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Chitosan/siCkip-1 biofunctionalized 
titanium implant for improved 
osseointegration in the 
osteoporotic condition
Li Zhang1,*, Kaimin Wu3,*, Wen Song1, Haiyan Xu4, Ran An4, Lingzhou Zhao2, Bin Liu4 & 
Yumei Zhang1

Biofunctionalization with siRNA targeting the key negative modulators of bone turnover involved in 
the molecular mechanism of osteoporosis, such as casein kinase-2 interacting protein-1 (Ckip-1), may 
lead to enhanced Ti osseointegration in the osteoporotic condition. In this study, even siRNA loading 
was accomplished by the thermal alkali (TA) treatment to make the Ti ultrahydrophilic and negatively 
charged to facilitate the physical adsorption of the positively charged CS/siR complex, designated 
as TA-CS/siR. The intracellular uptake of the CS/siR complex and the gene knockdown efficiency 
were assessed with bone marrow mesenchymal stem cells (MSCs) as well as the green fluorescent 
protein (GFP) expressing H1299 cells. In vitro osteogenic activity of TA-CS/siCkip-1 targeting Ckip-1 
was assessed with MSCs. In vivo osseointegration of TA-CS/siCkip-1 was assessed in the osteoporotic 
rat model. TA-CS/siR showed excellent siRNA delivery efficiency and gene silencing effect. TA-CS/
siCkip-1 significantly improved the in vitro osteogenic differentiation of MSCs in terms of the 
enhanced alkaline phosphatase and collagen product and extracellular matrix mineralization, and led 
to dramatically enhanced in vivo osseointegration in the osteoporostic rat model, showing promising 
clinical potential for the osteoporotic condition application. TA-CS/siR may constitute a general 
approach for developing the advanced Ti implants targeting specific molecular mechanism.

Titanium (Ti) implants have been widely applied as bone substitutes, orthopedic and dental implants, as 
well as many other biomedical appliances due to their good mechanical property, excellent biocompati-
bility and unique osseointegration capacity1. A high 10-year survival rate of about 95% has been achieved 
for the Ti based bone implants in healthy patients2. However, they still suffer from deficient bioactivity 
that may lead to implant failure, especially when encountering some complicated conditions that do 
not favor the osseointegration establishment. For example, osteoporosis, one of the major public health 
problems around the world characterized by excessive bone loss and low bone formation3, can severely 
compromise the primary stability and osseointegration establishment of Ti implant4. Then specifically 
designed Ti implant with sufficient osseointegration establishing ability in the osteoporotic condition is 
urgently in need. To that end, biofunctionalization represents a promising approach5,6.
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Currently, biofunctionalization of biomaterials has been mainly conducted with extracellular matrix 
components, growth factors, peptides, etc., which do not directly touch the molecular mechanism 
underlying the osteoporosis occurrence and development thereby generating limited biological effect6. 
Biofunctionalization to target the key molecular events in osteoporosis shall more robustly improve the 
osseointegration in the osteoporotic condition. It is found that some negative bone turnover modula-
tors play key roles in the osteoporosis occurrence and development thanks to the development in the 
molecular mechanism study of osteoporosis. Meanwhile, short interfering RNA (siRNA, siR) delivery, a 
highly efficient and specific gene silencing technology, has been greatly advanced, which is considered to 
be a promising approach for the treatment of various diseases7. Then it is feasible to develop the siRNA 
biofunctionalized Ti implant targeting the negative bone turnover modulator involved in osteoporosis 
for enhanced osseointegration in the osteoporotic condition. For example, casein kinase-2 interacting 
protein-1 (Ckip-1) is found to be involved in osteoporosis by negatively regulating the bone turnover 
via specifically upgrading the E3 ligase activity of Smurf18. The Ckip-1 knockdown by siRNA notably 
increases the bone mass and enhances structure of trabecular bone in both healthy and osteoporotic 
rats9,10. Thus, Ckip-1 siRNA (siCkip-1) is a good candidate for the implant biofunctionalization.

