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Carbon (C) and nitrogen (N) metabolism are critical to plant growth and development and are at the basis of crop yield and adaptation.We
performed high-throughput metabolite analyses on over 12,000 samples from the nested associationmapping population to identify genetic
variation in C and N metabolism in maize (Zea mays ssp. mays). All samples were grown in the same field and used to identify natural
variation controlling the levels of 12 key C and N metabolites, namely chlorophyll a, chlorophyll b, fructose, fumarate, glucose, glutamate,
malate, nitrate, starch, sucrose, total amino acids, and total protein, along with the first two principal components derived from them. Our
genome-wide association results frequently identified hits with single-gene resolution. In addition to expected genes such as invertases,
natural variation was identified in key C4 metabolism genes, including carbonic anhydrases and a malate transporter. Unlike several prior
maize studies, extensive pleiotropy was found for C and N metabolites. This integration of field-derived metabolite data with powerful
mapping and genomics resources allows for the dissection of key metabolic pathways, providing avenues for future genetic improvement.

Carbon (C) and nitrogen (N) metabolism are the
basis for life on Earth. The production, balance, and
tradeoffs of C and N metabolism are critical to all plant
growth, yield, and local adaptation (Coruzzi and Bush,
2001; Coruzzi et al., 2007). In plants, there is a critical
balance between the tissues that are producing energy
(sources) and those using it (sinks), as the identities
and locations of these vary through time and devel-
opmental stage (Smith et al., 2004). While a great deal
of research has focused on the key genes and proteins
involved in these processes (Wang et al., 1993; Kim
et al., 2000; Takahashi et al., 2009), relatively little is
known about the natural variation within a species
that fine-tunes these processes in individual plants.

In addition, a key aspect of core C metabolism in-
volves the nature of plant photosynthesis. While the
majority of plants use standard C3 photosynthetic
pathways, some, including maize (Zea mays) and many
other grasses, use C4 photosynthesis to concentrate CO2
in bundle sheath cells to avoid wasteful photorespira-
tion (Sage, 2004). Under some conditions (such as
drought or high temperatures), C4 photosynthesis is
much more efficient than C3 photosynthesis. Since these
conditions are expected to become more prevalent in the
near future due to climate change, various research
groups are working to convert C3 crop species to C4
metabolism in order to boost crop production and food
security (Sage and Zhu, 2011). Beyond this, better un-
derstanding of both C3 and C4 metabolic pathways will
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aid efforts to breed crops for superior yield, N-use
efficiency, and other traits important for global food
production.

In the last two decades, quantitative trait locus (QTL)
mapping, first with linkage analysis and later with as-
sociation mapping, has been used to dissect C and N
metabolism in several species, including Arabidopsis
(Arabidopsis thaliana; Mitchell-Olds and Pedersen, 1998;
Keurentjes et al., 2008; Lisec et al., 2008; Sulpice et al.,
2009), tomato (Solanum lycopersicum; Schauer et al.,
2006), and maize (Hirel et al., 2001; Limami et al., 2002;
Zhang et al., 2006, 2010a, 2010b). These studies identi-
fied key genetic regions underlying variation in core
C and N metabolism, many of which include candidate
genes known to be involved in these processes.

Previous studies of genetic variation for C and N
metabolism are limited by the fact that they identified
trait loci only through linkage mapping in artifi-
cial families or through association mapping across
populations of unrelated individuals. Linkage map-
ping benefits from high statistical power due to many
individuals sharing the same genotype at any given
location, but it suffers from low resolution due to the
limited number of generations (and hence recom-
bination events) since the initial founders. Association
mapping, in turn, enjoys high resolution due to the long
recombination histories of natural populations but suffers
from low power, since most genotypes occur in only a
few individuals. In addition, many of these studies fo-
cused on C and N in artificial settings (e.g. greenhouses or
growth chambers) instead of field conditions, running the
risk that important genetic loci could be missed if the
conditions do not include important (and potentially un-
known) natural environmental variables.

