
Individual patterns of motor deficits evident in movement 
distribution analysis

Felix C. Huang and
Dept. of Biomedical Engineering, Northwestern University, Rehabilitation Institute of Chicago, 
Chicago, IL USA

James L. Patton
Dept. of Bioengineering, University of Illinois at Chicago, Rehabilitation Institute of Chicago, 
Chicago, IL USA

Abstract

Recent studies in rehabilitation have shown potential benefits of patient-initiated exploratory 

practice. Such findings, however, lead to new challenges in how to quantify and interpret 

movement patterns. We posit that changes in coordination are most evident in statistical 

distributions of movements. In a test on 10 chronic stroke subjects practicing for 3 days, we found 

that inter-quartile range of motion did not show improvement. However, a multivariate Gaussians 

analysis required more complexity at the end of training. Beyond simply characterizing 

movement, linear discriminant classification of each patient’s movement distribution also 

identified that each patient’s motor deficit left a unique signature. The greatest distinctions were 

observed in the space of accelerations (rather than position or velocity). These results suggest that 

unique deficits are best detected with such a distribution analysis, and also point to the need for 

customized interventions that consider such patient-specific motor deficits.
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I. INTRODUCTION

Recent investigations suggest that sensorimotor training with interactive technology can 

improve upper extremity function [1], yet the fundamental principles for designing effective 

therapy have remained elusive. One key challenge is accommodating the wide differences in 

impairments, which can include loss of sensation, spasticity, imbalanced muscle strength [2, 

3], jerky movements [4, 5], abnormal muscle coupling [6] and point to point reaching 

inaccuracies [7], each at varying levels of severity [8-10]. Such variation creates challenges 

for assessment [11, 12]. Hence, more comprehensive characterization of patient deficits 

could be a great asset to improving therapy.

An important lesson from robotic therapy studies is that patients fail to improve when limbs 

are moved for them [13-15]. Exploratory practice could promote a greater sense of agency 

since the individual must make continuing choices of where to and how to express 

movement. Such practice might also facilitate generalization, in a manner similar to the 
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effect of introducing task variety [16, 17]. Exploratory movements are thought to be an 

important part of motor learning in human development [18, 19], and hence could support 

neuroplasticity in rehabilitation. Training over a broader domain, for example on a variety of 

tasks, provides better improvement in function than repetitions of the same task [16, 17], and 

might facilitate “system identification” as a part of learning [20].

Besides the impact on training, analysis of self-directed movement practice could allow for 

new tools for characterizing motor deficits. Historically, approaches in robot-assisted 

therapy began with guidance [21, 22], which restricts movement to prescribed patterns. The 

variable nature of exploratory movement, on the other hand, reveals information about an 

individual’s deficits through their movement tendencies. Movements following stroke 

exhibit stereotypic gestures that are thought to reflect abnormal muscle tone or coupling 

between joints [6], referred to by some as synergies. Stroke research suggests that forced-

use, where the patient is encouraged to make actions with the impaired limb, can reverse the 

impact of “learned non-use” [23-25]. In a similar way, neglect of movement patterns might 

perpetuate abnormal coordination. A rationale for this study is that analysis of self-directed 

movement will allow identification of individual characteristics of motor deficits.

This study investigated how patterns of movement within motor exploration evolve with 

practice and to what extent they differ between individuals. Our recent work showed that 

motor exploration combined with negative viscosity from a robotic interface (which 

exaggerates movements) enhanced learning in healthy subjects and in stroke survivors [26, 

27]. Here, we consider new analyses on the data from our previous work with stroke 

survivors. Focusing on the control condition where no external forces were applied, we 

examine how the statistical distribution of kinematic variables (position, velocity, 

acceleration) changes over the course of training. One possibility is that motor deficits 

manifest as uncoordinated and highly variable movements, such that no systematic patterns 

can be found. Alternatively, distributions potentially could reveal stereotyped patterns that 

correspond to an individual’s unique form of motor impairment, and show tangible 

broadening of capability as the subject trains.

