the basic conclu-
sion that, when cavitation was produced in a cavitron
over a period of 1 h, relatively stable P resulted that
was significantly less than the atmospheric pressure

=
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Figure 7. Prediction of the k, curve with different P levels. Different
P values (4, 8, 12, and 16 kPa) were used for each curve. Maximum k;,
is TE-4 kg m MPa™" s™'; average P is 50 kPa; average L, is 5 cm; and &
in the embolized segment is 50%. The vessel diameter that corre-
sponds to each P. depends on cosf (8 = 7/4). So the vessel diameters
are 50.89, 25.44, 16.96, and 12.72 um for P. values of 4, 8, 12, and
16 kPa, respectively.
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Figure 8. Examples of k;, curve fittings of A. mono. The circles are the
ki, values measured in the cavitron, and the lines are the best fit curves.
The details of the curves are as shown in Table I.

(100 kPa for the elevation of the university laboratory)
based on Student’s t test (P < 10™* for both species).

The purpose of this article was to present the hy-
draulic recovery model and show by curve fitting of
data (k;, versus T) that values of initial bubble pressure
can be derived from the fitted curves. The values of
bubble pressure were higher than anticipated by us (54
kPa [Table I] versus about 35 kPa [Fig. 1]), but the reason
for this will be explained in the next article in this series,
where we measure the tempo of increase in Py.

The Impact of Bubble Pressure on k; and
Vulnerability Curves

The model predicted that k;, will increase whenever
T. is decreased below about 0.3 MPa. The model re-
sults also predict that the lower the P, the more k,
depends on T. The value of k, was most sensitive to
decreases in T, between 0.2 to 0.01 MPa. The results of
A. mono and Populus 84K revealed that the model was
validated by our data. Fitting the model to experi-
mental data allowed the computation of P} in embol-
ized vessels. The hydraulic recovery model is an
equilibrium model that indicates the final equilibrium,
but it can be imagined that water has to flow into the
stem to refill the vessels as the bubbles collapse; hence,
we must address the issue of equilibration time to get
an accurate value of k, after a change in T.

Bubble collapse in stems involves the absorption
of water into stems, and the water absorption will
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influence the k;, value measured in a centrifuge, re-
sulting in an overestimation of k;. The overestimation
is a result of the assumption of steady state (i.e. that all
water that enters the high-pressure end of the stem
segment flows through to the low-pressure end). But if
some of the water stays behind to fill part of the vessels
(or other rehydrating regions), then the flow is over-
estimated at any given pressure drop, resulting in a k;,
that is too high, as we measured the influx flow in a
cavitron. Therefore, accurate measurement of k;, can be
done only after this absorption process is completed.
Preliminary measurements suggested to us that a 30-
min wait was long enough to achieve stable k; values
at the smallest T, = 0.03 MPa but became much faster
as T, increased. The water absorption also happens
when the Sperry rotor is used to induce cavitation, and
the standard protocol for k;, measurements in a con-
ductivity apparatus is to correct the measurements of
k;, for this background absorption rate (Hacke et al,,
2000; Torres-Ruiz et al., 2012). In the following article
of this series, a model of water absorption in the stem
is presented, giving a better view of the kinetics of
water absorption in stems due to bubble collapse.
Cochard (2002) and Li et al. (2008) both observed no
difference in k,, measured in a stem at the target T,
versus the k, measured later at a smaller T, while
stems were spinning in a centrifuge, using the original
Cochard rotor or a functionally similar rotor fabricated
by modifying a Sperry rotor (Li et al., 2008). Similar
results were found during the testing of the Cochard

k, (Kg m MPa~! s71)

10 10" 10° 10*
Tension (MPa)

Figure 9. Examples of k, curve fittings of Populus 84K. The circles are
the k;, values measured in the cavitron, and the lines are the best fit
curves. The details of the curves are as shown in Table I.
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Table 1. Results of the k,, curve fitting of six A. mono stems and six Populus 84K stems

k

max

is the maximum k;, of the stem; cavitron PLC is the experimental PLC measured in a centrifuge;