To address these issues and improve our under-
standing of C and N metabolism in maize, we used a
massive and diverse germplasm resource, the maize
nested association mapping (NAM) population (Buckler
et al., 2009; McMullen et al., 2009), to evaluate genetic
variation underlying the accumulation of 12 targeted
metabolites in maize leaf tissue under field conditions.
This population was formed by mating 25 diverse
maize lines to the reference line, B73, and creating a
200-member biparental family from each of these
crosses. The entire 5,000-member NAM population thus
combines the strengths of both linkage and association
mapping (McMullen et al., 2009), and it has been used to
identify QTLs for important traits such as flowering time
(Buckler et al., 2009), disease resistance (Kump et al.,
2011; Poland et al., 2011), and plant architecture (Tian
et al., 2011; Peiffer et al., 2013). Most importantly, this
combination of power and resolution frequently re-
solves associations down to the single-gene level, even
when using field-based data.

The metabolites we profiled are key indicators of
photosynthesis, respiration, glycolysis, and protein and
sugar metabolism in the plant (Sulpice et al., 2009). By
taking advantage of a robotized metabolic pheno-
typing platform (Gibon et al., 2004), we performed
more than 100,000 assays across 12,000 samples, with

two independent samples per experimental plot. Raw
data and the best linear unbiased predictors (BLUPs) of
these data were included as part of a study of general
functional variation in maize (Wallace et al., 2014), but,
to our knowledge, this is the first in-depth analysis
of these metabolic data. We find strong correlations
among several of the metabolites, and we also find
extensive pleiotropy among the different traits. Many of
the top QTLs are also near or within candidate genes
relating to C and Nmetabolism, thus identifying targets
for future breeding and selection. These results provide
a powerful resource for those working with core C and
N metabolism in plants and for improving maize per-
formance in particular.

RESULTS AND DISCUSSION

Correlations among C and N Metabolites

The entire NAM population was grown in summer
2007 in Aurora, New York. Samples were collected in
early August, when the largest number of lines were
flowering (for details, see “Materials and Methods”).
Ideally, each plant would be sampled at the exact same
developmental stage relative to flowering to minimize
development-related differences. Since this is not pos-
sible, especially with a population the size of NAM, we
instead used the large number of data points to statis-
tically control for development, along with other con-
founding factors such as daily weather, date and time of
sampling, and heterogeneity across the field. We iden-
tified the levels of 12 key metabolites in the sampled
tissue, namely chlorophyll a, chlorophyll b, Fru, fuma-
rate, Glc, Glu, malate, nitrate, starch, Suc, total amino
acids, and total protein. Whole-field repeatabilities for
these metabolites were between 15% and 71%, and
broad-sense heritabilities across the NAM founder lines
were between 14% and 68% (Supplemental Table S1),
indicating good prospects for accurate mapping of the
genes responsible for this metabolic variation.

The 12 metabolites show substantial correlations across
the NAM population and within each family. As ex-
pected, metabolites in either the N-related pathways or
the starch-sugar pathways correlate well (Fig. 1). Some
traits, such as chlorophyll b, did not substantially corre-
late with any other traits. We summarized across traits
using both clustering and principal component analysis
(Fig. 1; Supplemental Fig. S1), with the principal com-
ponent analysis performed after accounting for flowering
time (days to anthesis [DTA]; see “Materials and
Methods”). The first two principal components (Prin1
and Prin2) explained 25% and 20% of the variation
(Supplemental Fig. S1). Prin1 had its greatest contribu-
tions from N metabolites, while Prin2 was dominated by
C metabolites (Supplemental Fig. S1B). These compo-
nents can thus be considered as proxies for general N
metabolism and general C metabolism, respectively. Both
were included in later linkage and association analyses to
map control points for the overall metabolic state of the
plant, at least with regard to these two core pathways.
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Linkage Analysis Shows That Most QTLs Have
Modest Effects

We used joint linkage analysis (Buckler et al., 2009)
to identify the major QTLs segregating in the NAM
population for all 12 metabolites. After accounting for
flowering time, we identified five to 18 QTLs for each
metabolite, Prin1, and Prin2; these QTLs explain 24%
to 55% of the phenotypic variation for each trait (Fig. 2;
Supplemental Tables S1 and S2), and they are gener-
ally stable even when plants are broken up by sam-
pling date or location within the field (Supplemental
Fig. S2). The effect of each QTL was determined rela-
tive to the reference line (B73), and despite the fact that
each QTL is, on average, shared by six of the NAM
families (Supplemental Fig. S3), the effect size and di-
rection (positive or negative) vary based on family
(Supplemental Fig. S4). Most individual QTLs explain
2% or less of the variance (Supplemental Fig. S5), and
most alleles were estimated to change metabolite levels

by less than 2% either way (Supplemental Fig. S6). Sim-
ilar results have been observed for whole-plant traits
(Laurie et al., 2004; Buckler et al., 2009; Tian et al., 2011;
Peiffer et al., 2014) and disease resistance traits (Kump
et al., 2011; Poland et al., 2011). We also tested for
digenic (two-locus) epistatic effects among these QTLs
but did not detect any significant associations.