II. METHODS

A. Humans Subjects

We consider data from a study in which stroke survivors performed manual exercises with 

and without robot-applied external forces [28]. Subjects performed the task with their 

affected arm. Each subject provided informed consent in accordance with the University 

Institutional Review Boards. Individuals were paid for their participation.

B. Experiment Protocol

We asked subjects to control the movement of a planar force-feedback device as described 

in our previous work [28]. To focus training on the coordination of the forearm and upper 

arm, subjects operated the device through a wrist brace. Using an overhead projector 

mounted on the ceiling, real-time feedback of the handle position, visual reference cues, and 

experiment instructions were presented on a horizontal surface overlaying the planar 
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workspace of the arm (see Fig. 1). In addition, the real-time animation included two 

segments approximating the motion of the forearm and upper arm. Visual reference cues 

included a larger rectangular region, indicating the bounds of movement for the motor 

exploration portions of the experiment.

During the motor exploration phases, we instructed subjects to move the handle at their own 

discretion using a variety of directions, speeds, and positions within the rectangular 

workspace (0.2 x 0.6m). We explained that each exploration phase should serve as 

preparation for a subsequent evaluation phase in which subjects would perform prescribed 

circular movements. The computer signaled the user to halt motor exploration after 25 m of 

handle endpoint travel.

Subjects performed three sessions on different days. Each session included several 

alternating training phases (16) and evaluation trials (160). The intervals between training 

phases varied between 4 or 20 trials, as shown in Fig. 3. We included different intervals of 

performance evaluation to test possible differences in retention. Each session included two 

1-hour blocks, with a 15-minute intervening break.

C. Analysis

Range of motion—This study investigates whether distribution analysis can provide a 

more complete description of the changes in movement patterns as stroke survivors practice. 

As a point of comparison we first obtain the classic estimates of overall changes in ranges 

by calculating inter-quartile differences. We summarize the results in terms of the change in 

displacement area (position data), and analogously for velocity and acceleration, as the 

products of two axes of motion (left-right and fore-aft, defined as x and y degrees of 

freedom).

Next, to obtain a more detailed view of how movement patterns varied throughout the 

workspace, we tabulated histograms in 2D. Contrasts of significant beginning-to-end 

histogram counts gauged the effect of training.

Analysis of model components—We next examined whether modeling analysis of 

distributions could reveal changes in available movement patterns. To do so we fitted these 

histograms with a weighted sum of multivariate Gaussian-normal components according to 

maximum likelihood estimates:

(Eq-1)

for k dimensions. Each j-th component is associated with a covariance matrix s, and a center 

μ. Increasing the number of components J improved model fitness. We fit this model to the 

observed hand motion distributions for each exploration trial, resulting in two-dimensional 

histograms for position, velocity and acceleration were normalized so that sum of 

observations was unity. The coefficient of determination measured models fit. Movement 

pattern complexity was related to model fitness was compared over the course of training 
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sessions. We summarized the results in terms of the change between the first and the last day 

of training (Day 1 and Day 3).

Individual differences: To determine whether individuals’ histograms could be uniquely 

identified, we performed classification analysis. Training and test sets were constructed from 

alternating trials. A reduced set of classification ‘features’ were obtained from histogram 

bins that were significantly different than the group mean containing over 0.5% of data. We 

then performed linear discriminant analysis (LDA) classification with the selected features, 

using ‘classify’ function with MATLAB software (MATHWORKS, Natick, MA), and 

presented a confusion matrix of predictions versus actual subject identifiers. To characterize 

the performance of the classifier, we computed the overall error rate for successful 

identification of trials and an error rate for successful identification of the test data as a 

whole for each subject.

III. RESULTS

Changes in the range of motion in terms of position, velocity and acceleration were not 

detected according to analysis inter-quartile ranges (See Fig. 2). The change in the range of 

motion from day 1 and 3 was not significant in terms of the interval between the 25th and 

75th percentiles of data (p=0.13, 0.67, 0.87; product of inter-quartile change for x and y 

degrees of freedom) for displacement (−0.0022±0.00043 m2), velocity (0.0087±0.062 

(m/s)2), or acceleration (0.084±1.55 (m/s/s)2). Individual degrees of freedom in x, y, ẋ, ẏ, 

and ẍ, ÿ showed similar trends (p=0.94, 0.04, 0.61, 0.83, 0.29, 0.68). The trend shown for x-

velocity was actually a decrease from (0.090±0.022 m/s) to (0.078±0.028 m/s).