Though there are spgeveral reports on the siRNA biofunctionalization of tissue engineering scaf-
folds11–14 and our group have reported the microRNA functionalized Ti implant15,16, the siRNA func-
tionalized Ti implant has not been reported yet. There are three crucial issues to be considered when 
developing the siRNA biofunctionalized Ti implant, namely the suitable siRNA vector selection, loading 
capacity increase of the Ti implant as well as siRNA loading strategy. A vector of high delivery efficiency 
and simultaneously satisfactory biocompatibility, safety and storability is required. The commercial cati-
onic lipid vector with high delivery efficiency is not an ideal choice for biofunctionalization application 
due to cytotoxicity17. Chitosan, as a natural degradable cationic polymer with nice merits of biocompati-
bility and cost economy, has recently been extensively studied as oligonucleotide vector. The results show 
that chitosan can flexibly bring abundant amount of siRNA with ignorable cytotoxicity18,19, thus consti-
tuting a good vector candidate. It would be ideal to increase the Ti implant loading capacity and facilitate 
an even and robust siRNA loading via one simple step. Excitingly, the thermal alkali (TA) treatment may 
cater for these requirements. The uniform microporous/nanofibrous structure on Ti generated by the 
TA treatment20,21 shall lead to increased loading capacity, and meanwhile its ultrahydrophilic and neg-
atively charged nature20,21 will facilitate the adsorption and retention of the positively charged chitosan/
siRNA (CS/siR) complex22. It is noteworthy that the TA treated Ti per se shows bone formation favoring 
property to stimulate hydroxyapatite deposition and promote osteoblast adhesion and proliferation20,23. 
Thus, excellent bioactivity and satisfactory osseointegration can be expected from the CS/siCkip-1 bio-
functionalized TA Ti implant (TA-CS/siCkip-1). In this study, TA-CS/siCkip-1 was developed, whose in 
vitro effect on the primary bone marrow mesenchymal stem cells (MSCs) and in vivo osseointegration 
in the osteoporostic rat model were evaluated.

Materials and Methods
Commercial pure Ti foils (10 ×  10 ×  1 mm3) and Ti rods (ø1.56 mm ×  10 mm) were provided by 
Northwest Institute for Nonferrous Metal Research, China. Chitosan (150 kDa, 95% deacetylation) was 
obtained from HEPPE MEDICAL, Germany. siCkip-1 (sense: 5′ -GGACUUGGUAGCAAGGAAATT-3′ , 
antisense: 5′ -UUUCCUUGCUACCAAGUCCTT-3′ ) labeled with Cy3 or not, negative control siRNA 
duplex targeting murine TNF-α  (siNC, sense: 5’-pGUCUCAGCCUCUUCUCAUUCCUGct-3
’, antisense: 5’-AGCAGGAAUGAGAAGAGGCUGAGACAU-3’), siRNA duplex targeting enhanced 
green fluorescent protein (EGFP) (siGFP, sense: 5’-GACGUAAACGGCCACAAGUUC-3’, antisense: 
5’-ACUUGUGGCCGUUUACGUCGC-3’) labeled with Cy3 or not, and the real-time polymerase chain 
reaction (real-time PCR) primer were bought from Dharmacon. Hoechst Dye, Bovine serum albumin 
(BSA) and sodium dodecyl sulfate (SDS) were bought from Invitrogen Corporation. Sirius red, saturated 
picric acid and alizarin red, paraformaldehyde, β -glycerophosphate, ascorbic acid, dexamethasone and 
pelltobarbitalum natricum were obtained from Sigma. BCA protein quantification kit was obtained from 
Novagen. PrimeScript RT reagent kit and SYBR Premix Ex Taq™ II were obtained from TaKaRa. RPMI 
media, fetal bovine serum (FBS), penicillin/streptomycin, Geneticin, α  minimum essential medium 
(α -MEM), fetal calf serum (FCS) and phosphate buffered saline (PBS) were purchased from Gibco. Cell 
count kit-8 (CCK-8) and BCIP/NBT ALP color development kit were bought from Beyotime.

The Ti samples were wet polished with the SiC paper from mesh 400 to mesh 1200 (designated as 
PT), followed by ultrasonic cleaning in acetone, alcohol and deionized water successively and then dried. 
For TA treatment, the PT samples were soaked in 5 M sodium hydroxide aqueous solution at 60 °C for 
24 hours. Afterwards, they were ultrasonically washed with deionized water thoroughly and finally dried 
at 60 °C in air, with the samples formed designated as TA.

The CS/siR complex was formulated according to a previous report24. In concise, CS was totally dis-
solved in 0.2 M sodium acetate buffer (0.8 mg/ml, pH 5.5) and mixed vigorously with 20 μ M siRNA at an 
N/P ratio of ~60. The hydrodynamic size and the zeta potential of the CS/siR complex were examined 
by dynamic light scattering (DLS) using a Malvern zeta sizer (Malvern Instrumentation Co.) according 
to the manufacturer’s instruction. The particle size and zeta potential values were calculated from five 
measurements per sample. To load the CS/siR complex onto the TA Ti samples, the TA Ti samples were 
immersed in 250 μ l of the CS/siR complex solution at 4 °C for 24 hours. Afterwards, the Ti samples were 
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rinsed gently with acetate buffer and dried at 4 °C to finally get the CS/siR biofunctionalized TA Ti 
implant (TA-CS/siR).

The surface morphology of the Ti samples was observed by scanning electron microscopy (SEM, 
Hitachi S-4800). The surface of Ti-CS/siCkip-1 with Cy3 labeled siCkip-1 was scanned by confocal laser 
scanning microscopy (CLSM, Olympus FV1000). The surface wettability of the Ti samples (5 samples per 
group) was evaluated. The images of the pure water droplet on the Ti samples were captured 10 seconds 
after contacting by an imaging analysis microscope (Camscope, Sometech Inc.) and the contact angle 
was measured by analyzing the drop shape using the DSA1 software (KRUSS).