For most of the developmental and disease traits
studied in NAM (Buckler et al., 2009; Kump et al., 2011;
Poland et al., 2011; Tian et al., 2011; Peiffer et al., 2013,
2014), there is a strong correlation between traits across
the different NAM families, but tests for pleiotropy
suggest that few or no QTLs for these traits are actually
shared (Poland et al., 2011; Tian et al., 2011). This implies
that the phenotypic correlations are due to stacking
different genes rather than variation in the same set of
genes. In contrast, there is substantial overlap in QTLs
between metabolic traits (Fig. 2; Supplemental Fig. S7),
and the metabolites that show correlated changes across
the entire NAM population (Fig. 1) also share more
QTLs (Supplemental Fig. S8; r2 = 0.83, P = 2.1 3 10226).
This suggests that, in contrast to most other traits
studied to date in maize, there are relatively few control
points for the natural variation in N and C metabolism.

Genome-Wide Association Identifies High-Resolution Hits

To identify the genes controlling this variation, we
tested the association of 1.6 million single-nucleotide
polymorphisms (SNPs) from maize HapMap1 (Gore
et al., 2009). Although a larger SNP data set was later
available through maize HapMap2 (Chia et al., 2012), we
kept the original analysis because the HapMap1 SNPs
are enriched for low-methylation locations (Gore et al.,
2009). Such regions are strongly enriched for genome-
wide association (GWAS) results (E. Rogers-Melnick,
personal communication), and adding the HapMap2
SNPs seemed to dilute signal rather than increase reso-
lution. For reference, the HapMap2 GWAS hits (from
Wallace et al., 2014) and their nearest genes are included
in Supplemental Table S3.

Our GWAS analysis used a method that resamples
the model with random subsets of the data, as has been
done previously with the NAM population (Kump
et al., 2011; Poland et al., 2011; Tian et al., 2011; Peiffer

Figure 1. Correlation matrix and clusters of the 12 C and N metabo-
lites. The bottom left part of the matrix shows the correlation coeffi-
cients after accounting for the maturity effect, and the top right part
shows the corresponding P values. P , 1 3 10210 was rounded down
to 0; P , 8 3 1024 is significant at a Bonferroni correction at a = 0.05.
Chla, Chlorophyll a; Nitr, nitrate; AA, total amino acids; Prot, protein;
Chlb, chlorophyll b; Mala, malate; Fuma, fumarate; Glut, Glu; Star,
starch; Gluc, Glc; Fruc, Fru; Sucr, Suc.

Figure 2. QTL distribution of the 12 C and N
metabolites and the first two principal com-
ponents derived from the whole field. Chla,
Chlorophyll a; Chlb, chlorophyll b; Mala,
malate; Fuma, fumarate; Glut, Glu; AA, total
amino acids; Prot, protein; Nitr, nitrate; Prin1,
first principal component; Star, starch; Sucr,
Suc; Gluc, Glc; Fruc, Fru; Prin2, second
principal component.
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et al., 2013, 2014; Wallace et al., 2014). In brief,
a forward-regressing GWAS analysis is run multiple
times on each chromosome after controlling for the
major QTLs on other chromosomes. Each run includes
only a subset of the data, which destabilizes weak or
spurious associations and allows for filtering based on
how robustly a given SNP is identified in the model (for
details, see “Materials and Methods”). This resample
model inclusion probability (RMIP) was calculated
based on how often each SNP is included in each model
generated from the resampled data (Valdar et al., 2006,
2009), and an RMIP of at least 0.05 (five out of 100 runs)
was chosen as the cutoff. By this filter, we identified
1,394 significantly associated SNPs (Fig. 3, A and B;
Supplemental Fig. S9; Supplemental Tables S4 and S5).

