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Original Article

The precision and accuracy of glucose measurement using 
continuous glucose monitoring (CGM) or self-monitoring 
of blood glucose (SMBG) depend on the glucose level, 
typically with a progressive increase in absolute deviation 
but with a decrease in mean absolute relative deviation 
(MARD) as one moves from hypoglycemia to the target 
range, to hyperglycemia.1-10 Problems with calibration can 
lead to inaccuracies with systematic biases that vary with 
glucose level.11 In the literature characterizing CGM sys-
tems, it has been customary to report an overall MARD and 
a MARD for a few ranges of glucose, and to use these val-
ues to compare the performance of sensors and meters.1-10 
Individual estimates of ARD based on 2 measurements 
have also been displayed graphically versus glucose level, 
showing the results for pairs of individual glucose val-
ues.9,10 Such estimates of ARD are subject to extremely 
large random sampling errors.9,10 This sampling error 
makes it difficult or impossible to reliably characterize the 
systematic nonlinear relationship of ARD to glucose level.10 
Estimating ARD or %CV based on a single pair of measure-
ments corresponds to an attempt to measure a standard 
deviation based on 2 observations so that one has only 1 
degree of freedom (df). The chi-square distribution for 1 df 

shows enormous variability such that it becomes extremely 
difficult to identify the underlying relationship between 
MARD, SD, or %CV versus glucose unless one pools data 
and uses curve smoothing.

We have previously developed and applied a number of 
statistical methods to address a closely related problem of 
quantifying the empirically observed errors in the measure-
ment of hormone levels in terms of a smooth continuous 
relationship of %CV versus hormone levels.12-14 This rela-
tionship was designated as a “Precision Profile.”15 In the 
present report we apply the Precision Profile concept and 
methodology to estimation of the accuracy and precision of 
glucose sensors and meters. In principle, this method should 
be applicable to data obtained using CGM and SMBG, as 
well as reference laboratory methods for measurement of 
glucose and other analytes.
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Abstract
There is need for a method to describe precision and accuracy of glucose measurement as a smooth continuous function 
of glucose level rather than as a step function for a few discrete ranges of glucose. We propose and illustrate a method 
to generate a “Glucose Precision Profile” showing absolute relative deviation (ARD) and /or %CV versus glucose level to 
better characterize measurement errors at any glucose level. We examine the relationship between glucose measured by 
test and comparator methods using linear regression. We examine bias by plotting deviation = (test – comparator method) 
versus glucose level. We compute the deviation, absolute deviation (AD), ARD, and standard deviation (SD) for each data 
pair. We utilize curve smoothing procedures to minimize the effects of random sampling variability to facilitate identification 
and display of the underlying relationships between ARD or %CV and glucose level. AD, ARD, SD, and %CV display smooth 
continuous relationships versus glucose level. Estimates of MARD and %CV are subject to relatively large errors in the 
hypoglycemic range due in part to a markedly nonlinear relationship with glucose level and in part to the limited number of 
observations in the hypoglycemic range. The curvilinear relationships of ARD and %CV versus glucose level are helpful when 
characterizing and comparing the precision and accuracy of glucose sensors and meters.
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Methods

We assume that lengthy time series of glucose measurements 
are available wherein the test method and the comparator 
method are frequently and periodically measured simultane-
ously. The data are then sorted according to the glucose value 
of the reference or comparator method, or according to the 
mean values of the 2 methods. We utilized several synthetic 
datasets with known characteristics to illustrate and evaluate 
the Precision Profile methodology to describe several mea-
sures of bias and precision (AD, ARD, SD, %CV) as smooth 
continuous functions of glucose level. We created multiple 
data sets with true or reference glucose with a large number 
of independent glucose values ranging from 40 to 500 mg/dL 
at 1 mg/dL intervals. We selected 2 sets of measurements, 
where each glucose value was equal to the true value plus an 
independent, Gaussianly distributed error term. For one set 
of these illustrative data, there was a bias of +10 mg/dL at 40 
mg/dL which gradually and linearly transitioned to a bias of 
–10 mg/dL at 400 mg/dL. This observed glucose value was 
subject to a 10% proportional Gaussian error combined with 
a random Gaussian error of 5.0 mg/dL. The comparator glu-
cose data set was subject to less bias (–2 mg/dL at 40 mg/dL 
and +5 mg/dL at 400 mg/dL), with a 5% proportional error 
and a smaller minimum error of 2.5 mg/dL relative to the true 
value. This corresponds to the fact that comparator and refer-
ence methods are also subject to bias and imprecision that is 
usually expected to be smaller than those of the method 
being evaluated.