To assess the protein absorption ability of the Ti samples, they (5 samples per group) were immersed 
in 1 ml of 0.5 mg/ml BSA solution for 24 hours. Then the adsorbed proteins were eluted by 250 μ l of 1% 
SDS and the BSA amount in the eluted solution was quantified by the BCA protein quantification kit.

The CS/siGFP complex intracellular uptake and gene knockdown efficiency were assessed with siGFP 
and the GFP expressing H1299 cells that were maintained in RPMI media containing 10% FBS, 1% pen-
icillin/streptomycin and 0.2% Geneticin. The CS/siCkip-1 complex intracellular uptake and gene knock-
down efficiency were assessed with siCkip-1 and MSCs.

The osteogenic ability of TA-CS/siCkip-1 was evaluated with the MSCs. The MSCs were isolated as 
previously reported15,25 and maintained in α -MEM with 10% FCS in a humidified atmosphere with 5% 
CO2 at 37 °C. The animal experiment was approved by the Animal Research Committee of the university 
(No.2013-kq-004) and conducted in accordance with the international standards on animal welfare. The 
medium was changed every 3 days. The cells at passage 2–4 were used in the experiments.

The H1299 cells were seeded on TA-CS/siGFP with Cy3 labeled siGFP placed in the 24-well cell 
culture plate at a density of 2 ×  104 cells/well and cultured for 24 hours. The MSC cells were seeded on 
TA-CS/siCkip-1 with Cy3 labeled siCkip-1 placed in the 24-well cell culture plate at a density of 2 ×  104 
cells/well and cultured for 24 hours. Afterwards, the cell cultures were fixed with 1% paraformaldehyde 
and washed in PBS. The cell nucleus was stained with the Hoechst Dye. Finally, the fluorescence signals 
of Hoechst and Cy3 were observed by confocal laser scanning microscopy.

With TA-CS/siGFP and the H1299 cells, the knockdown efficiency of TA-CS/siR can be easily assessed 
by monitor the GFP expression of H1299 cells. The H1299 cells were seeded on the Ti samples placed in 
the 24-well cell culture plates at a density of 2 ×  104 cells/well. After 3 days of culture, the GFP expres-
sion of the H1299 cells was captured by inverted fluorescence microscopy (DMI3000B, Leica). The GFP 
fluorescent intensity was analyzed by Image J.

The gene knockdown efficiency of siCkip-1 on the MSCs was evaluated using the real-time PCR. 
Briefly, 48 hours after the cell seeding, the total RNA was isolated using Trizol reagent (Invitrogen). 
Then, RNA of 2 μ g from each sample was converted to cDNA using a PrimeScript RT reagent kit 
(TaKaRa). The analysis was performed on the CFX96™ Real Time RT-PCR System with SYBR Premix 
Ex Taq™ II (TaKaRa). The Ckip-1 expression was normalized to that of the housekeeping gene 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The primers pairs were as follows: Ckip-1 (sense: 
5’-CTATCCCAGAGGGACACGC-3’, antisense: 5’-ATCTCCCAGTCCCTGAACCT-3’, GAPDH: (sense: 
5’-GGCACAGTCAAGGCTGAGAATG-3’, antisense: 5’-ATGGTGGTGAAGACGCCAGTA-3’).

The MSCs were seeded on the Ti samples (5 samples per group at each time point) at a density of 
2 ×  104 cells/well. At 1, 4 and 7 days, the cell proliferation was evaluated quantitatively using CCK-
8. Briefly, the culture medium was removed and the cells were rinsed slightly with PBS. Then, 360 μ l 
medium and 40 μ l CCK-8 solution was added to each well and incubated for 2 hours at 37 °C. Finally, the 
supernatant was collected to determine the absorbance at 450 nm using a spectrophotometer (Bio-Tek).

The MSCs were seeded on the Ti samples placed in 24-well plates at a density of 2 ×  104/well. For 
osteogenic induction, 3 days post-seeding the cell culture medium was shifted to the osteogenic medium 
containing 10 mM β -glycerophosphate, 50 μ g/ml ascorbic acid and 10 nM dexamethasone. At predeter-
mined time points, the alkaline phosphatase (ALP) production, collagen secretion and extracellular 
matrix (ECM) mineralization were measured to evaluate the osteogenic differentiation of MSCs on the 
Ti samples (5 samples per group for each assay). After 7 days of culture in the osteogenic medium, the 
Ti samples with cells were washed with PBS and fixed with 4% paraformaldehyde. The ALP production 
was stained by the BCIP/NBT ALP color development kit for 15 minutes and the images were taken. The 
collagen secretion on the Ti samples was quantified using a method described before26. After 14 days 
of culture in the osteogenic medium, the Ti samples with the cells were washed, fixed and stained with 
0.1wt% sirius red in saturated picric acid for 18 hours. The unbound stain was washed with 0.1 M acetic 
acid before the images were taken. For quantitative analysis of the collagen production, 0.2 M NaOH/
methanol (1:1) was used to dissolve the stain to measure the absorbance at 540 nm. ECM mineralization 
was evaluated by alizarin red staining27. Briefly, after incubation for 21 days in the osteogenic medium, 
the Ti samples were washed with PBS, fixed and stained with 1 wt% alizarin red for 10 minutes. After 
thorough washing with distilled water, images were taken. To quantify the ECM mineralized nodules, 
10% cetylpyridinium chloride in 10 mM sodium phosphate was used to dissolve the stain and the absorb-
ance values at 620 nm were determined.