Candidate Genes Near Major Hits

We observed significant enrichment of association
around known candidate genes for C and N metabolites.
Out of 514 candidate genes potentially related to C and
N metabolism curated from maize pathway analyses
(Supplemental Table S6), 101 are overrepresented with
GWAS signals (Supplemental Fig. S10). Through Gene
Ontology (GO) term enrichment analysis, most of the a
priori candidates discovered in our GWAS take part in
carbohydrate metabolic, alcohol metabolic, carbohydrate
catabolic, and Glc metabolic processes (Supplemental
Table S7). We also compared the distribution of gene
classes near the 126 most significantly associated SNPs
(RMIP$ 0.50) with that of the whole maize genome. We
found that C4 and source-sink genes are overrepresented
(Supplemental Fig. S11); however, most SNPs are still
located in or near genes that have no known relation to
C and N metabolism (Supplemental Table S5).

As for specific genes, we detected three SNPs associ-
ated with chlorophyll a variation that tag carbonic an-
hydrases (CAs) on chromosome 3 (Fig. 3A; Supplemental
Table S4). The cytosolic isoform of CA catalyzes the first
step in the C4 photosynthetic pathway in mesophyll cells,
resulting in the hydration of CO2 to bicarbonate (Ludwig
et al., 1998). Bicarbonate is then fixed by phosphoenol-
pyruvate carboxylase to produce oxaloacetate, which is
reduced to malate. Malate then diffuses into the bundle
sheath cells, where it is decarboxylated to generate a high
internal CO2 concentration (Weiner et al., 1988). In C4
grasses, CA levels are thought to be rate limiting for
photosynthesis (Hatch and Mau, 1973; Cousins et al.,
2008), and in Arabidopsis, they affect water-use efficiency
by acting as upstream regulators of CO2-controlled sto-
matal movements in guard cells (Hu et al., 2010). Our
analysis identifies both CA paralogs on chromosome 3,
with two SNPs in CA3.1 and one in CA3.2. This region
also overlaps with QTL M411, which is stable across
different subenvironments (Supplemental Fig. S2) and
shared with the N metabolites malate, nitrate, Glu, total
protein, and principal component 1. All of these traits also
have significantly associated GWAS SNPs from the CAs
within this QTL (Fig. 3A; Supplemental Table S4). The

rapid decay of linkage disequilibrium here (Supplemental
Fig. S12A) implies that there is single-gene resolution
in this region and that genetic variation of CAs on
chromosome 3 contributes to N metabolism and
photosynthesis.

Figure 3. Associations between metabolites and SNPs. All SNPs
detected as significant in at least five subsamples are shown as trian-
gles (blue with positive effect and green with negative effect) relative to
their physical sequence positions. Vertical positions of triangles rep-
resent the RMIP of the SNP. QTLs are shown as red lines whose vertical
positions represent their F test log(1/P) in the final joint linkage QTL
model. A, Chlorophyll a and SNPs from CAs on chromosome 3. The
CA region on chromosome 3 overlaps with QTL M411. Chlorophyll a
(Chla), malate (Mala), nitrate (Nitr), Glu (Glut), protein (Prot), and the
first principal component (Prin1) share the same QTL M411; moreover,
they all have significantly associated SNPs from the CAs in this QTL. B,
Starch and SNPs from invertases on chromosomes 2 and 5. The in-
vertase region on chromosome 2 overlaps with QTL M211, which
starch, Glc (Gluc), and the second principal component (Prin2) share,
and that on chromosome 5 overlaps with M632, which starch, Glu, Fru
(Fruc), and the second principal component share. C, Associations
identified by GWAS at CA and a malate transporter region on chro-
mosome 3. Vertical positions of diamonds represent the RMIP of the
SNP.
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Previous data have shown that in B73 seedlings, most
of the total CA expression is derived from two paralogs,
CA3.1 and CA3.2 (Supplemental Fig. S13; Li et al., 2010).
Since these previous analyses were performed on seed-
lings, we performed quantitative real-time PCR target-
ing the two chromosome 3 CA paralogs in the NAM
founders using material sampled at flowering time, the
same developmental stage as the QTL and GWAS ex-
periment (Fig. 4A). Transcript levels are higher for the
B73 allele in both cases, with a much larger difference for
CA3.1. However, the variance in expression for CA3.1 is
also significantly different between the two alleles (Fig.
4B). This could be for several reasons, such as these
transcript levels not correlating perfectly with enzyme
levels in the original sample or because we did not
capture the actual causal SNP underlying the metabolite
variation.
We also identified a significantly associated SNP for

