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Original Article

Diabetes mellitus is an increasing health burden. In 2013, 
worldwide, approximately 382 million people suffered from 
diabetes, and that figure is estimated to increase to 592 mil-
lion in 2035 (+55%).1 It is estimated that approximately 
$548 billion is currently spent on managing diabetes, which 
is 11% of total health expense.1 To be able to manage diabe-
tes patients in the future, there is a need for cheaper diagnos-
tics for managing glucose in patients. Diabetes, if left 
untreated, may lead to common pathologies like cardiovas-
cular problems, blindness, and renal failure. Regular mea-
surement of blood glucose levels is a necessary step in 
managing glucose levels in patients together with adminis-
tering the right amount of insulin. Normally blood glucose 
levels are measured invasively by a finger prick; a droplet of 
blood is applied to a glucometer that uses a disposable test 
strip to measure the glucose concentration in the blood. 
Patients suffering from so-called brittle fingers may have 
serious problems measuring blood glucose as frequently as 
needed. Therefore, the development of a noninvasive system 
for blood glucose measurement has long since been the holy 
grail. Often, noninvasive technologies are based on optical 
principles.2-5 More recently, new developments have been 
developed that, in the future, may lead to interesting innova-
tions, but are as of yet quite preliminary.6 Raman spectros-
copy is an optical technique to measure the (bio)chemical 

composition of a sample. This is done by irradiating the 
sample with a monochromatic light source (typically a laser). 
Inelastic scattering occurs in the sample, meaning that a 
small fraction of the irradiating light is scattered with a 
shifted frequency. The amount of shift in the frequencies is a 
result of the different vibrational levels of the molecules in 
the sample, and the resulting spectrum is therefore able to 
provide information regarding the composition of the sam-
ple. In Figure 1, a typical Raman spectrum is displayed; spe-
cific regions can be attributed to specific groups (see Table 1). 
Although some regions can be designated, hardly no signals 
in the combined Raman spectrum can be attributed to 1 sin-
gle component, as a result of the high complexity of biologi-
cal tissue.

In the case of noninvasive glucose monitoring, the 
recorded Raman spectrum gives information on, for exam-
ple, lipids, proteins, nucleic acids, salts, and carbohydrates 
(such as glucose). Although glucose itself is only a weak 
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Abstract
Self-monitoring of glucose is important for managing diabetes. Noninvasive glucose monitors are not yet available, but patients 
would benefit highly from such a device. We present results that may lead to a novel, point-of-care noninvasive system to 
measure blood glucose based on Raman spectroscopy. A hospitalized cohort of 111 subjects was measured using a custom-
made Raman spectrometer system. Blood glucose reference samples were used to correlate Raman data to glucose levels, 
using advanced preprocessing and analysis algorithms. A correlation coefficient (R2) of .83 was found correlating independent 
Raman-based predictions on reference blood glucose for the full cohort. Stratification of the cohort in gender-specific groups 
raised correlation levels to .88 (females) and .94 (males). Glucose could be measured noninvasively with average errors as 
low as 0.9 mM. We conclude that this novel system shows promising results for the advance of noninvasive, point-of-care 
glucose monitoring.

Keywords
blood glucose, noninvasive, point of care, Raman spectroscopy, self-monitoring of blood glucose

mailto:maarten.scholtes@tno.nl


Scholtes-Timmerman et al	 975

Raman scatterer (ie, the relative contribution to the total 
Raman spectrum is small with respect to its concentration in 
tissue), advanced data processing and analysis techniques 
mean that glucose can now be detected quantitatively in the 
combined Raman spectrum.

We propose a novel system, called noninvasive glucose 
assessment by Raman spectroscopic analysis (NiGARA), 
that employs a dedicated optical system to deliver Raman 
scattered light to a detector, as well as tailor-made computer 
algorithms to fully address the power that Raman spectros-
copy offers.7 We show in this article that especially a dedi-
cated approach to data processing and analysis provides 
advantages for this method for measuring point-of-care non-
invasive glucose.

Raman spectroscopy has been investigated previously for 
its applicability on noninvasive glucose measuring.8 Our 
method differs in multiple ways from earlier work. First, our 
dedicated optical system is easier to work with, as it requires 
no focusing or location tracking. Second, improvements on 
instrumental issues (eg, detector sensitivity, laser availabil-
ity, and power) as well as data processing issues (eg, back-
ground removal algorithms, variation filters, predictive 
modeling) raise the applicability of Raman spectroscopy.

