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Abstract Monitoring depth of anesthesia (DOA) via vital

signs is a major ongoing challenge for anesthetists. A

number of electroencephalogram (EEG)-based monitors

such as the Bispectral (BIS) index have been proposed.

However, anesthesia is related to central and autonomic

nervous system functions whereas the EEG signal origi-

nates only from the central nervous system. This paper

proposes an automated DOA detection system which

consists of three steps. Initially, we introduce multiscale

modified permutation entropy index which is robust in the

characterization of the burst suppression pattern and com-

bine multiscale information. This index quantifies the

amount of complexity in EEG data and is computationally

efficient, conceptually simple and artifact resistant. Then,

autonomic nervous system activity is quantified with heart

rate and mean arterial pressure which are easily acquired

using routine monitoring machine. Finally, the extracted

features are used as input to a linear discriminate analyzer

(LDA). The method is validated with data obtained from

25 patients during the cardiac surgery requiring cardio-

pulmonary bypass. The experimental results indicate that

an overall accuracy of 89.4 % can be obtained using

combination of EEG measure and hemodynamic variables,

together with LDA to classify the vital sign into awake,

light, surgical and deep anesthetised states. The results

demonstrate that the proposed method can estimate DOA

more effectively than the commercial BIS index with a

stronger artifact-resistance.

Keywords Depth of anesthesia � Electroencephalogram

(EEG) � Permutation entropy � Hemodynamic parameters

Introduction

Estimating the depth of anesthesia (DOA) is a challenge in

anesthesia research. One of the most reported cases in

many studies is intraoperative awareness during anesthesia

which may cause psychological impacts on patients (Sebel

et al. 2004). Researchers have focused on finding reliable

noninvasive ways to monitor DOA in clinical applications.

Investigators pay a great attention to the analysis of brain

activity through the electroencephalogram (EEG) because

the central nervous system is the target of anesthetic drugs

(Hutt and Longtin 2010). Analysis of the EEG signal

during surgery is helpful for monitoring DOA (Al-Kadi

et al. 2013) because of reducing anesthetic drug con-

sumption and resulting in faster wake-up and recovery

from anesthesia.

During the past two decades, one of the most popular

EEG-based commercial monitor systems in hospitals is the

Bispectral index (BIS; Aspect Medical Systems, Newton,

MA, USA) (Rampil 1998). The range of the recorded BIS

is between 0 (suppression state of EEG) to 100 (awake).

Decreasing values indicate deepening levels of hypnosis.

The BIS index present significant advantages such as

comprehensive clinical validation (Myles et al. 2004;

Luginbühl et al. 2003). The BIS index is based on the

power distribution of the Fourier transform of the EEG

signal, and quantifies the phase coupling between different

EEG frequencies (Rampil 1998). However, this frequency
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based method is more suitable for the analysis of stationary

signals. Also, the BIS index has received some criticism,

such as being sensitive to artifact (Shalbaf et al. 2012a),

causing paradoxical results during burst suppression pat-

tern (Muncaster et al. 2003), not being responsive to some

anesthetic agents (Johansen and Sebel 2000), not regaining

its baseline value after emergence (Sleigh and Donovan

1999) and inducing large time delays (Pilge et al. 2006). In

addition, it has been reported that dose–response models

based on the BIS are only moderately accurate (Lehmann

et al. 2002).

Nonlinearity can be seen in many dynamical systems

found in nature, including the heart (Shalbaf et al. 2013a)

and brain (Fell et al. 2000). Since population neural

activity exhibits nonlinear behaviors, it is reasonable to

apply methods from the theory of nonlinear dynamics and

information theory, such as complexity measures and

fractal (Ahmadi and Amirfattahi 2010; Ferents et al. 2006,

Hosseini et al. 2010; Shalbaf et al. 2013c), recurrence

quantification analysis (Talebi et al. 2012), bayesian

analysis (Nguyen-Ky et al. 2013), sample entropy (Shal-

baf et al. 2012b) and manifold learning with isomap

algorithm (Kortelainen et al. 2011a, b) to the EEG signals

for DOA estimation and brain dynamic assessing.

Recently, a new method, called permutation entropy (PE)

has been developed to explore the order pattern structure

of a dynamical time series (Bandt and Pompe 2002; Ol-

ofsen et al. 2008). PE is an emerging complexity measure

for analyzing non-stationary data. Although PE is com-

putationally efficient, conceptually simple and artifact

resistant, it doesn’t work at deep anesthetised state,

mainly due to high-frequency waves during the suppres-

sion period (Shalbaf et al. 2013b; Li et al. 2008). In this

paper, we introduce modified permutation entropy (MPE)

index which is robust in the characterization of the burst

suppression pattern at high doses of anesthetics. To

achieve this goal, the part of the EEG signal that contains

EEG suppressions are calculated separately by another

nonlinear algorithm and then the calculation theory of PE

is modified.