malate that is approximately 2 kb away from a malate
transporter gene, which in turn is approximately 500 kb
away from the significantly associated CA SNP in the
QTL M411 region (Fig. 3C; Supplemental Table S4).
Malate transporters are required for the movement of
malate between the mitochondria, cytosol, vacuoles, and
chloroplasts in both mesophyll and bundle sheath cells;
thus, they are integral to C4 photosynthesis (Bräutigam
and Weber, 2011; Gowik and Westhoff, 2011; Nunes-
Nesi et al., 2011).
In addition, we identified associations near two acid

invertases that are known to regulate C metabolism
(Dickinson et al., 1991; Kingston-Smith et al., 1998; Tang
et al., 1999). A highly significant SNP (RMIP = 0.76) was
detected for starch near a vacuolar acid invertase in the
major QTL M211, and another was found near a cell
wall acid invertase in the QTLM632 (Fig. 3B). Both QTL
regions are also shared with Glc and Prin2, and M632 is
also shared with Fru, indicating that these regions have
effects across overall C metabolism.
We identified several other candidate genes with rec-

ognizable roles in C and N metabolism (Supplemental
Table S4). For example, we identified a starch synthase

relevant to chlorophyll a variation, a trehalose-6-phosphate
synthase and a nitrate transporter relevant to Glc variation,
two cellulases related to Fru and Glc, and pyruvate de-
hydrogenase E1 relevant to fumarate. We also detected a
ribosomal protein associated with protein content, which
might be of great interest, as protein synthesis is intimately
linked to biomass production (Piques et al., 2009).

We found three genes annotated with functions related
to cell wall synthesis and modification that are associated
with protein content. This may be because protein con-
tent can be determined not only by protein synthesis per
se but also by the rate of cell expansion, which depends in
part on cell wall synthesis.

We also identified a chlorophyll a,b-binding protein, a
Gln synthetase, an NADP-malate dehydrogenase, and a
phosphoenolpyruvate carboxylase kinase associated
with nitrate. NADP-malate dehydrogenase is a central
component of the C4 C shuttle in mesophyll cells (re-
ducing oxaloacetate to malate), and it is involved in the
export of reducing equivalents from the chloroplast
(Scheibe, 2004) to support reductive reactions in the
cytosol and the formation of ATP in mitochondria.
Phosphoenolpyruvate carboxylase kinase regulates the
activity of phosphoenolpyruvate carboxylase, which is
another component of the C4 C shuttle; it is also in-
volved in the synthesis of malate that acts as a coun-
terion during nitrate assimilation (Scheible et al., 1997).

In summary, we identified associations with many
genes affecting C and Nmetabolism, including many not
previously known to be involved in these pathways.
These genes are good targets for improving C and N
metabolism in maize and other crops, and characteriza-
tion of their roles will expand the knowledge of core
plant metabolism.

Prospects for Future Crop Improvement

Currently, C4 grasses are some of the most produc-
tive plants on Earth (Zhu et al., 2010). However, many
of our key crops, such as rice, wheat (Triticum aestivum),
and potato (Solanum tuberosum), use C3 photosynthesis,
and a major international effort is under way to convert
some of these crops to C4 (Sage and Zhu, 2011). This
study clearly shows that fine-tuning of the expression of
genes that drive the C4 C shuttle are likely key deter-
minants of local adaptation and, hence, yield. Our re-
sults show that levels of central metabolites in C and N
metabolism are determined by genetic variation in key
genes involved in CO2 capture (CA) and movement
(malate transporters). These proteins likely impact
subprocesses in C4 photosynthesis, including the extent
to which the C4 cycle draws down CO2 in the mesophyll
airspaces, and the movement of malate from the me-
sophyll into the bundle sheath. Manipulation of these
loci by breeding or transformation and then optimiza-
tion in a wide range of environments could lead to even
more efficient yield. For example, despite the variation
present today, it is unlikely that a tropical grass like
maize has evolved all the appropriate alleles to fix

Figure 4. Expression and corresponding variance comparison for CAs
between the B73 allele and an alternative allele in NAM founder lines
at flowering time. A, Expression. B, Variance.
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C well in both the cold spring and hot summer condi-
tions prevalent in temperate latitudes. High-resolution
diversity studies like this one can guide breeding efforts
to identify genes that are most likely to be amenable to
genetic improvement.