We then applied a number of statistical analyses, includ-
ing (1) linear regression for the observed (test) and compara-
tor glucose values, (2) evaluation of the dataset for bias 
overall16 and as a function of glucose level, and (3) charac-
terization of the error structure of the data by examining the 
deviations of measurements for the test method and the com-
parator as a function of glucose level. We calculated the 
deviation, the absolute deviation (AD),17 absolute relative 
deviation (ARD),1-10 and the local point estimate of variance, 
Var(x) = (x

1
 – x

2
)2/2 for each pair of glucose measurements.18 

We then applied curve smoothing as follows. We smoothed 
the relationship of AD and glucose using linear and polyno-
mial models. The linear model failed to provide a satisfac-
tory fit in the hypoglycemic region for several of the cases 
studied. We also used running averages of 10 to 30 values 
after sorting by glucose level, and used median values in nar-
row ranges.12 Alternatively, one can use cubic smoothing 
splines,19 or local regression.20 The predicted AD for any 
given glucose level can be converted to an ARD simply by 
expressing it as a percentage of the glucose level. 
Alternatively, one can calculate the ARD for each data pair, 
and apply smoothing with running averages, splines,19 or 
local regression.20 One can also calculate the variance for 
any narrow range of glucose levels by averaging the “con-
trasts” in that range,18 taking the square root to obtain an esti-
mate of the sample standard deviation, calculating the %CV, 

and applying curve smoothing. For comparison, we calcu-
lated the average of the individual estimates of ARD for 
specified ranges of glucose, for example, 3 ranges (40-70, 
70-180, and 180-500 mg/dL), or 4 ranges (40-70, 70-125, 
125-180, and 180-500 mg/dL). We evaluated the extent to 
which the ARD vary systematically for narrow ranges of glu-
cose, especially in the hypoglycemic range.

Results

Figure 1 shows a representative data set. More than 100 other 
similar data sets were generated and evaluated. There is an 
excellent correlation (r = .97). The average or root mean 
square error (RMS) of the observations around the line of 
identity was 33.2 mg/dL. There was an overall negative bias 
which was highly statistically significant. Using unweighted 
least squares linear regression, the intercept (a = 21.45) was 
statistically significantly different from zero and the slope (b 
= 0.90) was statistically significantly different from unity. 
For data with marked nonuniformity of variance as in the 
present case, it would be advantageous to utilize weighted 
regression21 with iterative reweighting.22 When errors in the 
2 variables are comparable, it would be desirable to use spe-
cial forms of regression.23,24

Figure 2 shows the signed deviations between the 
observed (measured) glucose and the comparator glucose. 
Again, there is marked nonuniformity of variance: the mag-
nitude of the error increases in direct proportion to the glu-
cose level, as expected based on the models used to generate 
the data. Positive and negative bias are present for different 
ranges of glucose.

Figure 3 shows the ADs for each individual observation 
as a function of glucose level: AD =|observed glucose – 
comparator glucose|. There is considerable scatter in the 
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Figure 1.  Relationship of observed glucose to comparator 
showing the least-squares regression line (black) and line of 
identity (blue).
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estimates of absolute deviation based on single pair of data 
points, consistent with the theoretically expected distribu-
tion. The relationship of absolute deviation versus glucose 
level may be nonlinear. A polynomial regression, cubic 
smoothing spline19 or local regression20 shows the underly-
ing relationship and makes it possible to estimate the 
expected AD for any given glucose level.

At this point in the calculations, we have several options: 
we can apply curve smoothing to AD, ARD, SD, or %CV.

1.	 One can first smooth the relationship of AD versus 
glucose using a polynomial (Figure 3) or other curve 
smoothing methods. Having found a smooth relation-
ship, one can then convert the smoothed AD into the 
corresponding ARD for each glucose level:

ARD  1 x AD   Glucose levelExpected Expected= ( ) ( )00 / .