Also, our technique does not need additional prepara-
tions/subcutaneous devices, as opposed to surface-enhanced 

Raman spectroscopy,9 nor does it need complex laser sys-
tems as is the case with coherent anti-Stokes Raman 
spectroscopy.10

Materials, Methods, and Experimental 
Setup

Raman Spectroscopy

Raman spectra were recorded using a TNO (Zeist, 
Netherlands) developed dedicated NiGARA measurement 
head optimized for measuring at a depth of 100-200 µm in 
the skin (see Figure 2), employing a measurement spot diam-
eter of ~8 mm. This measurement head was coupled to a 
Shamrock SR-163 spectrograph (Andor Technology, Belfast, 
UK) equipped with 1200 lines/mm grating; detection was 
done using an iDus DU-401A BR-DD CCD detector cooled 
to −90°C (Andor). Excitation was done using a LASER-785-
LAB-ADJ-S laser system (Ocean Optics, Duiven, 
Netherlands), capable of delivering up to 400 mW of con-
tinuous laser radiation at 785 nm. Calibration was done using 
the on-spectrograph micrometer, and was checked using a 
cuvette with cyclohexane (>99.5%, Biosolve, Valkenswaard, 
Netherlands) prior to each set of measurements. All spectra 
were recorded using SOLIS software, version 4.14 (Andor) 
at a range interval of 541 to 1818 cm-1. All experiments were 
performed using automatic background subtraction, and 
were recorded as 10 times accumulation of 10 seconds expo-
sure each.

Clinical Measurements

Measurements were performed directly after the patient’s 
blood was drawn for glucose determination. Raman mea-
surements were performed on the forearm, directly on the 
inside below the elbow joint, without any skin precondition-
ing. All measurements were performed on the same arm as 
capillary blood was drawn from. Care was taken to ensure no 
bruises or skin defects were at the measurement skin area, as 

Table 1.  Designation of Distinct Raman Signals.

Raman shift (cm-1) Designation

1004 Phenylalanine
1020-1140 Carbohydrates
1220-1340 Collagen, nucleic acids
1400-1520 Fatty acids
1620-1700 Proteins
1720-1780 Esters

Figure 2.  Measurement with the dedicated measurement head; 
the black cloth prevents stray light from entering the probe, and 
stray laser emission.

Figure 1.  Typical Raman spectrum of human skin tissue.
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it is expected that such abnormalities would influence the 
quality and information content of the Raman spectra.

During a 2-week measurement period, 186 spectra were 
measured on hospitalized patients. From this set, 20 poor-
quality spectra, based on their aberrant signal-to-noise ratio, 
had to be omitted, leaving 166 spectra of sufficient quality.

All patients were asked for informed consent prior to this 
study in accordance to the rules of the local Medical Ethical 
Committee. The instrument was cleaned using 70% alcohol 
wipes in between patients to ensure no transfer of microbial 
species.

Only 1 accumulated spectrum per patient, defined as 1 
measurement, was included in the final analysis. In those 
cases where multiple measurements were performed per 
unique patient, only the spectrum with the highest signal- 
to-noise ratio was included. This led to a final data set of 111 
measurements, in which unique individual are included with 
only 1 measurement. Table 2 shows the cohort demographics 
of all subjects.

Glucose Levels

Plasma glucose concentrations in the patients/individuals 
were determined by measuring glucose in capillary whole 
blood samples. The samples were analyzed using the central 
laboratory glucose method, which is the isotope dilution gas 
chromatograph–mass spectrometer (ID-GCMS) traceable 
hexokinase method (GLUC2 reagent) with perchloric acid 
treatment performed on the Roche Cobas platform (Roche, 
Mannheim, Germany).

The whole blood values are calculated to equivalent 
plasma values with the Niels Fogh-Andersen equation,11

Glu Glu
Hct Hctplasma wb= ×

× + − ×
0 93

0 71 1 0 93

.

( . ) (( ) . )

where Glu
plasma

 and Glu
wb

 are glucose levels in plasma and 
whole blood (as is measured above), respectively, and Hct is 
the hematocrit level, assuming water levels of 93 and 71% 
outside and inside cells, respectively. Plasma glucose levels 
varied in this study from 3.6 to 22.1 mM.