MATERIALS AND METHODS

Materials

For this study, we used the maize NAM population, which is composed
of 5,000 recombinant inbred lines (RILs) derived from crosses between B73 and
25 highly diverse maize lines (200 RILs for each cross; McMullen et al., 2009).
The NAM design integrates both linkage and association approaches to provide
high resolution and statistical power for dissecting complex quantitative traits.
The creation, genotyping, and map construction of the NAM population has
been described previously in detail (Buckler et al., 2009; McMullen et al., 2009).

Tissue Sampling

The NAM population was planted in Aurora, New York, in May 2007. This
environment coincided with the one used for the flowering time and leaf trait
evaluation reported previously (Buckler et al., 2009; Tian et al., 2011). For each
recombinant inbred line, two samples were taken from each row: one from the
end plant and the other pooled from four middle plants. Sampling was done in
the beginning of August, when most NAM lines were flowering. Tissue was
punched from the base of the first leaf below the flag leaf and immediately
frozen in liquid N. (The flag leaf itself was not sampled because it intercepts the
most light and thus performs the most photosynthesis. We did not want to risk
that wounding it would interfere with other phenotypes being measured later in
the season on these same plants.) All collections occurred between 10 AM and
2 PM of a given day, and all samples (approximately 12,000 total) were collected
within 1 week of each other. We recorded several potential confounding vari-
ables, including the date and time of sampling, the collector, and the flowering
time of the row (DTA, time between planting, and when 50% of plants are
shedding pollen). Tissue was stored at 280°C until metabolite measurement.

Metabolite Measuring

Metabolites were extracted (approximately 50 mg fresh weight in a final
volume of 650 mL) twice with 80% (v/v) ethanol and once with 50% (v/v) ethanol
as described (Geigenberger et al., 1996). Starch and proteins were extracted from
the pellet using 100 mM NaOH, as described previously (Hendriks et al., 2003).
Chlorophyll content was determined immediately after the extraction according
to Arnon (1949). Total free amino acids were assayed using fluorescamine as
described by Bantan-Polak et al. (2001). Nitrate was determined as described by
Tschoep et al. (2009). Malate and fumarate were measured as described by
Nunes-Nesi et al. (2007). Glu was determined using aliquots of 10-mL extracts or
standards (ranging from 0 to 20 nmol), which were pipetted onto a microplate
containing 100 mM Tricine/KOH, pH 9, 3 mM NAD+, 1 mM methyl-
thiazolyldiphenyl tetrazolium bromide, 0.4 mM phenazine ethosulfate, and 0.5%
(v/v) Triton X-100. After reading the A570 for 5 min, 1 unit of Glu dehydrogenase
was added, and the absorbance was read until stability. Suc, Glc, and Fru were
determined in ethanolic extracts as described by Jelitto et al. (1992). Protein
content was assessed as described by Bradford (1976) and starch as described by
Hendriks et al. (2003). Assays were prepared on polystyrene 96-well microplates
using a Janus pipetting robot (Perkin-Elmer). Absorbance was read at 340 or 570
in an ELX-800 or an ELX-808 microplate reader (Bio-Tek). Absorbance at 595,
645, or 665 nm and fluorescence (excitation at 405 nm, emission at 485 nm) were
measured using a Synergy microplate reader (Bio-Tek).

Statistical Analyses

To minimize various environmental effects, the BLUPs for each trait and each
line were calculated with ASREML version 2.0 software (Gilmour et al., 2005) and
used for further statistical analyses, including QTL mapping. We predicted each
RIL’s genetic effect on metabolite contents after accounting for spatial field effects;
the amount of N, phosphorous, and potassium of the field before planting; the
tissue sampling date, time, and person; the plate on which samples were put; and
the metabolite measurement batch. BLUPs were also calculated for DTA by

correcting the spatial field effects. These raw data and BLUPs were published as
part of a previous analysis (Wallace et al., 2014) that analyzed variation across
many different traits but did not look at any one of them in detail.

A correlation coefficient was calculated between end plant samples andmiddle
plant samples across the NAM population for each metabolite using the Proc
CORR procedure in SAS version 9.2, and the corresponding r2 was used to
evaluate the repeatability of each metabolite. Because NAM founder lines were
repeated many times in the field, we were able to estimate broad-sense herita-
bility in them for each metabolite as described previously by Holland et al. (2003).