2.	 One can convert the individual estimates of AD to 
ARD by dividing by glucose level, and then apply 
curve smoothing to ARD vs glucose.

3.	 One can use the empirically confirmed theoretical 
relationship (applicable to variables with a Gaussian 
distribution) between SD and AD17 to calculate the 
SD:

SD  Absolute Deviation  8Expected Expected= / .0 0

This calculation may be done using either the individual 
estimates or smoothed estimates of AD. Alternatively, the SD 
can be calculated directly from the pairs of observed and 
comparator glucose using the method of contrasts:18

Var x x x 21 2
2( ) = −( ) /

These individual estimates of variance can be averaged (eg, 
using running averages), and then the SD can be calculated as 
the square root of the pooled estimate of variance.

After the SD has been calculated and curve smoothing has been 
applied, one can calculate the %CV, where %CV = 100 × SD/
glucose, which can be displayed as a function of glucose level.

4.	 One can calculate the individual estimates for %CV 
and then apply curve smoothing using the same kinds 
of approaches as used for AD, ARD, or SD.

These approaches make it possible to generate a Precision 
Profile showing ARD (alternatively, %CV) as a function of 
glucose level (Figure 4).

MARD decreases systematically as the glucose level 
increases from 40 to 500 mg/dL. Use of 3 or even 4 stepwise 
segments of the glucose range fails to provide an adequate 
approximation to the underlying smooth, continuous rela-
tionship. Similar results were obtained whether curve 
smoothing was applied to AD, ARD, SD, or %CV, reflecting 
the robustness and consistency of properly selected and 
implemented smoothing procedures.

In the present example (Figure 4), MARD is nearly con-
stant throughout the hyperglycemic region, approximately 
9%. In the target range (70-180 mg/dL), MARD increases 
from 8% to 20%, a 2.5-fold increase. The mean value for 
ARD (MARD) for this range of glucose, 10.5%, is a poor 
approximation except near the midpoint of this segment at 
125 mg/dL. If one divides the target range into 2 segments, 
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Figure 2.  Relationship of deviations versus comparator glucose. 
The arithmetic (signed) deviations can vary in magnitude (bias) 
and in terms of their own variability depending on glucose level.
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Figure 3.  The absolute deviation (AD) of the test method from the 
comparator shows large random sampling variability. The magnitude 
of the AD and its own variability depend on glucose level. The least 
squares regression line (black) and a third order polynomial (pink) 
are shown. In this example, the expected AD reaches a nadir when 
glucose is ~100 mg/dL and the linear relationship does not provide a 
satisfactory curve fit below that level.
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70-125 and 125-180 mg/dL, similar to what was done by 
Weinstein et al,25 then the MARD for each segment provides 
a better approximation to the value shown by smooth curve. 
In the hypoglycemic range (40-70 mg/dL), ARD ranges from 
20% to 30%, a 1.5-fold range. Accordingly, it would be inac-
curate to utilize a single average value such as 25% for 
MARD for this segment. Small variations in the number and 
levels of glucose values falling within the hypoglycemic 
range can seriously affect the estimates of AD, SD, and %CV 
and the corresponding values for ARD and MARD.

Discussion

The present study demonstrates that the mean and median 
ARD and related estimates of measurement errors vary con-
sistently and systematically as smooth functions of glucose 
level.

ARD values calculated from individual pairs of observed 
and reference values are subject to very large random sam-
pling errors, making it difficult to obtain a reliable esti-
mate of the local average MARD value and identify the 
curvilinear relationship between ARD and glucose level 
(Figure 4). If there are only a small number of observations 

in the hypoglycemic range (especially at the low end of the 
hypoglycemic range), one can expect to obtain a value of 
MARD that falls closer to the values observed in the target 
range (Figure 4).

