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In the current issue of Genetics in Medicine, Phillips et al.1 report a thorough systematic 

review of published cost-utility analyses (CUAs) of clinical molecular genetic tests, or 

personalized medicine tests as the authors refer to them. By analyzing the Tufts Cost-

Effectiveness Analysis Registry, the authors identified 59 CUAs published from 1995 

through to 2011 that were considered to fulfill the study criteria. One of those, however, 

evaluated the use of a biomarker, transferrin saturation, to test for hereditary 

hemochromatosis and was published in 1995,2 before the discovery of HFE in 1996. All the 

studies in the Cost-Effectiveness Analysis Registry use quality-adjusted life-years (QALYs) 

as the metric of health outcomes. The Cost-Effectiveness Analysis Registry is a 

comprehensive database of published CUAs that lends itself to systematic reviews with a 

high degree of completeness of coverage. The Cost-Effectiveness Analysis Registry has 

been used in numerous published analyses to study the evolution of economic evaluation in 

various areas of health, but this is the first analysis of the registry to focus on genomic or 

personalized medicine. Previous systematic reviews on economic evaluations of genetic 

testing have included other methods of economic evaluations in addition to CUA but may 

have had lesser sensitivity in identifying relevant publications.

The authors report that 20% (n = 12) of the 59 CUA studies in their sample (including a 

CUA of phenotypic cascade screening for hemochromatosis)2 reported negative incremental 

direct medical costs, i.e., cost saving. This is similar to the fraction of clinical preventive 

services recommended by the US Preventive Services Task Force calculated to be cost 

saving.3 An additional 60% of incremental cost-effectiveness ratios (ICERs) were positive, 

i.e., not cost saving, and less than US$100,000 per QALY, a threshold for assessing the cost 

effectiveness commonly cited in the US publications.

Phillips et al.1 acknowledge a lack of consensus for a single threshold for ICERs and 

therefore report estimates for two thresholds, US $50,000 and US $100,000 per QALY. 

Whether any fixed ICER threshold makes sense as a decision rule is debatable,4 but even 

without a decision rule, an ICER can inform assessments of the value of interventions. 

Before comparing ICER estimates from different years, one should adjust for differences in 
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purchasing power resulting from price inflation. Without adjusting for inflation, a fixed 

ICER threshold will classify more estimates from older studies as cost effective relative to 

recent estimates.

Despite the most favorable findings of the cost-utility analyses summarized by Phillips et 

al.,1 the authors were appropriately careful not to make generalizations about the cost 

effectiveness of genetic tests in personalized medicine. They noted that just 6 of the 59 tests 

reviewed were classified by the Centers for Disease Control and Prevention as supported by 

evidence-based recommendations from groups such as the Evaluation of Genomic 

Applications in Practice and Prevention Working Group (EWG), the US Preventive Services 

Task Force, and the National Institute of Health and Clinical Excellence in England. The 

other 53 tests may or may not have adequate evidence of effectiveness. This is a crucial 

point, because, as has been noted by Conti et al.,5 without evidence of effectiveness, there 

can be no cost effectiveness. One can have superb modeling with a moderate or high score 

on a quality assessment for economic evaluations, but if the underlying data needed to 

quantify incremental health outcomes are inconclusive, conclusions about cost effectiveness 

should be treated with caution.

Phillips et al.1 state that all the six tests defined by the Centers for Disease Control and 

Prevention as having demonstrated clinical utility, i.e., tier 1 genomic applications with 

evidence-based recommendations, had CUA estimates. Clinical utility means net benefit to 

patients, i.e., positive patient outcomes (benefits) are expected to exceed negative patient 

outcomes (harms). A test per se does not have clinical utility apart from a clinical 

application. In particular, one of the six tests cited by Phillips et al.1 is testing for Lynch 

syndrome, recommended by the EWG.6 As Table 2 in their study makes clear, the EWG 

endorsement is specific to “screening newly diagnosed cases of colorectal cancer for Lynch 

syndrome and cascade testing of relatives of affected Lynch syndrome cases.” Cost-utility 

estimates were available for a different Lynch syndrome testing strategy, one in which 

unselected adults unaffected by cancer would be offered gene sequencing based on the 

knowledge of their family history.7 This testing approach, which presumes the hypothetical 

availability of cost-free and perfectly reliable family history information in a primary-care 

setting, is not a tier 1 application with an evidence-based recommendation.

