Skip to main content
. Author manuscript; available in PMC: 2016 Jan 31.
Published in final edited form as: Stat Appl Genet Mol Biol. 2015 Feb;14(1):93–111. doi: 10.1515/sagmb-2014-0004

Table 1.

Simulation results for high-dimensional data with clustered binary outcome generated from balanced and unbalanced designs.

Balanced Design
Estimate TRUE GMIFS/glmer LASSO/glmer glmmLasso LASSO

σ21 2 2.46 2.46 1.14 -
σ22 1 1.11 1.11 0.52 -
(Intercept) 0 −0.60(0.30) −0.60(0.30) −0.45 −0.36(0.13)
β2 1 0.97(0.27) 0.97(0.27) 0.67 0.53(0.22)
β3 −1 −1.08(0.19) −1.08(0.19) −0.41 −0.70(0.09)
β4 1 1.14(0.19) 1.14(0.19) 0.46 0.77(0.05)
β5 −1 −0.95(0.18) −0.95(0.18) −0.32 −0.60(0.16)
Prediction Error 0.123 0.123 0.118 0.310
True Positives 5 5 5 5
Time(sec) 5710.93 1887.87 6495.28 22.43

Unbalanced Design
Estimate TRUE GMIFS/glmer LASSO/glmer glmmLasso LASSO

σ21 2 3.78 3.43 1.86 -
σ22 1 1.17 1.15 0.56 -
(Intercept) 0 −0.63(0.35) −0.63(0.40) −0.52 −0.41(0.17)
β2 1 - - 0.30 -
β3 −1 −0.77(0.18) −0.77(0.05) −0.19 −0.48(0.27)
β4 1 1.18(0.20) 1.10(0.01) 0.49 0.68(0.10)
β5 −1 −0.82(0.17) −0.78(0.05) −0.27 −0.47(0.28)
β415 0 - −0.46(0.21) −0.05 −0.29(0.08)
β440 0 - - −0.02 -
β751 0 0.58(0.17) - 0.09 -
Prediction Error 0.137 0.127 0.149 0.310
True Positives 4 4 5 4
Time(sec) 5121. 20 1303.38 9559.24 25.82

TRUE indicates the underlying parameter value; GMIFS logistic model with random effects (GMIFS/glmer), LASSO logistic model with random effects (LASSO/glmer), glmmLasso, LASSO indicate the parameter estimates (and standard error if possible) in the optimal model using four approaches, respectively. The optimal model for GMIFS logistic model with random effects glmer, LASSO logistic model with random effects and LASSO were selected according to the ‘elbow criterion’ in BIC and the optimal model for glmmLasso was selected according to the minimal BIC.