Sperry PLC is the PLC under atmospheric pressure predicted by the model; central PLC is the PLC at the
central region of the stem predicted by the model; Ey,,s is the route mean square error of the curve fitting;

Tiorm 15 the time used to induce embolism in the stem; and T, o,e. is the total time used to measure the
curve.
Parameter Stem 1 Stem 2 Stem 3 Stem 4 Stem 5 Stem 6
A. mono
Kooy (E-5 kg m MPa™" s71) 1.57 5.02 4.28 4.69 3.28 5.96
Cavitron PLC (%) 39.55 57.00 65.88 66.08 72.60 82.70
Sperry PLC (%) 0.76 4.47 13.57 7.80 6.45 9.04
Central PLC (%) 42.66 61.49 71.07 71.28 78.32 89.21
Py (kPa) 44.59 53.81 67.11 57.82 52.71 54.45
Fews (%) 1.77 2.78 1.60 2.20 4.58 4.03
Tiom (0) 0.41 0.41 0.22 0.36 0.82 0.35
Trecovery () 0.75 0.53 0.82 0.48 0.65 0.82
Populus 84K

Koy (E-5 kg m MPa™' s71) 5.25 8.07 7.07 9.13 8.95 5.68
Cavitron PLC (%) 51.59 43.62 51.31 58.64 39.49 39.32
Sperry PLC (%) 16.12 0.92 21.95 9.16 0.65 2.54
Central PLC (%) 55.65 47.05 55.35 63.26 42.60 42.41
P (kPa) 57.76 72.45 34.45 37.25 77.44 38.48
Egms (%) 1.72 1.82 2.06 2.18 2.48 2.59
T (D) 0.56 0.20 0.47 0.53 0.26 0.49
Trecovery () 0.77 0.33 0.48 0.82 0.27 0.29

cavitron in 2006 (M.T. Tyree, unpublished data). These
observations contrast with the results of this article
and deserve more analysis. In Li et al. (2008), no data
were given, so the range of T. over which k, was
measured was not given; in the earlier study (figure 4
in Cochard, 2002), it is clear that relative changes in kj,
were measured from T, = 1.8 to 0.1 MPa; this range
should have been sufficient to detect the beginning of a
trend (compare Figures 8 and 9), but the st values of
Cochard’s early measurements were quite high (0.05-
0.15), so no trend was detectable. The experiment has
to be continued down to T, = 0.03 MPa to discern the
trend, and the trend has to be discerned in individual
stem segments because the variance of the mean k, is
so large that it obscures the relationship. Proving the
trends reported in this article also requires that k, be
measured with high precision on multiple measure-
ments of k, at a given T, (st < 0.02 and n > 10 is
desirable). During the course of our investigation,
techniques were improved; hence, some of the later
experiments described here had higher precision
values, with an sE closer to 0.004 in k, (Wang et al.,
2014b).

In our experiments, the minimum T used for the
measurement of k, ranged from 0.032 to 0.057 MPa,
but during gravity-flow measurements, the applied
water pressure is 2 to 3 kPa above barometric pressure
(i.e. a T of —0.002 to —0.003). Using our model, we
extended the theoretical calculations to include how
positive pressure (negative T) would affect k, mea-
sured by gravity flow. The results of these model cal-
culations are reported in Table I (Sperry PLC). We
compare the Sperry PLC with the average cavitron
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value (cavitron PLC) and the theoretical value near
the axis of rotation (central PLC). The deviation of
the theoretical Sperry PLC values compared with the
cavitron PLC values in Table I is quite large and

0.40 T - T r
Acer mono

Populus 84K

0.35

0.30

0.25

0.20}

Probablity

0.15
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10 15 T
Length (cm)
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20 25

Figure 10. L, distributions in A. mono and Populus 84K. L, frequency
was computed by using P, = k’xe™™, where k is the extinction coef-
ficient of the stem and x is the L,. The values of k for A. mono and
Populus 84K were 1.0246 and 0.3113, respectively.
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Figure 11. Vessel diameter distribution in A. mono and Populus 84K.
The average diameters of A. mono and Populus 84K were 20.07 and
28.7 wm (arithmetic means), respectively.