Spectral Data Preprocessing

After processing the spectra to equalized x-axes, spectra 
were corrected for non-glucose-specific spectral variations 

that were observed. These are variations in the spectra that 
are due to natural variability in the skin between subjects: as 
all biochemical compounds in the skin contribute to the 
Raman spectrum, spectra between different patients will 
show differences, although their respective glucose levels at 
set time points may be completely equal. Spectra are pro-
cessed for varying intensities and backgrounds using 
extended multiplicative scatter correction (EMSC).12 
Glucose-induced changes are corrected for nonspecific spec-
tral differences by EROS, an acronym for error removal by 
orthogonal subtraction.13 An overview of the method is 
shown in the appendix.

Predictive Modeling

The Raman data were correlated to glucose values using the 
multivariate regression tool partial least squares (PLS) on 
mean-centered data.14 By ordering the statistical impor-
tance of the weight factors of the Raman signals, signals 
that contribute most to glucose content could be identified. 
The validity of the PLS model was tested using a 10-fold 
double cross-validation (DCV) procedure, which makes it 
possible to estimate the model error independently of the 
model complexity. In cross-validation, measurements of a 
number of samples (here, 10%) are left out of the data set. 
Subsequently, the multivariate model is built using the 
remaining samples. Then, the model is used to predict the 
glucose values of the left-out samples. This is repeated until 
each of the samples have been predicted using the indepen-
dently created models. Jackknifing was used for variable 
selection.15 Using the aforementioned methodology, it was 
found that a total of 5 latent variables will give a stable PLS 
prediction model.

Results and Discussion

Because Raman spectroscopy, as opposed to conventional 
infrared spectroscopy, is amply limited by the presence of 
water, it is highly suitable to measure biological samples, and 
is very well suited for developing in vivo applications, as it 
does not require sample preparation. As all molecules in a 
sampling volume will, in some way, attribute to the total 
recorded Raman spectrum, multivariate statistics are needed 
to get the specifically requested information from the 
recorded signal.

An aspect of the experimental design that was not covered 
was the time lag between blood glucose levels and glucose 
levels in interstitial fluid, as has been described earlier in the 
literature.16 The current design is not able to correct for such 
deviations, which is, however, the scope of future work.

Our approach led to a data set consisting of 111 Raman 
spectra of an equal number of patients. Subsequently, Clarke 
error grids were applied to compare the results of the tradi-
tional plasma glucose measurement with the NiGARA sys-
tem (Figure 3).

Table 2.  Patient Demographics/Description in This Study.

Male/female 74/92

Age range 25-94
Mean age 71.3
Median age 75
Ethnicity Caucasian
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For the Clarke error grid in Figure 3, Table 3 shows the 
statistics.

In the above-described experiment with 111 individuals, 
87 results are within the A zone and 23 are within the B zone. 
A 10-fold double cross-validated R2 of .83 is achieved, which 
is a good result. Nevertheless, the mean relative deviation of 
13.9% ± 11.4% still leaves room for improvement.

As it was seen that the PLS model selected different spec-
tral regions describing correlation with glucose concentra-
tions for males and females, additional analysis was 
performed by stratification of the cohort by gender. The 
results of this stratification between males and females are 
shown in Clarke error grids for males and females, respec-
tively, in Figures 4 and 5.

The numerical analysis of the male/female subsets is pro-
vided in Table 4.

Stratification of male and female patients revealed 
improved correlation coefficients (from .84 for the whole 
group to .94 for males and .88 for females), but also thor-
oughly improved the mean absolute and relative deviations. 

Figure 3.  Results of glucose measurements using the 
noninvasive glucose assessment by Raman spectroscopic analysis 
(NiGARA) system, presented in a Clarke error grid versus the 
plasma capillary glucose values obtained with perchloric acid 
precipitation ID-GCMS traceable hexokinase method.

Table 3.  Numerical Analysis.

Number of good spectral 
measurements 111

Mean plasma glucose (mM) 10.0 ± 3.6
Plasma glucose range (mM) 3.6-21.1
Prediction R2a 0.83
Clarke error grid placement  
  Zone A 87 (78.4%)
  Zone B 23 (20.7%)
  Zone C 0
  Zone D 1 (0.9%)
  Zone E 0
Mean absolute deviation (mM) 1.2 ± 0.9
Mean relative deviation (%) 13.9 ± 11.4

aPrediction R2 of the 10-fold DCV.

Figure 4.  Results of glucose measurements using the NiGARA 
system versus the reference plasma capillary glucose values 
obtained with perchloric acid precipitation ID-GCMS traceable 
hexokinase method presented in a Clarke error grid for male 
subjects only.