Recently multiscale entropy has been suggested to

evaluate the complexity of EEG series (Costa et al. 2003).

Brain activity is regulated by complicated self-regulating

systems which process inputs from interacting mechanisms

that operate across multiple temporal scales. The EEG is an

integrated appearance of this brain function and shows

complicated fluctuations which contain knowledge about

the underlying dynamics (Ouyang et al. 2009). Thus,

multiscale entropy can be valuable for discovering the

dynamical characteristics intrinsic in brain functions on

multiple temporal scales instead of a single scale. In this

research, multiscale entropy was applied to EEG record-

ings, and MPE values were combined at multiple scales to

develop a new index named multiscale modified permuta-

tion entropy (MMPE) to estimate DOA.

We cannot reliably detect all the levels of anesthesia in

clinical application with just EEG indices (Shalbaf et al.

2013b; Nguyen-Ky et al. 2013). EEG signals originate

from the central nervous system but, anesthesia is related to

central and autonomic nervous system functions (Huang

et al. 2008). Also, anesthetic agents make a continuum of

neurophysiologic and hemodynamic changes. This chal-

lenge opens new possibilities for future researches. Auto-

nomic nervous system activity should thus be evaluated to

improve DOA monitoring reliability. The most common

way of determining the activity of the autonomic nervous

system is to quantify the changes in heart rate (HR), which

measures from the electrocardiogram (ECG) signal and

mean arterial pressure (MAP), which measures from the

invasive blood pressure (IBP) signal. Hemodynamic

parameters have the potential for real time applications

without expensive instruments. The relation of HR and

MAP with anesthesia has been extensively studied during

the past two decades (Sleigh and Donovan 1999; Nakat-

suka et al. 2002; Shafqat et al. 2011). Hemodynamic

parameters are correlated to the regulation of autonomic

nervous system, which is highly affected by surgical

anesthesia and sleep (Baharav et al. 1995; Mahfouf et al.

2003; Shieh et al. 2005). Thus theoretically, MAP and HR

have been commonly accepted as a potential indicator of

anesthetic depth.

In this research, a novel automated method for assessing

the anesthesia depth level using vital sign is proposed. We

hypothesized that a combination of EEG measure (MMPE

index) and hemodynamic variables (HR and MAP index) in

combination with linear discriminate analyzer (LDA)

classifier may distinguish between the four anesthetised

states more reliably than EEG indices do on their own. The

capabilities of this method to classify the vital sign into

awake, light anesthetised, surgical anesthetised and deep

anesthetised states are investigated in comparison with the

BIS index during cardiac surgery requiring cardiopulmo-

nary bypass (CPB). The performance of the proposed

scheme is evaluated using sensitivity and classification

accuracy.

Methods

Subjects and data acquisition

We studied 25 patients (age 22–75 year) undergoing car-

diac surgery requiring CPB. All of the patients gave written

informed consent and the protocols used in this study were

approved by the institutional review board and ethics

committee, Department of Anesthesiology, Faculty of
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Medicine, Shahid Beheshti University of Medicine, Teh-

ran, Iran. Each Patient was premedicated by intramuscular

morphine 0.1 mg/kg and promethazine 0.5 mg/kg.

After arrival in operative room, ECG, pulse oxymetry

and invasive arterial blood pressure monitoring (Alborz B9

monitor, Saadat Co., Tehran, Iran) were established and

raw heart rate parameter (sampled at 0.1/s) and mean

arterial pressure (MAP) index (sampled at 0.1/s) were

recorded via an RS232 interface onto a personal computer

for later analysis. MAP is defined as the average pressure in

a patient’s arteries during one cardiac cycle. It is consid-

ered a better indicator of perfusion to vital organs than

systolic blood pressure. MAP is determined by invasive

monitoring using Swan-Ganz catheter, MEDEX disposable

pressure transducer and complex algorithm implemented in

Alborz monitor.

BIS-QUATRO SensorTM (Aspect Medical Systems,

Newton, MA, USA) composed of a self-adhering flexible

band holding four electrodes was used to record EEG

signal between the forehead and temple simultaneously

with hemodynamic recording. The used EEG montage was

Fpz-At1, and the ground electrode was placed at Fp1.

Sensor was connected to a BIS-XP Monitor (Aspect

Medical Systems) and raw EEG signal (sampled at 200/s)

and BIS index (sampled at 0.1/s) were recorded via an

RS232 interface onto a personal computer using a Bi-

spectrum analyzer developed with C?? Builder (Hagihira

et al. 2001). EEG segments with maximum amplitude

greater than 200 lV were rejected as nonlinear distortions

of the amplitude in EEG signal. Also, a band pass filter

with low and high cut-off frequency were set at 0.5 and

47 Hz respectively and the notch filter was set at 50 Hz.

Sampling frequency of EEG signal is finally transformed to

100/s.