Correlation analyses between DTA and metabolites were conducted using
the Proc CORR procedure in SAS. Since most metabolites correlate with DTA
(Supplemental Table S8), we did partial correlation analyses among the 12
metabolites to account for the DTA effects using the Proc GLM procedure in
SAS. To make a correction for multiple statistical tests, the sequential Bonferroni
test (Holm, 1979) at a = 0.05 was conducted for the correlations of the 12 me-
tabolites. A cluster analysis was performed based on the absolute values of the
correlation matrix to detect relationships among the 12 metabolites using the
Proc CLUSTER procedure in SAS and the unweighted pair group method with
arithmetic mean method. The trees were constructed using the Proc TREE
procedure in SAS. A principal component analysis on the 12 metabolites was
performed using the Proc PRINCOMP procedure of SAS.

Joint Linkage Mapping

We used the original NAM genetic map with 1,106 SNPs (McMullen et al.,
2009) to perform joint linkage mapping as described by Buckler et al. (2009).
We used Proc GLMSelect to scan the genome for QTLs of the 12 metabolites
plus the first two principal components at each locus of the 1,106 markers with
stepwise selection at P = 1 3 1024 . The general linear model used included a
covariate of flowering time (since most metabolites correlated with develop-
ment stage), a main effect for family, and marker effects nested within fami-
lies. Proc GLM in SAS was used to fit selected marker effects in the general
linear model, and the markers were dropped individually to confirm their
significance. QTL epistasis was investigated using the same strategy described
previously (Buckler et al., 2009). To examine the robustness of QTLs, this
analysis was also conducted for chlorophyll a on the end plant and middle
plants separately and on different sampling days (Supplemental Fig. S2).

We used the same method as Buckler et al. (2009) to examine possible plei-
otropic effects among the traits. The QTL model using markers identified for one
trait was fit to another and vice versa. We then correlated the allele effects across
the founder lines at each locus for each trait against one another and determined
the significant pleiotropy at P = 0.05. The second cluster analysis was based on the
matrix of proportion of shared QTLs (Supplemental Fig. S7).

GWAS

To conduct GWAS, we used the same method reported previously by Tian
et al. (2011). Briefly, 1.6 million maize HapMap1 SNPs (Gore et al., 2009) in the
NAM founder lines were projected into NAM RILs using pedigree and linkage
marker information. SNP positions were referenced to the B73 AGPv1 physical
map (www.maizesequence.org). Each chromosome was tested separately by
first fitting a model that included all QTLs on other chromosomes and per-
forming GWAS on the residual values, with DTA included as a covariate. To
obtain robust association results, 100 subsample data sets, each containing 80%
of each family, were analyzed using forward regression (significance level at P,
10E-5). SNPs were scored on the number of subsamples they were identified
in the RMIP (Valdar et al., 2009). SNPs detected in at least five subsamples
(RMIP $ 0.05) were considered as significant and were examined as polymor-
phisms in linkage disequilibrium (LD) with potential candidate genes from the
B73 filtered gene set (http://www.maizesequence.org). We used MapMan an-
notation to assign genes to functional categories (Thimm et al., 2004). LD anal-
ysis for all the significant SNPs and all other SNPs on the same chromosome was
conducted using the same method reported previously by Kump et al. (2011)

CA Expression Study

To investigate the expression of CAs on chromosome 3, leaf samples were
collected from the NAM founder lines in 2010 in Aurora, New York, using the
same protocol described above. Total RNA from the leaf tissue was extracted
using Trizol reagent (Invitrogen), and DNase digestion was performed with the
Ambion DNA-free kit (Applied Biosystems) according to the manufacturer’s
protocol. Total RNA (2 mg) treated with DNase was reverse transcribed using
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random hexamer. The derived first-stand complementary DNAwas diluted 15 times
and used as a template. The primers for CA3.1 are 59-ACCGGATCACCCAATG-
CAATG-39 (forward) and 59-CAGTACATGAATGCTCGGCGTTAG-39 (reverse),
and those for CA3.2 are 59-AGGAGAAGCCGTCCACAGATAC-39 (forward) and 59-
TGCCCTTGGAGGAAGCCTTG-39 (reverse). Ribosomal RNA (18S) was used as an
internal control (forward primer, 59-CAATGGAGATGGCTCGACTT-39; reverse
primer, 59-GTTGCACTGCGAGCATACAT-39). Gene Runner (http://www.
generunner.net) was used for primer design, and the primers were purchased
from Integrated DNA Technologies. Quantitative real-time PCR was con-
ducted using SYBR Green (Applied Biosystems) and the ABI PRISM/Taqman
7900 Sequence Detection System (Applied Biosystems) as described previously
(Li et al., 2008). Four repeats were carried out for each gene, and averaged
threshold cycle numbers were used to calculate changes (log2).