Figure 5.  Results of glucose measurements using the NiGARA 
system versus the reference plasma capillary glucose values 
obtained with perchloric acid precipitation ID-GCMS traceable 
hexokinase method presented in a Clarke error grid for female 
subjects only.
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This indicates that, indeed, stratifying the cohort in separate 
gender-specific cohorts ameliorates the results obtained with 
this new glucose meter and creates a more robust method. 
Further stratification for skin type, skin color, age, body 
mass index, and so on of the patient cohort may improve 
NiGARA results in the future even further.

Conclusion

This study shows promising clinical results with the NiGARA 
system in combination with the PLS methodology of inde-
pendent modeling, based on retrospective analysis. Future 
work will focus on extending the data set to perform pro-
spective analysis and preparing the technique and method for 
future adaptation in a true point-of-care, disposable-free, 
easy-to-use, and cheap glucose monitor.

Appendix

Description of Method

Spectral Data Calibration.  Data were checked for variations in 
the x-axis by analyzing cyclohexane spectra. Peak positions 
indicated linear deviations from the spectrograph x-axis cali-
bration up to 2.0 cm-1. To correct for this error, measured 
spectra were shifted linearly with the amount dictated by the 
shift in the corresponding cyclohexane spectrum, as com-
pared to the spectrograph calibration.

As this step leads to different x-axes for each individual part 
of the whole data set, all spectra were interpolated to their com-
mon x-axis using spline interpolation on a 1024-channel x-axis.

Spectra were processed to correct for varying intensities 
and background-to-signal ratios using EMSC processing.8 
This method fits each individual spectrum to the overall 
average, and includes a seventh-order polynomial to fit the 
noninformative background.

Then, spectra were corrected for non-glucose-specific 
variations using EROS (see Figure 6).9

Briefly, this method can be described as follows.

1.	 First, all spectra are grouped, such that n groups are 
present in which individual groups only hold spectra 
that correspond to glucose levels that are rounded to 
integer values. So, the first group holds all spectra 
with a reference glucose level between 3.50 and 4.49 
mmol/L. The second group holds all spectra with a 
reference glucose level between 4.50 and 5.49 
mmol/L, and so on. In all, 20 groups are formed this 
way, with 1 to 23 entries per group. Using EROS, 
only groups with >1 individual entry can be used to 
model in-group variability.

2.	 Then, for each group, the average spectrum of that 
group is subtracted from the individual entries in that 
group. The result is a set of spectral shapes that shows 
variation with respect to the average of the group in 
which the individual spectra were placed.

3.	 All these spectral shapes are analyzed using principal 
component analysis (PCA). In this PCA space, the 
dominant yet orthogonal shapes of non-glucose- 
specific variations are modeled.

4.	 Looking at the fraction of total variance captured per 
principal component dimension, and the individual 
spectral shape per principal component, the number 
of relevant principal components that describe non-
glucose- yet Raman-specific variations is determined 
by including only principal components that attribute 
≥5% of the total, residual, non-glucose-specific 
variations.

5.	 Going back to the original spectra, these are projected 
on this PCA space after mean centering. This way, per 
individual spectrum, the part of the total spectrum that 
describes non-glucose-specific Raman-originating 
variation is fitted on the variables from step 3.

Table 4.  Numerical Analysis of the Cohort Stratified by Gender.

Male subjects Female subjects

Number of points 49 62
Mean plasma glucose (mM) 9.6 ± 3.4 10.4 ± 3.7
Plasma glucose range (mM) 4.8-21.1 3.6-20.6
Prediction R2a 0.94 0.88
Clarke error grid placement  
  Zone A 43 (87.8%) 53 (85.5%)
  Zone B 6 (12.2%) 8 (12.9%)
  Zone C 0 0
  Zone D 0 1 (1.6%)
  Zone E 0 0
Mean absolute deviation (mM) 0.9 ± 0.9 1.0 ± 1.0
Mean relative deviation (%) 9.2 ± 7.4 10.5 ± 10.3

aPrediction R2 of the 10-fold DCV.

Figure A1.  Flow chart of EROS method.
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6.	 For all spectrums, the linear combination formed by 
summing all scores by their respective principle com-
ponent loadings up until the number of dimensions 
determined in step 4, which is then subtracted from 
the original, non-mean-centered spectrum,

S S s lcorrected original i
i

n

i= − ×
=
∑
1

	 where Scorrected is the final, variance-corrected spec-
trum, Soriginal is the original spectrum after the first 
preprocessing, n is the number of relevant principal 
component dimensions, s

i
 is the score of spectrum S 

on PCA dimension i, and l
i
 is the principal compo-

nent loading of dimension i, respectively.
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