In contrast to the scalar metrics used above, our analysis of movement distribution suggests 

that stroke survivors can exhibit changes in movement gestures within a few days of 

training. Acceleration data fit to mixed multivariate normal functions (Gaussian models) 

revealed that more model components were needed to accurately represent the last day of 

training. By Day-3, typical subjects exhibited movement distributions that contrasted 

significantly with respect to a single component Gaussian model (See in Fig. 3). A summary 

analysis for all subjects (See Fig. 4) showed that coefficients of determination (R2) values 

were significantly lower (mean change: −0.1118±−0.1043) for Day-3 (mean: 0.64±0.18) 

distributions compared to Day-1 (mean: 0.75±0.13) using only one component (p=0.008, 

paired t-test). This trend in increasing number of Gaussian components suggests that training 

resulted in more complex movement patterns. Note that the choice of histogram bin density 

did not affect trends, though lower p-values resulted from fewer bins.

Our results also showed that distributions differed between subjects. We tested how well a 

portion of a subject’s data could predict another portion of their data, and compared this to 

how well this could predict other subjects. We found that the mean coefficient of 

determination for self-to-self comparisons was generally high (0.90±0.05, 0.90±0.07, 

0.95±0.03) while the self-to-others was poor (0.18±0.14, 0.21±0.17, 0.18±0.23) for the 

position, velocity, and acceleration distribution analyses, respectively. These results 

demonstrate that a significant portion of distributions differed between individuals.
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Classification analysis served as a more precise measure of how easily subject differences 

could be identified. This analysis revealed better discriminations for higher derivatives. 

Focusing only on day-1, the LDA-classifier identified subjects correctly for 80.0% of the 

trials when using acceleration data, while it was 67.5% and 35.0% correct for velocity and 

position (Fig 5). Using half the available data for the test (rather than single trials), 

identification success rose to 100% for acceleration, 96.54% for velocity, and 82.0% for 

position, showing how each subject’s unique signature can be captured.

IV. DISCUSSION

This study examined whether analysis of the statistical distribution of movement can reveal 

more detailed information about abnormal patterns of coordination. We analyzed data from 

a previous study in which stroke survivors performed self-directed motor exploration. We 

first considered scalar metrics to describe the overall change in range of motion in terms of 

position, velocity, and acceleration, but found mixed results (if anything) for improvement 

with training. In contrast, analysis of the distribution of movement in multiple dimensions 

demonstrated more general trends across practice days. Our first main finding demonstrated 

that as the days of training progressed, the analysis required more multivariate Gaussian 

normal components to accurately model movement distributions. Our second finding from 

classification modeling was that each subject’s distributions were unique and differed from 

others.

This investigation employed a novel approach of examining the distribution of movement in 

terms of candidate models of multivariate normal functions. The motivation of this analysis 

is to detect the presence of movement tendencies and how they change with practice. 

Because our results suggest that more model components are needed by the third day (Fig 3) 

we speculate that subjects are in fact broadening their movement capabilities. The fact that 

this trend was not evident in the conventional metrics of the range of motion is not 

surprising, since these would not capture interactions in multiple degrees of freedom (see 

Fig. 4). Researchers have investigated the notion of motor primitives, either in terms of 

oscillators or field functions [29-31], which act as fundamental building blocks of goal-

directed actions. Our analysis of model components, in a similar manner, provides evidence 

of new movement manifestations, which have yet to prove their potential for functional 

capabilities.