All the patients were induced in the same manner by

intravenous thiopental sodium (5 mg/kg), pancuronium

Bromide (0.1 mg/kg), fentanyl (5 lg/kg), and lidocarine

(1.5 mg/kg). Anesthesia continued by administration of

isoflurane (1 MAC), morphine (0.2 mg/kg) and O2

(100 %). During coronary artery bypass grafting under

CPB, patients were maintained with propofol (50–150 lg/

kg/min) by means of an infusion pump and undergone mild

hypothermia (31–33 �C) for organ protection. After

patients rewarming and obtaining standard CPB separation

criteria, anesthesia continued by isoflurane (1 MAC) and

O2 (100 %) administration. After tracheal extubation,

patients were taken to the post-anesthesia care unit.

Based on drug delivery protocol, loss of consciousness

(LOC) time, response to stimulation and anesthesiologist’s

assessment, the patient was considered to be in one of the

four different levels of anesthesia, namely, awake, light

anesthesia, surgical anesthesia and deep anesthesia; then

the corresponding vital signals including EEG data and

hemodynamic variables are selected. LOC time was

assessed based on the loss of the response to a verbal

command from the anesthesiologist. The vital signals

before beginning drug delivery were considered the awake

state. In this state, the EEG signal exhibits blink artifacts

superimposed with high-frequency waves (Campagna et al.

2002). The time span between 10 s before LOC time and

30 s after LOC time was considered the light anesthetised

state. In this state, some ‘spindle-like’ waves appear in

EEG signal whose frequency is often related to the anes-

thesia drug concentration in the blood. Surgical anesthe-

tised state referred to the EEG signal during the

equilibrium phase of anesthesia and was determined based

on response to stimulation and anesthesiologist’s assess-

ment. In this state, spindle-like’ waves with low frequency

about 8 Hz is seen in EEG signal. Deep anesthetised state

was concluded on the foundation of the anesthesiologist’s

assessment. In this state, large amplitude delta and sub-

delta waves may be seen in EEG signal (Campagna et al.

2002). Also, in some subjects, the EEG waveform changes

into a burst suppression pattern with increasing anesthetic

drug concentration (Sarkela et al. 2002). Burst suppression

is a pattern of high amplitude EEG activity, commonly

called the bursts, intervened by relatively low amplitude

activity, called the suppressions, typically under 10 uv

peak-to-peak. A total of 1,000 s of EEG data and hemo-

dynamic variables was obtained for each state. The EEG

recordings and hemodynamic variables were divided into

patterns of 10 s duration. Thus, 100 test patterns of each

state were obtained for the purpose of experimental ana-

lysis. It should be noted that while patients went through

CPB, their heart was stopped and heart rate could not be

measured; therefore in this period vital signs were not

extracted.

Permutation entropy

Permutation Entropy (PE) is a statistical parameter that

quantifies the amount of regularity in EEG data (Bandt and

Pompe 2002). It is found that PE index properly tracks the

dynamics of brain activity (Shalbaf et al. 2013b, c; Olofsen

et al. 2008). This feature converts a given EEG series into a

series of ordinal patterns, implying that a nonstationary

series is transformed to an almost stationary ordinal series.

Given a time series XN = [x1, x2, …, xN] with N points,

vectors Xi ¼ xi; xiþs; . . .; xiþms½ �; 1� i�N � ðm� 1Þs are

constructed with the embedding dimension, m, and the time

lag s. Then, Xi can be arranged in an increasing order.

There will be J = m! possible order patterns, which are also

called permutations. The vectors Xi can be represented by a

symbol sequence in which each permutation is considered

as a symbol. For the time series XN, the probabilities of the
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diverse symbols are determined as P1, … Pj; the normal-

ized PE of this time series is defined by:

PE ¼
PJ

j¼1 Pj ln Pj

� �

ln Jð Þ ð1Þ

The smallest and the largest values of PE are zero and one,

reflecting a highly regular time series and equal probability

of all permutations, respectively. Extraction of ordinal

patterns from the EEG signal and histogram of the relative

numbers of each pattern are shown in Fig. 1. The calcu-

lation of PE depends on the selection of time interval (N),

embedding dimension (m) and time lag (s). Based on the

suggestions by other studies, the value N is set optimally to

1,000 points (data length of 10-s in this study) (Shalbaf

et al. 2013b, c; Olofsen et al. 2008). For the time lag, it is

adequate to use a value of s = 1 to extract most of the

information in the EEG (Bandt and Pompe 2002; Li et al.