The animal experiment was approved by the Animal Research Committee of the Fourth Military 
Medical University (No.2013-kq-004) and conducted in accordance with the international standards on 
animal welfare. Female Sprague-dawley rats weighing 200~230 g were used in this study. They were kept 
in individual cages and offered with standard diets. After 10 days of adaptation to the environment, they 
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underwent bilateral ovariectomy (OVX) and three months later the osteoporotic model was established. 
The SHAM control only had the same mass of fat tissue excised during the surgery. To confirm the suc-
cessful establishment of osteoporosis model, three months after the OVX and SHAM surgeries, 10 rats 
of the OVX and SHAM group were sacrificed to obtain the femurs for micro-CT scanning (Inveon CT, 
Siemens). The quantitative parameters including bone volume ratio (BV/TV), trabecular thickness (Tb.
Th), trabecular separation (Tb.Sp) and trabecular number (Tb.N) were obtained. Once established, the 
osteoporotic rats were randomly divided into four groups to receive TA-CS/siCkip-1 and the controls 
including TA-CS/siNC, TA-CS and TA. The distal femur metaphysis was chosen as the implantation site. 
Every rat received two implants of the same group. Briefly, the rats were anesthetized by intraperitoneal 
injection of 1% pelltobarbitalum natricum (4 mg/kg) and fixed in the supine position. An incision of 
about 15 mm long was made in the medial knee and the muscle tissue was separated to expose the femur 
bone surface. A hole parallel to the long axis of the femur was made using a 1.56 mm rotary drill cooled 
with saline solution. Finally, the implants were pressed into the medullary cavity until they reach the 
site below the growth plate and then the muscle tissue and skin was sutured separately. Antibiotics were 
administrated for 3 consecutive days post-surgery.

Micro-CT analysis was also conducted to assess the new bone formation around the implants. At 3 
months after implantation, the animals were sacrificed to retrieve the femurs with implants in (5 samples 
per group). Region of interest (ROI) was defined as a ring with a 200 μ m radius starting from the implant 
surface in the coronal plane. The two- (2-D) and three-dimensional (3-D) views of the implant with the 
surrounding new bone were reconstructed. The quantitative parameters including BV/TV, Tb.Th, Tb.Sp 
and Tb.N of the ROI were obtained.

After being harvested 1 and 3 months after implantation, the femurs (5 per group) with implants in 
were fixed dehydrated and embedded in methylmethacrylate. Then blocks were cut parallel to the long 
axis of femurs with running water cooling and sections of about 70 μ m in thickness were obtained. The 
sections were polished and stained with 1% acid fuchsine and 0.5% saturated picric acid (Van-Greson 
staining, VG staining) for histological observation by stereomicroscopy (M80, Leica).

After harvest 3 months after implantation, the femurs with implants in (5 per group) were fixed 
with 4% paraformaldehyde for one week. They were cleaned by running water, dehydrated in gradient 
ethanol (50–100%) and embedded in methylmethacrylate. Then a macro-cutting and grinding system 
(SP1600&SP2600, Leica) was used to cut the femurs into sections parallel to the long axis of the implants. 
Finally, the cross-section samples of implant/bone interface were treated with conductive coating and 
scanned by SEM. The line-profiles of Ti, C, O, Ca P in the direction perpendicular to the interface were 
measured by energy dispersive X-ray spectroscopy (EDX, Hitachi).

Biomechanical pull-out test was carried out to evaluate the bonding strength between implant and 
bone with a material testing system (Shimadzu, AGS-10kNG). Immediately after being harvested 1 and 3 
months after implantation, the distal metaphysis of the femurs with implants in (5 per group) was shaved 
to expose 3 mm long of the implant. The exposed implant part was embedded with self-curing plastic 
for fixing it to the testing machine. During the test, a pulling force was given along the long axis of the 
femur at the speed of 1 mm/min and the load-displacement curve was recorded. The maximum pull-out 
force can be obtained from the curve and the shear strength can be calculated accordingly.

Data were expressed as mean ±  standard deviation (SD). Statistical analyses were performed using 
the statistics package SPSS 17.0 (SPSS, USA). Comparison among groups was made using the one 
way ANOVA and Student-Newman-Keuls post hoc tests. Difference was considered to be significant at 
p <  0.05.