Enrichment Analysis

To conduct enrichment analysis, a list of a priori candidate genes involved in
maize C and N metabolism was curated using the Gramene pathway tool
(Youens-Clark et al., 2011). In the curation effort, we included the pathways and
superpathways in the tricarboxylic acid cycle, N metabolism, starch synthesis,
and photosynthesis. The resulting list of 514 a priori candidates covers metabolic
processes, regulators, transporters, electron carriers, and genes related to abiotic
stimulus, enzyme, coenzyme, ion, and cation binding as well as catalytic, kinase,
and transferase activities (Supplemental Table S6).

We then explored the functional implication of these maize metabolite a
priori candidates by a probabilistic approach that detects the significant
overrepresentation of colocalizing GWAS signals with a priori candidates.
Given a linkage block size, a posterior probability of colocalization of GWAS
associations and a priori candidates is thus provided; we use permutations to
obtain a null hypothesis for statistical significance tests.

Local linkage block size was calculated using all 1.6 million SNPs from maize
HapMap1 (Gore et al., 2009). After filtering for minor allele frequencies of 0.05 or
greater, pairwise LDs of the filtered SNPs are estimated by correlation coefficients,
and the linkage block size of a priori candidates is estimated by the maximum
distance between the local SNP loci that are located within and flanking the gene
and those that are in perfect LD (r2 = 1), from both upstream and downstream.

The conditional probability of a given a priori candidate colocalizing with
GWAS associations is estimated by the empirical cumulative probability function
of physical distance between GWAS associations and the gene. To assess the
magnitude of GWAS signals, we performed a weighting procedure by ranking
the RMIP values from each of the metabolism GWAS analyses. The RMIP cutoff
was set at 0.05 as recommended; all RMIP values below the cutoff are treated at
the same level. The weighted posterior probability of colocalization is by the
multiplication of weighted RMIP with the conditional probability of colocali-
zation of GWAS signals and the target candidate.

Finally, assuming that every SNP has an equal chance to be in association, we
generated 1,000 randomized association sets each containing the same number
of associations as the true data, sampled without replacement from all SNP loci
on a chromosome. Then, we assigned each set of associations with the RMIP
significance levels and computed their posterior probabilities. The adjust
threshold was set to the 5% quantile of the lowest significance level from 1,000
permutations. Compared with this distribution of null hypotheses, a cutoff log of
the odds value of 3 or greater indicates the significant overrepresentation of
GWAS signals for a maize metabolite a priori candidate.

The maize a priori candidates that were significantly enriched in GWAS
analysis then became the query list for GO analysis. The GO terms in all categories
of all maize genes can be downloaded from the Gramene Ontology module
(ftp://ftp.gramene.org/pub/gramene/CURRENT_RELEASE/data/ontology/).
We accessed the significance level of GO Slim enrichment by Fisher’s exact test,
and to correct multiple comparisons, a false discovery rate was also given
(Supplemental Table S7).

TheHapMap genotypes used in this article are available from the PanzeaWeb
site: http://www.panzea.org/#!genotypes/cctl. The raw data and BLUPs used
here were published previously (Wallace et al., 2014) and are available for
download (http://dx.doi.org/10.1371/journal.pgen.1004845.s006).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Principal component analysis of metabolites.

Supplemental Figure S2. Sampling effects of subenvironments.

Supplemental Figure S3. Distribution of shared QTL.

Supplemental Figure S4. Proportions of QTL with both negative and pos-
itive effects.

Supplemental Figure S5. Histogram of QTL effects.

Supplemental Figure S6. Distributions of QTL allele effects.

Supplemental Figure S7. Matrix of shared QTL.

Supplemental Figure S8. Relationship between trait correlations and
shared QTL.

Supplemental Figure S9. GWAS results for each trait.

Supplemental Figure S10. Overrepresentation of GWAS hits in candidate
genes.

Supplemental Figure S11. Distributions of gene classes.

Supplemental Figure S12. Linkage disequilibrium of associated SNPs.

Supplemental Figure S13. Carbonic anhydrase expression.
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Supplemental Table S2. Joint-linkage results.
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