2008). The appropriate value for m is determined six

according to other studies (Shalbaf et al. 2013b; Li et al.

2008) and sampling frequency of EEG signal.

Modified permutation entropy

PE does not work at deeply anesthetised state, mainly due

to high-frequency waves during the suppression period (Li

et al. 2008; Shalbaf et al. 2013b, c; Olofsen et al. 2008). In

this paper, we introduce modified permutation entropy

(MPE) index which is robust in the characterization of the

burst suppression pattern at high doses of anesthetics. To

achieve this goal, the part of the EEG signal that contains

EEG suppressions is determined separately by another

nonlinear algorithm as described below; all suppressions

sample is treated as a same symbol and probability of the

this new symbol is determined as Pj?1 whereas the prob-

abilities of the other diverse symbols (P1, … Pj) associated

with the bursts are computed as described previously in

Sect. ‘‘Permutation entropy’’. Therefore, MPE index is

defined by:

MPE ¼
PJþ1

j¼1 Pj ln Pj

� �

ln J þ 1ð Þ ð2Þ

Fig. 1 Extraction of ordinal

patterns from the EEG signal.

While the algorithm moves

consecutively through the EEG

signal, the sections including of

three data points are classified

as one of the six possible

patterns, demonstrated in the

second row. On the top row of

the diagram, a histogram of the

relative numbers of each pattern

in the EEG signal is shown
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Suppression is detected by applying a technique based

on nonlinear algorithm (Sarkela et al. 2002). Given a time

series XN = [x1, x2, …, xN] with N points, a non-linear

energy operator (nleo) is derived for each 0.05-s epoch

(5 sample) as follow:

nleo jð Þ ¼
X5�j

i¼5�j�4

x i� 1ð Þx i� 2ð Þ � x ið Þx i� 3ð Þj j;

j ¼ 1; 2; . . .;N=5

ð3Þ

then, NLEO is applied to estimate the signal power from

overlapping 1-s frames offset by 0.05-s as follow:

NLEO kð Þ ¼
Xk�1

j¼k�20

nleo jð Þ; k ¼ 21; 22. . .N=5 ð4Þ

during suppression periods, ECG artifacts may corrupt

classification and therefore their interference is eliminated

in the burst suppression band. This is performed by

replacing the current nelo(m) by the average nleo from the

frame of 1-s (NLEO(m)), if the following rules are fulfilled:

1. The squared difference between the current nleo from

the 0.05 s epoch (nelo(m)) and the average nleo for the 1-s

frame (NLEO(m)) is over three times bigger than the ECG

threshold (THECG):

nelo mð Þ � NLEO mð Þð Þ2 [ 3 � THECG ð5Þ

This threshold is calculated by mean of all the squared

differences in the frame of 1-s as follow:

THECG ¼
Xm

i¼m�20

ðnleoðiÞ � NLEOðmÞÞ2=20 ð6Þ

2. The 1-s frame includes at most four epochs that fulfill

condition 1.

suppression is detected if NLEO is below a fixed another

threshold for at least 0.5 s.

Multiscale modified permutation entropy

Several measures based on nonlinear dynamics such as PE,

have been proposed to evaluate complex EEG series during

anesthesia. But, these measures are still single-scale based

and may not totally explain the dynamical characteristics of

EEG series. Recently multiscale entropy has been sug-

gested to evaluate the complexity of EEG series (Costa

et al. 2003). The basic idea of Multiscale entropy analysis

is to account for the correlations of a time series over

multiple temporal scales instead of a single scale (Ouyang

et al. 2009). Given a time series XN = [x1, x2, …, xN], first

a ‘coarse-graining’ procedure is implemented by averaging

the data points in non-overlapping windows of length s,

constructing a consecutive coarse-grained time series (ys).

Each element, yj
(s), of the coarse-grained time series, is

calculated according to the below equation:

y
ðsÞ
j ¼

1

s

Xjs

i¼ j�1ð Þsþ1

xi; 1� j�N=s ð7Þ

where s represents the scale factor and 1 B j B N/

s. Schematic illustration of the coarse-graining procedure for

scale 2 and 3 are shown in Fig. 2. The length of each coarse-

grained time series is equal to the length of the original time

series N divided by s. Next the modified permutation entropy

measure was calculated for each coarse-grained time series.

Then, we derive a single index from combining three mul-

tiscale analysis (s = 1, 2, 3), called MMPE (multiscale

modified permutation entropy), to estimate DOA.