Results
The hydrodynamic size of CS/siR complex was measured (Fig. 1). The size of the CS/siR complex var-
ies from 100 to 1000 nm with an average value of ~235.9 ±  25.6 nm. The mean zeta potential of CS/siR 
complex was about 13.7 ±  2.77 mV.

Figure 1.  Particle size of CS/siR complex. 
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The surface morphology of PT, TA and TA-CS/siR was displayed by SEM (Fig. 2). PT owns a relative 
smooth surface structure with normal grinding scratch. TA possesses a microporous/nanofibrous net-
work structure with greatly enlarged surface area compared to PT and the pore diameters range from 100 
to 400 nm, which were in consistence with the findings in previous literatures28,29. TA-CS/siR formed by 
24 hour soaking in the CS/siR complex solution is evenly covered with amorphous CS/siR complex. The 
CS/siR complex could enter into the microporous and the interfibrous space.

To observe the distribution of the CS/siR complex on TA-CS/siR, the Cy3-labeled siCkip-1 was used 
to fabricate the TA-CS/siR sample followed by inspection by CLSM (Fig.  3). The TA-CS/siR surface 
was scanned layer by layer from the surface to bottom of the coating with a 400 nm interlayer interval 
(Fig. 3a-g). The fluorescence images further corroborated that the CS/siR complex disturbed evenly on 
the Ti surface and went into deeper area of the microporous TA structure. The thickness of the CS/siR 
complex layer deposited on the TA surface is estimated to be about 2000 nm.

The water contact angle of TA-CS/siCkip-1, TA-CS, TA and PT was assessed (Fig.  4,A). The water 
contact angle for PT was 65 ±  8°. In respect of TA, the water droplets spread very quickly once contact-
ing the Ti surface, resulting in undetectable contact angle. TA-CS/siCkip-1 and TA-CS generated water 
contact angles of 30 ±  3°, which was much higher compared to that of TA but still significantly lower 
than that of PT.

The protein adsorption ability of the samples was assessed by immersion in the BSA solution for 
24 hours (Fig.  4,B). TA induced obviously lower protein adsorption amount (45 ±  5 μ g/cm2) compared 
to PT (80 ±  8 μ g/cm2). However, TA-CS and TA-CS/siCkip-1 resulted in significantly enhanced protein 
adsorption amounts (100 ±  12 μ g/cm2) that were even higher than those induced by PT.

Figure 2.  SEM observation of TA-CS/siR, TA and PT. 
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The H1299 cells were seeded on TA-CS/siGFP fabricated with the Cy3-labeled siGFP and 24 hours 
later the cellular internalization of CS/siGFP complex was observed by CLSM (Fig. 5,A). The fluorescent 
signals of siGFP (red) mainly locate surrounding the cell nucleus (blue). On the other area of Ti surface 
without cells, the fluorescent signals of siGFP are nearly undetectable, indicating a successful cellular 
internalization of the CS/siGFP complex. Similar phenomenon was observed for the intracellular uptake 
of asiCkip-1 by MSCs (Fig. 5,B). The findings were in consistence with results in a previous report30.

To assess the gene knockdown efficiency of TA-CS/siR, the GFP expressing H1299 cells were cultured 
on TA-CS/siGFP for 3 days to observe the GFP expression change (Fig.  5,C). The GFP expression by 
H1299 on TA-CS/siGFP was significantly lower compared to that on the three controls. The fluorescent 
intensity of the images in Fig.  5,C was semi-quantitatively analyzed by ImageJ (Fig.  5,D), which more 
clearly displays that TA-CS/siGFP induced significantly lower GFP expression compared with other three 
controls, about one tenth of the TA control. Meanwhile, an obvious GFP expression knockdown was 
also observed on TA-CS and TA-CS/siNC compared to PT, which shall be related to the non-specific 
gene knockdown effect of CS. To assess the gene knockdown efficiency of TA-CS/siCkip-1 on MSCs, the 

Figure 3.  Fluorescence CLSM images of TA-CS/siCkip-1 with the Cy3-labeled siCkip-1 (red colour) from 
top to bottom (a-g) with an interlayer distance of 400 nm. 

Figure 4.  (A) Water contact angle measured 10 seconds after contacting the Ti surfaces and (B) BSA 
protein adsorption amount measured after 24-hour immersion in 1 ml BSA solution of 0.5 mg/ml for 
TA-CS/siCkip-1, TA-CS, TA and PT. 
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Figure 5.  (A) Cellular internalization of siGFP (red) from the Ti surfaces . The cell nucleus was stained by 
Hoechst Dye (blue). (B) Cellular internalization of siCkip-1 (red) from the Ti surfaces. The cell nucleus was 
stained by Hoechst Dye (blue). (C) GFP expression by the H1299 cells after 3-day culture on the Ti samples. 
(D) The average GFP fluorescent intensity of cells in Fig. 5, C by Image J. *p <  0.05 vs TA, #p <  0.05 vs TA-
CS, @p <  0.05 vs TA-CS/siNC. (E) Relative Ckip-1 mRNA expression levels measured by real-time PCR 48 
hours after culture on the Ti samples. *p <  0.05 vs TA, #p <  0.05 vs TA-CS, @p <  0.05 vs TA-CS/siNC.
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relative expression of Ckip-1 by MSCs on different substrates 48 hours after incubation was evaluated 
using the real-time PCR (Fig.  5,E). The intracellular Ckip-1 mRNA level in MSCs was significantly 
down-regulated by TA-CS/siCkip-1 compared to the other control groups, being about 40% lower than 
that in the siNC control group.