The methods employed in this study might be the best methods to date in identifying the 

underlying causes of motor deficits. Characterizing motor deficits is a daunting task in part 

because of the wide variety of pathologies. Current methods in robotic rehabilitation focus 

largely on discrete movements (such as a reach to a target) for measuring performance, but 

larger datasets from exploratory movement could enable a more complete description of 

capability. For example, the distribution of data could at some points exhibit sparseness that 

suggests a lack of expression. Limits in range of motion should also easily identify sharp 

changes in distribution that are consistent with hard biomechanical limits such as the 

changes arm mechanics due to contracture.
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Our classification analysis provides evidence that motor deficits due to stroke manifest in 

individual specific patterns of movement. While it is perhaps unsurprising that individuals 

exhibit some signature characteristics, we note that such accuracy in discrimination would 

likely not be possible with simple scalar metrics. Furthermore, the particular forms of 

movement tendencies evident in the histograms of acceleration (See Fig. 4) provide insights 

into how particular subjects are adapting their natural practice patterns. Interestingly, we 

would found more clear separation between the ten subjects in the distributions for 

acceleration compared to the lower orders of movement (See Fig. 5).

This finding might indicate that the distributions of hand position, while clearly affected by 

impairment, exhibit variation simply due to natural changes in movement goals. It is also 

possible that acceleration is more closely connected to force production or motor planning, 

which has been posited as being sources of motor deficits in stroke [32]. Loss of 

coordination, weakness, and abnormal reflex patterns, manifest from a loss of neural 

resources needed to send motor commands. Consequently, differences in such control might 

be more evident in patterns of how muscles apply force.

Furthermore, the distribution analysis in this study could provide more powerful tools for 

designing customized therapy. Recent work has shown how interactive machines can inform 

a direct mathematical relationship between patient deficits and applied interventions [33]. 

We argue that rehabilitation techniques should capitalize on the rich information available in 

movement distribution analysis to enhance training customization strategies. Such data is 

potentially is more informative since it reveals the spectrum of possible actions, not simply 

the mean behavior. One important limitation of this study is that the patterns of motor 

exploration are not yet contrasted against those of healthy control subjects. While subjects 

evidently exhibited some uniquely identifiable deficits, it is not yet clear if this result 

necessarily implies that such deficits demand customized therapy. However, the evolution 

(over time) of the observed distribution model components suggests changes in movement 

tendencies. Consequently, one plausible strategy is to employ the nervous system’s natural 

use-dependent learning mechanisms [34] along with robotic forces to shift these tendencies 

away from unwanted patterns. It is clear that self-directed motor exploration can serve as a 

tool for identifying movement tendencies. The fact that patterns from one subject to the next 

are unique indicates the need for custom-designed, patient-specific therapy.
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Fig. 1. 
The robotic device interfaced to the arm about a free pivot at the wrist. Subjects were 

allowed to freely interact with each load in a “motor exploration” stage. Following 

exploration, subjects made counter-clockwise circular movements during task performance 

trials at random starting locations of a 0.1 m radius circular track. Only the motor 

exploration data was analyzed in the current work.
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Fig. 2. 
The inter-quartile range (expressed here as the product of x and y axes) for position, 

velocity, and acceleration (upper middle and lower panel) changed significantly for some 

subjects between day 1 and 3, though there was not a common trend of increases or 

decreases.
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Fig. 3. 
(A) Contour plots of acceleration histograms (for two typical subjects) versus multivariate 

normal functions with 1, 2, and 5 components, reveal new movement patterns from Day-1 

and Day-3 (Red/blue indicates greater/lesser observations). (B) Contrasts of histograms 

versus model functions indicate lower contrast with increasing components (columns), and 

higher contrast on Day-3 compared to Day-1. The color gradation (red/blue) indicates 

differences (greater/lesser) in the data compared to the models. These results show irregular 

changes in movement distribution across workspace.
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Fig. 4. 
The coefficient of determination R2 characterized the fitness of multivariate normal 

functions to observed histograms of hand acceleration in the plane. Increasing the number of 

components yielded diminishing returns with 4-5 components (95 CI for 10 subjects in Day 

1 and Day 3 shown). In term of changes in R (lower plot) Day-3 exhibits significantly worse 

fit with one component compared to Day-1. These trends suggest that stroke survivors 

develop new patterns of movement with practice.
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Fig. 5. 
Confusion matrices of distribution profiles for 10 subjects, for acceleration, velocity, and 

position data. Red/Blue indicates probability that each subject’s histogram for half of the 

data as a predictor for the other half of data. These results show a general trend of distinct 

movement distributions per subject.
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