MMPE ¼ ðMPEs¼1 þMPEs¼2 þMPEs¼3Þ=3 ð8Þ

Classification

The aim of linear discriminant analysis (LDA) is to use

hyperplanes to separate the data representing the different

classes and also to minimize the intra- group variance and

maximize the inter-group variance (Fukunaga 1990). LDA

is supervised classification and should be trained with some

observations first, then tested with other observations to

calculate the accuracy. In this technique, models of the

probability density functions for data generated from each

class are created. Then, a new data point is classified by

determining the probability density function whose value is

larger than the others. The resulting LDA decision bound-

aries between classes of data are linear. This technique is

simple to use and has a very low computational require-

ment. Consequently, this classifier has been used success-

fully in a great number of pattern recognition problems and

EEG processing researches such as motor imagery based

Brain–Computer Interface (Pfurtscheller 2000) and P300

speller (Bostanov 2004). The LDA classifier is imple-

mented by using MATLAB software version 7.9.

Fig. 2 Schematic explanation of the coarse-graining procedure for

scale 2 and 3
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Leave-one-out cross-validation

Leave-one-out cross-validation is an approach for assessing

how the results of a statistical analysis will generalize to an

independent data set. This technique involves using all

observations from one patient as the test data, and the

remaining observations from other patients as the training

data. This is repeated such that observations from all

patients are used once as the test data. The benefit of this

technique is that patient observations division is not con-

sidered. Also, when all observations from one patient are

left out from the training observations of other patients, a

real monitoring situation is simulated in which the all

observations of the monitored patient are not available

when the training is done.

Statistical analysis

The evaluation of the proposed method was determined by

computing the sensitivity and classification accuracy. The

definitions of these parameters are as follows:

Sensitivity (SEN): Number of correctly detected pat-

terns as a fraction of total number of actual patterns. A

pattern indicates one of four different levels of anesthesia

Classification accuracy: Number of correctly detected

anesthetic levels as a fraction of total number of applied

anesthetic levels

In addition, Mean Absolute Error (MAE) was used as a

measure of association between MMPE and BIS index.

MAE measures the average magnitude of differences

between two indices, without considering their direction.

Also, the relative coefficient of variation (CV) (the ratio of

the standard deviation to the mean) was calculated to show

the effect of artifact to MMPE and BIS before anesthetic

delivery. Furthermore, the Mann–Whitney test was used to

compare the difference between the performance of MMPE

and BIS index.

Implementation

This section explains how the methods were actually

applied to the signals. All indices including BIS, MMPE,

PE, HR and MAP are computed over a window of 10 s with

no overlap to consistently track the transient changes in the

vital sign recording. The features extracted from each 10 s

EEG and hemodynamic measures are fed into an LDA

structure to differentiate between the awake, light, surgical

and deep anesthetised states. The classification was carried

out using a leave-one-out cross-validation approach. The

test performance of the proposed method is determined by

computing two statistical parameters described in Sect.

‘‘Statistical analysis’’.

Results

Figure 3 demonstrates an example of EEG measure and

hemodynamic parameters changes occurred during

increasing anesthetic drug effect. The changes in HR and

MAP parameters in the transition state from awake to

anesthetized is shown for six patients. The circle symbols

are used to show the time of LOC. HR and MAP are related

to autonomic regulation which is affected by surgical

anesthesia. Thus theoretically, hemodynamic parameters

are a potential indicator of anesthetic depth. BIS index

derived from EEG signal is also illustrated together with

hemodynamic parameters. As demonstrated, BIS index

shows rather same changes for all six patients (Fig. 3a). On

the contrary, HR parameter in the transition state from

awake to anesthetized is increased for three patients, is

decreased for one patient and does not change for two of

them (Fig. 3b). Besides, the changes in MAP parameter are

not comparable for all six patients (Fig. 3c). The MAP in

the transition state for some patients is decreased and for

some is remained unchanged. This figure demonstrates that

hemodynamic parameters are not an adequate index by

itself.

Table 1 shows the values of Mean Absolute Error

(MAE) between MMPE and BIS index in different states

for all patients (n = 25). The range of the recorded BIS

index is between 0 and 100, but is transformed to 0-1

(divided to 100) to make the comparison with MMPE

index possible. Low MAE value in all state reveals the

comparison of these two indices for tracking gross changes

in EEG with increasing and decreasing anesthetic drug

effect. Figure 4 shows the histogram of error distribution

for all epochs. An epoch error is positive when the value of

MMPE is greater than BIS. An epoch error is negative

when the value of BIS is greater than MMPE. Epoch errors

are in the range of [-0.1, 0.1], indicating very good

agreement between MMPE and BIS index.

The baseline variability of MMPE and BIS is estimated

by calculating CV before anesthetic delivery in order to

compare the performance of MMPE and BIS index

regarding artifact resistance. CV for MMPE is

0.012 ± 0.004 [mean ± standard deviation (SD)], com-

pared with 0.017 ± 0.006 for BIS. This difference is sta-

tistically significant (P \ 0.001). Clearly, this small CV

value for MMPE indicates that our EEG measure is better

in tolerating artifacts than BIS index during the awake

state.