One can use a smoothed value for ARD as in the present 
example, based on a large number of data points spaced as 
uniformly as possible over as wide a range as possible (eg, 
between 40 and 400 mg/dl), obtained using a running aver-
age of ARD with additional smoothing as needed to mini-
mize random sampling variability without excessive loss of 
resolution. Alternatively, and with nearly indistinguishable 
results, one can estimate the AD of glucose measurement, 
apply smoothing (e.g., using a a polynomial or smoothing 
cubic spline19 of AD and comparator glucose level), and then 
calculating the expected ARD for any desired glucose level. 
This permits construction of a Precision Profile (Figure 4) 
which should be more informative than simply using 
MARD—the mean ARD—for 3 or 4 segments of the glucose 
range. Because the relationship of AD of glucose to glucose 
level (Figure 3) is often nearly linear, in some cases it may be 
easier to perform the smoothing in terms of AD versus glu-
cose rather than in terms of the hyperbolic relationship of 
ARD versus glucose. Both approaches give closely compa-
rable results if properly performed with adequate data. The 
method is easy to apply, and most of the calculations can be 
readily performed using popular spreadsheets.

The continuous Precision Profile (Figure 4) is one of the 
best ways to compare the precision of measurement of two or 
more types of sensors or meters. The Precision Profiles for 
the devices can be compared by overlaying them. In some 
cases, one device may provide superior precision and accu-
racy for one range of glucose, while another device may give 
better precision and accuracy for a different range of 
glucose.

In view of the nonuniformity of variance for glucose, 
which can be expected when measuring glucose over a range 
from 40 to 400 or 500 mg/dL, it would be desirable to use 
weighted regression when characterizing data similar to that 
shown in Figures 1 to 3 using a weighting function based on 
the relationship of AD and SD of glucose to glucose level 
(Figure 3).21,22

If bias (Figure 2) and precision (Figures 3 and 4) are 
known as a function of glucose level, and if the distribution 
of the true or comparator glucose values are known, then in 
principle one could predict the distribution of glucose values 
in various zones of the Clarke26 or Parkes27 error grids. This 
should enable one to evaluate the compatibility of the empir-
ical findings based on the error grids and the values predicted 
from analyses characterizing the errors in glucose measure-
ment (Figures 1-4).

When averaging MARD values for a series of ranges of 
glucose, as commonly done,1-10,25 one is utilizing informa-
tion derived from only a single, specified narrow range of 
glucose. By taking advantage of the theoretically predicted 
and empirical observation that precision is a smooth 
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Figure 4.  Expected absolute relative deviation (ARD) as a 
function of glucose level calculated from data displayed in Figures 
1-3 (black), after curve smoothing using running average of ARD 
combined with a fourth order polynomial curve fit. Mean ARD 
(MARD) is also shown as a step function for 3 ranges of glucose 
(40-70, 70-180, and 180-500 mg/dL) (pink), and for 4 ranges of 
glucose when the target range is divided into 2 segments (70-125 
and 125-180 mg/dL) (blue).
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continuous function of the glucose level, then data from 
adjacent segments impose constraints that improve the abil-
ity to estimate the location of the curve more precisely. These 
methods are also applicable to the precision absolute relative 
deviation.28

The methods described here were designed for applica-
tion to data from a single experiment, involving a single sub-
ject. There remains the task of identifying possible 
heterogeneity in results during different phases or stages of 
the study, and the task of pooling results over multiple sub-
jects, days, or experiments.

Conclusions

The methods described here should be useful additions to the 
usual armamentarium of methods used for validation and 
characterization of glucose sensors. These include construc-
tion of the scattergram (Figure 1), use of linear regression 
and correlation (Figure 1), use of the Bland–Altman plot16 
and related approaches (cf Figure 2), the use of the Clarke 
error grid25 and the Clarke CGM error grid,29 the use of the 
Parkes or consensus error grid,26 and the use of mean or 
median ARD for specified ranges of glucose.1-10,27 The pres-
ent method helps to reduce problems related to large random 
sampling errors when dealing with an AD, ARD, SD, or 
%CV, and potentially enables the user to characterize ARD 
and %CV more precisely, accurately, and reliably than the 
use of a MARD or a mean %CV for a few specified ranges of 
glucose.

Abbreviations

AD, absolute deviation; ARD, absolute relative deviation; CGM, 
continuous glucose monitoring; %CV, % coefficient of variation; 
df, degrees of freedom; MAD, mean absolute deviation; MARD, 
mean absolute relative deviation; RMS, root mean square error; SD, 
standard deviation; SMBG, self-monitoring of blood glucose; 
Var(y), variance of the variable y.
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