Skip to main content
. 2014 Dec 18;2014(12):CD011431. doi: 10.1002/14651858.CD011431

4. False negatives for non‐falciparum and P. vivax by RDT type.

Study Test  Number of false negatives % false negatives indicating 'no malaria' % false negatives indicating 'P. falciparum'
Type 2 tests
Ashton 2010 ICT Combo 37 22 78
Bell 2001a ICT Malaria trial 1 16 13 88
Bell 2001b ICT Malaria trial 2 6 67 33
Fernando 2004 ICT Malaria Pf/Pv 29 100 0
Harani 2006 ICT Malaria Pf/Pv 3 67 33
Singh 2000a ICT Malaria Pf/Pv 13 62 38
Singh 2010 Malascan 18 67 33
Tjitra 1999 ICT Malaria Pf/Pv 8 75 25
van den Broek 2006 NOW malaria ICT 72 67 33
Wongsrichanalai 2003 ICT Malaria Pf/Pv 9 67 33
van den Broek 2006 OptiMAL‐IT 34 74 26
Median (range) 67 (13 to 100) 33 (0 to 88)
Pooled estimate (95% CI)* 65 (43 to 81) 35 (19 to 57)
Type 3 tests
Ashton 2010 Carestart 37 22 78
Ashton 2010 Parascreen 43 14 86
Bendezu 2010 Parascreen 19 84 16
Bharti 2008 First response 7 100 0
Dev 2004 Diamed OptiMAL 3 100 0
Eibach 2013 CareStart 3 100 0
Elahi 2013 Parascreen 5 60 40
Kosack 2013 SD Bioline 133 89 11
Moges 2012 Carestart 38 89 11
Ratsimbasoa 2007 SD Malaria Antigen Bioline 4 100 0
Singh 2010 Parascreen 13 54 46
Singh 2010 First response 9 33 67
Singh 2010 ParaHIT Total 48 92 8
Trouvay 2013 SD Malaria Ag Pf/Pan 18 78 22
Yan 2013 Pf/Pan Device 24 25 75
Median (range) 84 (14 to 100) 16 (0 to 86)
Pooled estimate (95% CI) 74 (52 to 88) 26 (12 to 48)
Type 4 tests
Andrade 2010 OptiMAL‐IT 0 0 0
Chayani 2004 OptiMAL 3 100 0
Dev 2004 SD Malaria 2 100 0
Kolaczinski 2004 OptiMAL 23 100 0
Metzger 2011 OptiMAL‐IT 30 100 0
Pattanasin 2003 OptiMAL‐IT 26 65 35
Ratsimbasoa 2007 OptiMAL‐IT 2 100 0
Ratsimbasoa 2007 Carestart Malaria 3 33 67
Singh 2003 OptiMAL (field) 0 0 0
Soto Tarazona 2004 OptiMAL 3 100 0
Valecha 2003 OptiMAL 13 77 23
Median (range) 100 (0 to 100) 0 (0 to 67)
Pooled estimate (95% CI) 87 (79 to 92) 13 (8 to 21)

*The pooled estimates of the percentage of false negatives indicating 'no malaria' and the percentage of false negatives indicating 'P. falciparum' were computed by using a random effects logistic regression model for Type 2 and Type 3. A fixed effects logistic regression model was used for Type 4.

This table shows participants with non‐falciparum malaria monoinfection identified by microscopy who were negative by non‐falciparum monoinfection by RDT, by whether the RDT incorrectly identified the participant as not having malaria, or as having P. falciparum malaria.