It is worthwhile to investigate hemodynamic based

anesthetic depth indicator because ECG and IBP monitor-

ing is easy and cheap. HR parameter is easily derived from

ECG data and MAP parameter is also derived from IBP

signal. The hemodynamic features extracted from each

10 s segment are fed into an LDA structure. Table 2 shows
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the classification accuracy and sensitivity values using the

MAP and HR parameters along with the LDA classifier for

all patients (n = 25). Also, MAP and HR parameters

values over 10 s epochs at the four states are analyzed for

each patient and a box plot is constructed (Fig. 5). It is

found from the experimental results shown in Table 2 that

HR parameter yields an overall classification accuracy of

33.4 % with a standard deviation of 7.6 % among the

subjects in detecting all four anesthetised states. Also,

overall classification accuracy of 35.6 % with a standard

deviation of 7.8 % in detecting all anesthetised states is

achieved with MAP parameter. Low overall classification

accuracy proves that these hemodynamic features alone do

not track the four anesthetised state accurately.

It is demonstrated that the classification based on a

single hemodynamic feature yields unsatisfactory results.

In this study, two hemodynamic parameters, namely, MAP

and HR are used as the inputs for the LDA classifier in

order to characterize the patient state. Figure 6 shows two

feature values for the four states of anesthesia for all

patients (n = 25). It can be observed that the extracted

features of the four states are rather different from each

other. Table 2 shows the values of classification accuracy

and sensitivity using combination of two features for all

patients (n = 25). This method achieves 53.5 % overall

classification accuracy across the subjects with a standard

deviation of 6.5 % in detecting all four anesthetised states.

Median overall accuracy demonstrates that using just

hemodynamic parameters is not sufficient enough to

monitor the DOA in all anesthetised states.

The EEG signal is the recording of brain electrical

activity and it contains valuable information related to the

different physiological states of the brain. Table 2 shows
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(a)Fig. 3 An example of the EEG

measure and hemodynamic

parameters changes that occur

during increasing anesthetic

drug effect for six patients. The

circle symbols are used to show

the time of loss of

consciousness

Table 1 Values of mean absolute error (MAE) between MMPE and

BIS/100 index in different states for all patients (n = 25)

Awake Light

anesthetic

Surgical

anesthetic

Deep

anesthetic

Total

MAE 0.04 0.07 0.03 0.06 0.05
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Fig. 4 Histogram of error distribution for all epochs between MMPE

and BIS/100 index for all patients (n = 25)
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the classification accuracy and sensitivity values using the

PE and MMPE features extracted from 10 s EEG signal

along with the LDA classifier for all patients (n = 25). The

average classification accuracy of 66.9 % across the sub-

jects with a standard deviation of 5.4 % in detecting the

anesthesia depth levels is obtained with PE feature. Low

sensitivity of 25.4 % in detecting the deep anesthetised

state shows that this state cannot be differentiated well with

PE feature. MMPE feature achieves 85.1 % overall clas-

sification accuracy with a standard deviation of 3.5 %

among the subjects in detecting all four anesthetised states.

It is found from the experimental results shown in Table 2

that MMPE yields an overall sensitivity of 87.5 % in

detecting the awake level. High sensitivity obtained for

detecting the awake state proves that this method is robust

to artifact (eye movement and baseline drift). Also, high

sensitivity of 83.4 % in detecting the deep anesthetised

state verifies that this proposed index (MMPE) tracks burst

suppression pattern more accurately than PE index.

The anesthetic agents make a continuum of neuro-

physiologic and hemodynamic changes. Thus, a compre-

hensive set of vital sign is required to adequately describe

the transition from awake to deep anesthesia. Table 2

shows the values of classification accuracy and sensitivity

using a combination of MMPE parameter extracted from

EEG signal and HR and MAP parameters extracted from

hemodynamic signals for all patients (n = 25). All

parameters were subjected to the LDA. It is found from the

experimental results that proposed method yields an overall

sensitivity of 92.5 % in detecting the awake level which

show that this method is robust to artifact. High sensitivity

of 88.3 % in detecting the deep anesthetised level proves

Table 2 Classification

accuracy and sensitivity values

using EEG measures and

hemodynamic parameters

during cardiac surgery for all

patients (n = 25)

Method SEN (%)

(awake)

SEN (%)

(Light

anesthetic)

SEN (%)

(surgical

anesthetic)

SEN (%)

(deep

anesthetic)

Classification

accuracy (%)