probably the worst case possible, because the Sperry
method arrives at the PLC values shown in Table I
through various steps. In each step, the sample is spun
to a higher T and then removed for measurement in a
conductivity apparatus. After each k, measurement in
a conductivity apparatus, more air-saturated water is
perfused through the stem, restoring the water-filled
spaces near the vessels to a concentration near a sat-
urated value (Henry’s law). So when the stem is spun
again, the quick equilibrium happens again and the
bubble pressure of each embolized vessel would in-
crease. In contrast, the model predicts what would
happen if a high PLC were induced in a stem segment
in one step and then moved immediately to a con-
ductivity apparatus. Our model predicts that the
Cochard VC will be different from the Sperry VC, but
the stepwise measurements in the gravity method
will make the bubble pressure rise to atmospheric
pressure faster. Besides, the bubble collapse af-
fected VC by decreased PLC (y axis), but T (x axis)
was less affected because of the steep slope at Ps,
(for xylem pressure or tension at 50% loss of hy-
draulic conductivity). Therefore, no significant dif-
ference was observed between the two methods (Li
et al., 2008).

In theory, the Py, (positive value) of a cavitron VC
is lower than that of a Sperry VC (each point mea-
sured at equilibrium) because of the collapse of
bubbles starting at a pressure less than 101.3 kPa
(the standard atmospheric pressure at sea level).
Even if the pressure is 101.3 kPa, there would be
some collapse due to the impact of surface T on P
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and the 2% or 3% extra bubble compression result-
ing from gravity-flow measurements at 2 or 3 kPa
above atmospheric pressure. But gravity-flow and
cavitron-flow measurements are uncertain because
of the uncertainty of temperature and stem rehy-
dration. The measurement of k, changes 2.3% °C '
because of the influence of the temperature depen-
dence of viscosity. Also, stems dehydrated in a
centrifuge and then returned to a lower T or atmo-
spheric pressure tended to rehydrate for the first 30 to
60 min, causing an overestimation/underestimation of
flow and k;, unless care was taken to correct for rehy-
dration affects. Readers should consult Torres-Ruiz
et al. (2012) and Wang et al. (2014b) for methods of
dealing with these problems in the gravity-flow
method and cavitron method of measuring k,
respectively.

CONCLUSION

In conclusion, the model predicts that the bubble
pressure in recently cavitated vessels affects how
much k, changes with T in a cavitron. L, and vessel
diameter have little impact on the shape of hy-
draulic recovery curves (Figs. 5 and 6). The k; in-
creased due to the collapse of air bubbles in stems
when the central T decreased, and the bubble pres-
sure could be estimated by our model with an error
of less than 3%. It is also worth noting that bubble
collapse will not affect very much the value of Py,
measured by Sperry’s technique. This follows be-
cause bubble collapse influences most the y axis
value of a vulnerability curve (PLC), but near P, the
curve is quite steep, so a large change in PLC results
in a small change of the x axis value (T or negative
pressure).

These models provide new insight into the tempo of
bubble pressure and bubble formation in recently
cavitated stems (i.e. that there should be a rapid rise in
PZ within 1 min of cavitation followed by a much
slower rise after 1 d). The next article of this series (Y.
Wang, J. Liu, and M.T. Tyree, unpublished data) will
more fully address the time needed for bubble pres-
sure to rise in the slow phase of the equilibration with
air external to the stem.