The proliferation of MSCs on the Ti samples measured by the CCK-8 assay is shown in Fig. 6. The 
cell proliferation on all Ti samples increased with the incubation time from 1 to 7 days. Compared to PT, 
TA led to significantly higher cell proliferation. No apparent difference in cell proliferation was observed 
among TA, TA-CS, TA-CS/siNC and TA-CS/siCkip-1 at all time slots, demonstrating that the biofunc-
tionalization process did not compromise the cytocompatibility of the Ti implant.

The osteogenic differentiation of MSCs on the Ti samples was evaluated in terms of the ALP and 
collagen secretion and ECM mineralization, which showed similar trend among the different Ti samples 
(Fig. 7). TA-CS/siCkip-1 generated much more ALP and collagen product and better ECM mineraliza-
tion than all the controls. TA, TA-CS, TA-CS/siNC induced similar ALP and collagen product and ECM 
mineralization which were higher than those induced by PT. According to the semi-quantitative data, 
the collagen amount and ECM mineralization yielded by TA-CS/siCkip-1 was about 1.5 times of those 
on TA, TA-CS and TA-CS/siNC and 2 times of those on PT.

Three months after the OVX surgery, the micro-CT analysis was performed to confirm the successful 
establishment of the osteoporotic model, which is shown in Figure S1. The sagittal 2-D graphs and the 
3-D reconstructed views of the distal femur metaphysis show that the OVX rats have significantly lower 
bone mineral density, looser trabecular bone and larger gap between trabecular bones than the SHAM 
control. The quantitative data display that the OVX rats have significantly lower BV/TV and TB.N but 
higher TB.Sp compared to the SHAM control. The data explicitly demonstrate the successful establish-
ment of the osteoporotic model.

Three months after implant insertion in the OVX rats, the new bone formation around the Ti implants 
was assessed by the micro-CT scanning (Fig. 8). The transverse 2-D graphs and the 3-D views show the 
details of the bone response around the implant (Fig.  8,A). The new bone formation around TA-CS/
siCkip-1 is far better than the controls. A continuous and thick layer of new bone is observed around 
TA-CS/siCkip-1. The quantitative analysis reveals that TA-CS/siCkip-1 can enormously increase BV/TV 
and the trabecular number, and decrease the trabecular spacing (Fig. 8,B).

The hard tissue sections with VG staining are exhibited in Fig 9. As early as 4 weeks after implanta-
tion, the bone formation on the controls was just sporadic, but that on TA-CS/siCkip-1 was continuous. 
With the further elongation of the healing time to 12 weeks, on the controls there was no obvious 
increase for the bone formation and meanwhile the bone continuity and bone-implant contact were 
not improved when compared to the results of 4 weeks. However, on TA-CS/siCkip-1 the volume of the 
newly formed bone increased significantly after 12 weeks to form a continuous and thick bone layer.

The cross-section morphology of the bone/implant interface was inspected by SEM (Fig. 10). The dis-
tribution of the elements including Ti, C, O, Ca and P across the bone/implant interface was displayed by 
EDX line scanning. A good integration of the implants and the surrounding bone was observed without 
apparent disconnection. The line-scanning indicated that TA-CS/sickip-1 has the maximum range of 
newly formed bone around implants, as indexed by the Ca and P rich substance.

The maximal pull-out force and ultimate shear strength were used to index the bone/implant bond-
ing strength (Table 1). As expected, the bone/implant bonding strength increased with the healing time 
from 4 to 12 weeks. TA-CS/siCkip-1 showed obviously higher maximal pull-out force and ultimate shear 
strength compared to the three controls at both time slots.

Figure 6.  Proliferation of MSCs on the Ti samples measured by the CCK-8 assay at 1, 4 and 7 days . 
*p <  0.05 compared with PT.
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Discussion
Advanced Ti implant with enhanced osseointegration in the osteoporotic condition is urgently in need 
and thus a hot topic of research31. Biofunctionalization with siRNA to target specific molecular events 
involved in the osteoporosis shall be an effective approach for developing such implant. In this study, 
TA-CS/siR was developed by the TA treatment followed by physical adsorption of the CS/siR complex, 
which gave rise to an even siRNA loading onto the microporous/nanofibrous Ti surface. TA-CS/siR 