HR parameter 45.2 27.3 12.2 48.4 33.4 ± 7.6

MAP parameter 53.2 29.3 11.4 48.3 35.6 ± 7.8

HR and MAP parameters 61.2 40.4 26.3 85.4 53.5 ± 6.5

PE index 85.5 74.2 82.5 25.4 66.9 ± 5.4

MMPE index 87.5 81.2 88.5 83.4 85.1 ± 3.5

BIS index 93.5 65.6 87.8 75.6 80.6 ± 4.1

BIS index, HR and MAP 91.8 76.4 88.3 82.6 84.7 ± 3.6

MMPE index, HR and MAP 92.5 86.5 90.2 88.3 89.4 ± 3.2
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Fig. 5 Box plots of a Heart Rate (beats per minute) and b Mean

Arterial Pressure (mmHg) values at the awake (I), Light anesthetised

(II), surgical anesthetised (III) and deep anesthetised (IV) states for all

patients (n = 25). The upper and lower lines of the ‘box’ refer to the

75th and 25th percentiles of the sample; the line in the middle of the

box is the sample median, and the distance between the top and the

bottom of the box is the interquartile range. Plus signs are cases with

values that are 1.5 times greater than the interquartile range. The

notches in the box are 95 % confidence intervals around the median of

a sample
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that this method tracks the clinical state at high doses of

anesthetics with burst suppression pattern. Also, this

method achieves an overall classification accuracy of

89.4 % with a standard deviation of 3.2 % in detecting the

four anesthetised states which is the best among the all

methods. High overall accuracy reveals that the proposed

method monitors the DOA in all anaesthesia states

correctly.

The comparative analysis with the BIS Index on the

same data further substantiates the efficiency of the pro-

posed EEG measure. The range of the recorded BIS is

between 0 (suppression state of EEG) to 100 (awake).

Decreasing values indicate deepening levels of hypnosis.

We have presented the results when the boundaries are set

optimally for the classification purposes. Table 2 shows the

values of classification accuracy and sensitivity using BIS

feature along with the LDA classifier for all patients

(n = 25). It is found that BIS index fails to characterize the

light anesthetised state (65.6 %) at low concentrations of

anesthetic drug. This procedure also achieves a classifica-

tion accuracy of 80.6 ± 4.1 % compared with

85.1 ± 3.5 % for MMPE index in detecting the four

anesthetised states. This difference is statistically signifi-

cant (P \ 0.001) and suggests that MMPE index has a

stronger capacity to track the brain state during anesthesia.

Furthermore, a combined approach in which BIS measure

is supplemented with hemodynamic parameters including

HR and MAP parameters together with the LDA classifier

is presented in Table 2 for all patients (n = 25). This

approach yields 84.7 ± 3.6 % classification accuracy

compared with 89.4 ± 3.2 % for our proposed method

(MMPE, HR and MAP index) in detecting all four

anesthetised states. This difference is statistically signifi-

cant (P \ 0.001). This result also confirms that the pro-

posed EEG measure performs better than BIS index in the

same approach.

Discussion

In this work, we demonstrated that the combination of

MMPE and hemodynamic parameters had better accuracy

to classify four anesthetised states than the method of BIS

based on EEG only. The proposed method is evaluated

during cardiac surgery requiring CPB in 25 patients. The

proposed method shows little overlap between four

anesthetised states.

Comparing our method with BIS Index, we found that

the computation of BIS value is very complex and requires

more computation time than our method (Hagihira et al.

2001). The BIS incorporates three different analysis algo-

rithms, each of them giving a number of quantitative EEG

measures predominant within a limited therapeutic window

(Rampil 1998). These measures are combined into the final

BIS value through a nonlinear weighting function. While

this plan is appropriate for classification purposes, calcu-

lation requirement of this method can be particularly high.

Rather, our proposed EEG measure needs just basic com-

putation like sorting, comparative and adding which can be

calculated quickly. Also, the rejection of artifacts (low

frequency blinks, eye movement, baseline drift and non-

linear distortion of the amplitude) in BIS is very laborious

and time consuming. Artifact analysis is based on statistical

(variance and template matching) methods that require

some 2 s retrospective EEG signal epochs to identify and

remove the artifacts. This requirement is also the main

reason for the time delay in BIS response to EEG changes

(Shalbaf et al. 2012a). Our proposed method (MMPE

index) demonstrates better results to BIS index regarding

sensitivity to artifacts, as revealed from the CV value, but

without complicated artifact removal step. In MMPE

index, we convert a given EEG series into symbolic

sequences. These symbol sequences are invariant con-

cerning the types of artifacts.

Entropy is becoming a valuable tool for analysis of EEG

activity and has received much attention in recent years

(Shalbaf et al. 2012b; Li et al. 2008; Al-Kadi et al. 2013). It

has been consistently shown that anesthetised patients have

significantly lower entropy values than awake subjects

(Olofsen et al. 2008; Viertio-Oja et al. 2004; Sleigh et al.