Table Il. The rpm and T in the cavitron we used

The maximum rpm used for Populus 84K was 5,000, and that for
A. mono was 7,000.

rpm T, rpm T, pm T,
MPa MPa MPa
500 0.022 1,400 0.173 4,000 1.415
600 0.032 1,600 0.226 4,500 1.791
700 0.043 1,800 0.287 5,000 2.211
800 0.057 2,000 0.354 5,500 2.675
900 0.072 2,500 0.553 6,000 3.184

1,000 0.088 3,000 0.796 6,500 3.736
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MATERIALS AND METHODS

Branches (more than 1 m long) of a hybrid Populus 84K (Populus alba X
Populus glandulosa) and Acer mono were sampled from and near the Northwest
A&F University campus, and segments were excised while immersed in wa-
ter. Segments with basal diameter of 5.5 to 7.5 mm were trimmed to 27.4 cm in
length under water. The segments were flushed with 10 mm KCl for 30 min
under pressure of 200 kPa (300 kPa absolute pressure). The liquid we used to
flush the stem was filtered by a 0.02-um filter and degassed under 40 kPa
(absolute pressure) with a vacuum pump. Approximately 50% PLC was
rapidly induced in a Cochard cavitron by spinning to a T of 2.2 MPa for
Populus 84K and 4.2 MPa for A. mono. Then the central T was decreased to
yield an absolute pressure higher than a perfect vacuum for at least 30 min
(typically at 0.057 MPa in centrifuge T at the axis of rotation) to make sure
that equilibrium was attained (i.e. that the period of water absorption had
ceased). The k, of the segments was measured from the low to high T values
shown in Table II. Each T was held for 3 to 10 min until the stems were
equilibrated (stable k;, measured). An improved regression method was used
to calculate k, to obtain a 4 to 5 times higher precision (Wang et al., 2014b).
Preliminary experiments were done to determine how long T had to be held
constant to get stable k;, values. These results indicated that 30 min was
enough at 0.045 MPa and 3 to 10 min was enough for T values greater than
0.1 MPa.

Python(x,y) 2.7.5 was used to program the model, and the data acquired for
k, versus T, was used to fit the model to estimate the average pressure of air
bubbles in the stem by the least squares package in Python. The code for the
model can be found in Supplemental Appendix S3.

Vessel Parameters

L, was measured by the air-injection method described by Cohen et al.
(2003) and Wang et al. (2014a). Briefly, long shoots were cut with a sharp razor
blade and injected with compressed air at AP = 100 kPa (200 kPa absolute
pressure) from the distal end; air was collected from the basal end immersed
in water. Stem segments (20 cm long) were sequentially excised until bubbles
were observed emerging from the distal end, and the flow rate of air bubbles
(Q = AV/AT) was measured by water displacement. The stem was progres-
sively shortened, and Q was measured at each length as above. The air con-
ductance of cut-open vessels, C, was calculated from:

_ QLp

"~ AAPP
as described by Cohen et al. (2003) and fitted into C = C; X ¢, where C, is the
maximum conductance as x approaches 0, k is an extinction coefficient, and x
is the length of the stem. The k values were computed from the slope the curve
of In(C) versus x; and according to the theory of Cohen et al (2003), the most
common L,, L4 equals k' and mean L, is calculated by L, .. = 2L_ ... Six
stems were measured to calculate to average L, of A. mono and Populus 84K.
Vessel diameters were measured on 25-um-thick sections that were stained
and photographed using a microscope (Leica DM4000B). Image-analysis software
(Win CELL 2012; Regent Instruments Canada) was used to measure the diameter
of hundreds of vessels, and arithmetic means were used to calculate capillary
pressure by Equation 3a. Diameters were calculated from vessel area assum-
ing circular geometry. The sum of vessel areas divided by wood area con-
taining the vessels yielded values relative to the vessel fraction in both species.

Supplemental Data
The following supplemental materials are available.
Supplemental Figure S1. A model of cylindrical diffusion.
Supplemental Figure S2. The equilibrium time of cylindrical diffusion.
Supplemental Figure S3. Pressure equilibration in a vessel.
Supplemental Figure S4. The model of a stem in a cavitron.
Supplemental Appendix S1. Rapid equilibration of cylindrical diffusion.
Supplemental Appendix S2. A hydraulic recovery model.
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Supplemental Appendix S3. The python code of a hydraulic recovery
model.
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