Two cost-effectiveness analyses of the Lynch syndrome testing approach endorsed by the 

EWG were published during the study period.8,9 Both reported that universal testing of 

newly diagnosed colorectal cancer patients is likely to cost less than US $50,000 per life-

year saved, although the two studies differed with respect to the numbers of family members 

that would have to be tested per proband for testing to be considered cost effective at that 

threshold. The cost-effectiveness ranking of interventions that reduce premature death is 

typically unaffected if one uses life-years saved in place of QALYs.10

The most common disease area among the 59 CUAs is cancer (n = 23), followed by 

infectious disease (n = 9), coagulation (n = 8), and mental health (n = 4). Five of the 

coagulation CUAs evaluated genetic testing for thrombophilias such as the factor V Leiden 

variant on F5 and prothrombin 20210G>A variant on F2, and three CUA-assessed 

pharmacogenetic testing for warfarin dosing. None of these studies evaluated a test with 
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demonstrated clinical utility as defined by Phillips et al.1 Indeed, the EWG recommends 

against testing patients with idiopathic venous thromboembolism for factor V Leiden or 

prothrombin variants because long-term prophylaxis to reduce the risk of recurrence offers 

similar benefits to patients with and without one of these mutations. Moreover, the EWG 

recommends against testing for asymptomatic family members because the harm of bleeding 

from prolonged use of anticoagulation by factor V Leiden or prothrombin heterozygotes 

without another risk factor might exceed the benefit of lower likelihood of venous 

thromboembolism occurrence.11 Without clear evidence of clinical utility, findings about the 

cost utility of testing are at best inconclusive.

The use of pharmacogenetic testing to guide warfarin dosing to minimize both bleeding and 

clotting appears promising based on the evidence that such testing reduces the time required 

to reach the therapeutic range, and it has received the US regulatory approval.5 A recent 

review12 identified seven cost-effectiveness analyses or CUAs of CYP2C9 and VKORC1 

genotype-guided warfarin dosing published from 2004 through to 2010. Of the four 

CUAs,12–15 three (refs. 13, 14, and 15) were cited by Phillips et al.1 All the four CUAs 

yielded ICER estimates in excess of US $50,000 per QALY, although two reported point 

estimates between US $50,000 and US $100,000 per QALY.14,15 Even though these studies 

suggest that pharmacogenetic testing for warfarin dosing might be cost effective at the 

$100,000 per QALY level, direct evidence that genetic testing to guide warfarin dosing 

reduces bleeding (a side effect) and clotting (the objective of anticoagulation) is needed to 

assess its cost effectiveness.15 Two other CUAs estimated ICERs in excess of US $150,000 

per QALY,13,16 findings that suggest that testing might not be cost effective except in higher 

risk patient subgroups.12

Phillips et al. are concerned that many genetic tests currently used in clinical medicine, as 

well as emerging tests not yet introduced, have not been formally evaluated for cost 

effectiveness. However, it is also true that most genetic tests and applications have not been 

evaluated for clinical effectiveness. It may be wise to wait for evidence of a testing 

application’s effectiveness in terms of improved patient outcomes before assessing its cost 

effectiveness. As stated by Rogowski et al.,17 if the required levels of evidence are 

undefined or excessively low, this could prematurely move technologies toward practice, 

with potentially adverse consequences for the patients and the health-care system.

Even without conclusive evidence of clinical utility from randomized trials, decision 

analytic models without costs, also known as risk–benefit models, may help to identify the 

factors that are most likely to be influential in determining net benefit to patients. Such 

models can also help in identifying the types of clinical information that are most needed for 

evidence-based decisions on clinical utility.18–20

Similarly, value of information analytic methods can help to prioritize research investments 

by calculating the potential economic value of reducing the probability of making a wrong 

decision based on currently available evidence and calculations of cost effectiveness.5,17 A 

wrong decision can entail either approving a test that has no positive effect on outcomes or 

conversely, rejecting a test the use of which would improve health outcomes. A value of 

information analysis calculates the economic gain from optimized coverage decisions 
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resulting from more accurate predictions of effectiveness and cost effectiveness. A study 

that developed value of information analyses for multiple testing strategies in cancer 

genomics found that the value of information calculations led stakeholders to appreciate the 

value of gathering new research data to determine whether a widely used genomic test 

actually provides clinical utility.21

The primary constraint in understanding the economic value of genetic testing in medicine 

may not be lack of formal economic evaluations, but rather the unmet need for reliable, 

reproducible data on clinical outcomes. Demonstrated clinical utility is the essential 

foundation of reliable cost-utility estimates.
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