Figure 7.  (A) ALP staining after 7 days of osteogenic induction; (B) Collagen staining and semi-quantitative 
results after 14 days of osteogenic induction and (C) ECM mineralization staining and semi-quantitative 
results after 21 days of osteogenic induction on The Ti samples . *p <  0.05 vs PT, @p <  0.05 vs TA, #p <  0.05 
vs TA-CS, &p <  0.05 vs TA-CS/siNC.
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showed excellent siRNA delivery efficiency and gene silencing effect. TA-CS/siCkip-1 targeting Ckip-1, 
a negative regulator of bone turnover, significantly improved the in vitro osteogenic differentiation of 
MSCs in terms of the enhanced ALP and collagen product and ECM mineralization, and led to dramat-
ically enhanced in vivo osseointegration in the osteoporostic rat model, showing immense potential for 
achieving a satisfactory osseointegration in the osteoporotic condition.

Surface modification is the main strategy for obtaining implant of better performance, which is 
mainly divided into two categories, the inorganic modification on the surface morphological, chemical 
and hydrophilic properties and the organic modification that is biofunctionalization by immobilizing 
specific biomolecules6. The inorganically modified implants have proven their efficacy to achieve a good 

Figure 8.  (A) Transverse 2-D images and 3-D reconstructed views of the Micro-CT analysis to show the 
formation of new bone around the Ti implants . (B) The quantitative data obtained from the micro-CT 
analysis including BV/TV, TB.Th, TB.N and TB.Sp. *p <  0.05.
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Figure 9.  VG staining of the hard tissue sections after 4 and 12 weeks of implantation . The upper right 
corner inset shows the higher magnification image of the part labeled by the white box.
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osseointegration in the normal bone condition and actually all the commercial implants belong to these 
kinds, however they are not bioactive enough to gain a rigid osseointegration in the osteoporotic con-
dition that has a negative bone metabolism and a poor bone condition4. Relying on the effect of bio-
molecules, biofunctionalization can robustly change the bioinert Ti surface to be bioactive. Hitherto, the 
biomolecules used for biofunctionalization mainly include the extracellular matrix components, growth 
factors and peptides, which actually do not directly target the molecular mechanism of osteoporosis 
thus generating very limited effect6. The increasing understanding on the molecular events involved in 
osteoporosis and the quick advance in the siRNA delivery field provoke the idea of developing advanced 
implant specifically targeting the key molecular points in osteoporosis via siRNA biofunctionalization. 
There are several attempts on the siRNA biofunctionalization of polymer scaffolds 11,32 and we have tried 
the miRNA biofunctionalization Ti implant15,16, but the siRNA biofunctionalization of Ti implants has 
never been reported. In our previous report, the miRNA biofunctionalization of Ti was conducted on 
the Ti plates that were used for in vitro cell experiment via dropping the miRNA solution on to the Ti 
plate followed by lyophilisation15,16. This method is unable to form an even biofunctionalization on a 3-D 

Figure 10.  SEM inspection and EDX line scanning in the direction perpendicular to the bone/implant 
interface . (a: Ti implant; b: The Ca and P rich layer indexed as neo bone; c: Bone marrow cavity full-filled 
with methylmethacrylate).

Treatment 4 weeks 12 weeks

Maximal Pull-
out force (N)

Ultimate shear 
Strength (N/

mm2)
MaximalPull-out 

force (N)

Ultimate shear 
Strength (N/

mm2)

TA-CS/siCkip-1 46.67 ±  4.01* 1.09 ±  0.12* 93.05 ±  8.85* 2.17 ±  0.20*

TA-CS/siNC 33.90 ±  3.96 0.79 ±  0.07 56.30 ±  5.01 1.31 ±  0.11

TA-CS 32.07 ±  3.15 0.75 ±  0.07 54.03 ±  5.55 1.26 ±  0.12

TA 29.37 ±  2.63 0.68 ±  0.06 48.53 ±  4.17 1.13 ±  0.09

Table 1.   The maximal pull-out force and ultimate shear strength measured by pull-out test. *p <  0.05
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target of complex shape, thus being unavailable for the 3-D cylindrical Ti implants. In this study, the 
TA treatment was applied to make the Ti surface ultrahydrophilic and negatively charged by increasing 
active OH groups20,21, which then facilitate an even loading of the positively charged CS/siR complex 
from the chitosan vector22 by simply immersing the Ti implant in the CS/siR complex solution. In addi-
tion, hydrogen bond may form between the active OH groups on Ti generated by the TA treatment and 
the amino groups rich in chitosan, leading to high binding strength. Meanwhile, the microporous/nano-
fibrous structure formed by the TA treatment significantly increases the loading capacity of Ti implant.