2004). Since entropy indicates the degree of disorder in a

system, lowering of entropy values during anesthesia

shows a reduction in intra-cortical information flow. Thus,
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Rate (beats per minute) values of four states of anesthesia for all

patients (n = 25)
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in agreement with other studies, we infer that the brain

under the influence of anesthetic drug demonstrates a more

regular and less complex EEG in the frontal region than

that of awake subjects (Ferents et al. 2006; Shalbaf et al.

2013b, c).

In this paper, we introduce multiscale modified permu-

tation entropy (MMPE) index based on nonlinear dynamics

to analyze EEG series during anesthesia. This index con-

sider both overall signal variability characteristics, naturally

related to spectral content, and the signal’s complexity. This

proposed index is robust in the characterization of the burst

suppression pattern at high doses of anesthetics. To achieve

this goal, the part of EEG signal that contains EEG sup-

pressions be calculated separately by another nonlinear

algorithm and is treated as a same symbol, whereas the

permutation entropy associated with the bursts is computed

as described previously. Also, our index is proposed to

discover the complexity of EEG signal at multiple scales,

because EEG signal naturally shows complicated fluctua-

tions which originate from complex self-regulating systems

operating across multiple temporal scales.

Estimation of DOA with a single parameter such as EEG

measure does not work well all the time. Autonomic nervous

system activity should be evaluated to improve DOA mon-

itoring reliability. The most common way of determining the

activity of the autonomic nervous system is to quantify the

changes in heart rate and mean arterial pressure, which are

measured based on ECG signal and IBP respectively (Huang

et al. 2008; Sleigh and Donovan 1999). ECG and IBP signals

can be easily acquired using routine monitoring machine and

regular electrode leads and catheter. The energy level of

these signals is much higher than EEG and is more resistant

to artifact. Also, hemodynamic parameters have been cor-

related to the regulation of autonomic nervous system, which

is highly affected by surgical anesthesia; HR is increased and

MAP is decreased during surgical anesthesia. In this paper,

the identification of anesthesia stages is conducted using a

proper set of features including hemodynamic variables and

EEG measure. We have proved that a combination of vital

sign variables will distinguish between the awake, light,

surgical and deep anesthetised states more reliably than EEG

indices do in patients undergoing cardiac surgery requiring

CPB. Our research strongly suggests that hemodynamic

measures can play more roles in the monitoring of anesthetic

depth than it currently does. The following three points

should be mentioned as areas to be further explored.

First, clinical indices such as blood pressure and heart

rate have been used to assess DOA and changed signifi-

cantly from awake to unconscious state. However, these

traditional methods may vary from patient to patient

depending on the type of surgery. Also, the use of other

drugs like muscle relaxants and vasodilators make the

analysis of those clinical signs unreliable and difficult.

Second, a combination of anesthetics and opioids are

commonly used during operation. All of these drugs affect

EEG (Liley et al. 2010; Kortelainen et al. 2011a) and also

hemodynamic variables. Studying the applicability of the

proposed approach in this kind of multidrug anesthesia

could be mentioned as a possible future work.

Third, it is essentially too optimistic to presume this

proposed method can be used as an acceptable anesthetic

depth predictor. EEG and hemodynamic measures are only

an indirect indicator of anesthesia and are relatively non-

specific (Huang et al. 2008). There are many clinical fac-

tors that may affect the autonomic and central nervous

system, decreasing the predictive power of related mea-

sures. The effects of various factors on our proposed

method require supplementary analysis to clarify. How-

ever, before the true mechanism of surgical anesthesia can

be clearly explored and direct observation can be per-

formed, we can only rely on the indirect measurements to

monitor DOA. Finally, there still is no single perfect pre-

dictor so that there have been trials to combine several

modes of observations to increase the predictability of

DOA.

In conclusion, a new method for depth of anesthesia

measurement is proposed. The method is based on simul-

taneous utilization of EEG and hemodynamic parameters

(heart rate and mean arterial pressure). A novel EEG

measure combining multiscale permutation entropy infor-

mation, called MMPE, was proposed which is robust in the

characterization of the burst suppression pattern at high

doses of anesthetics. MMPE and hemodynamic features are

then combined using LDA for a measure of depth of

anesthesia. The method is validated with data recorded

from 25 patients during the cardiac surgery requiring CPB

and compared in performance to BIS index. We have

shown that our method yields 89.4 % overall accuracy for

classifying the vital sign into awake, light, surgical and

deep anesthetised states. The high accuracy highlights the

potential of the proposed method. Considering the low

calculation requirement of this method, a real time system

can be developed that assists the anesthesiologist to esti-

mate DOA quickly and accurately.
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