The successful clinical application of siRNA therapy requires both good safety and high delivery 
efficiency, which is mainly related to the delivery vector33 and delivery approach25. Due to the good bio-
compatibility, biodegradability, low toxicity and high ability to complexate the oligonucleotides, chitosan 
is believed to be a good candidate for gene delivery vector33. In spite of these excellent properties, the 
chitosan nanoparticle based delivery formulation generates low DNA/RNA delivery efficiency needing 
further augmentation34. According to previous report, the CS/siR nanoparticles are comprised of several 
chitosan molecules conjugated by siRNA serving as the bridge that due to the electrostatic force, which 
results in a wide size distribution and irregular morphology35. We have also observed the similar phe-
nomenon in the DLS analysis. To improve the delivery efficiency, a lot of arduous work has been done 
on chemical modification of chitosan to obtain desirable physicochemical characteristics.34 Excitingly, 
efficient intracellular siRNA delivery and high gene knock down efficacy was observed from TA-CS/siR 
in this study. It is noted that the chitosan used in this study is the common one without any chemical 
modification. The high delivery efficiency can be attributed to the substrate-mediated reverse delivery, 
referring to the immobilization of delivery complex on a solid surface to deliver them locally to the 
attached cells36,37. Compared to the conventional delivery approach, the substrate-mediated reverse deliv-
ery enables a direct contact between the delivery agents and cells to improve the delivery efficiency36. In 
addition, it is indicated that suitable micro and nanotechnology on the substrate can improve endocytosis 
and thus oligonucleotide delivery efficiency38–40. Hence, the specific microporous/nanofibrous structure 
formed by the TA treatment may also contribute to the high delivery efficiency, while further study is 
necessitated to confirm this. A preliminary requirement for the clinical human body application of an 
implant is good cytocompatibility. The protein adsorption ability of an implant is important for its cyto-
compatibility41. We found that the TA treatment dramatically decreased the protein adsorption ability of 
Ti but excitingly TA-CS/siR showed enhanced protein adsorption ability even higher than the polished Ti 
control. The difference in protein adsorption might be related to the different charge of the Ti surface,42 
while further study is required to verify this. The cell proliferation data indicated that TA-CS/siR could 
well support the growth of MSCs, demonstrating its good cytocompatibility. TA-CS/siR even showed 
higher cell number than the polished Ti control due to the TA treatment.

Choosing the proper gene knockdown target is pivotal for achieving satisfactory osteogenic activity 
for TA-CS/siR. After a thorough review of the reports on the mechanism of osteoporosis, we paid atten-
tion to Ckip-1, which is reported to act as a crucial suppressor of osteoblast differentiation and bone 
formation by positively regulating smurf1 and Rpt68. The knockdown of Ckip-1 by siRNA induced bone 
mass increase in the osteoporotic rats,9,10,43 suggesting that Ckip-1 is a good therapeutic target for oste-
oporosis. Our in vitro data again confirmed the efficiency of siCkip-1 in promoting osteogenic differen-
tiation and bone formation. TA-CS/siCkip-1 significantly improved the product of ALP that is the early 
marker of osteogenic differentiation, the secretion of collagen that is the main ECM component of bone, 
and ECM mineralization that is a key functional marker of mature osteoblasts during osteoblastogenesis.

Consistent with the in vitro results, enhanced peri-implant bone formation and osseointegration for 
TA-CS/siCkip-1 was observed in the in vivo osteoporotic model. The Micro-CT analysis, histological 
staining and line scanning of the bone-implant cross section jointly displayed that TA-CS/siCkip-1 gave 
rise to far better new bone formation than the controls. A continuous and thick layer of new bone was 
observed around TA-CS/siCkip-1, while that on the controls was sporadic. With the healing time from 
4 to 12 weeks, there was no obvious increase for the bone formation on the controls, indicating their 
deficient bioactivity in the osteoporotic model. However, the new bone formation on TA-CS/siCkip-1 
increased significantly with time to form a thick bone layer at 12 weeks, demonstrating its excellent osse-
ointegration forming ability in the osteoporotic condition. Finally, the biomechanical strength of bone/
implant integration was measured by the pull-out test. At both 4 and 12 weeks, TA-CS/siCkip-1 had 
the highest bone/implant strength. The good osseointegration of TA-CS/siCkip-1 in the osteoporotic rat 
model indicates its potential clinical application for the osteoporotic patients. Meanwhile, it is suggested 
that TA-CS/siCkip-1 might also be available for the patients of normal bone condition for enhanced 
clinical performance.

Conclusions
Here the novel siRNA biofunctionalized Ti implant TA-CS/siR with an even siRNA loading was success-
fully developed by the TA treatment to make the Ti ultrahydrophilic and negatively charged to facilitate 
the physical adsorption of the positively charged CS/siR complex. TA-CS/siR showed excellent siRNA 
delivery efficiency and gene silencing effect. By targeting Ckip-1 that is a negative regulator of bone 
turnover, TA-CS/siCkip-1 significantly improved the in vitro osteogenic differentiation of MSCs and 
led to dramatically enhanced osseointegration in the in vivo osteoporostic rat model. TA-CS/siCkip-1 
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shows promising clinical potential for enhanced implant performance in the osteoporotic bone condi-
tion. Furthermore, TA-CS/siR shall provide a general approach for developing advanced Ti implants.
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