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Original Article

There has been increasing interest displayed in glycemic 
variability (GV) as an HbA

1c
-independent risk factor for 

development of diabetes-associated complications.1,2 In vitro 
studies have suggested that both periods of sustained hyper-
glycemia, as well as fluctuating glycemia, result in deleteri-
ous effects on endothelial cells.3,4 Exposure of cell cultures 
to these conditions resulted in overproduction of reactive 
oxygen species in mitochondria, leading to increased oxida-
tive stress and cell apoptosis.

In vivo studies have produced more debate, with a sys-
tematic review of the topic concluding that plausible evi-
dence exists for an association between GV and retinopathy, 
cardiovascular events and mortality in type 2 diabetes, but 
less so for type 1 diabetes (T1D).5 Two studies using data 
from the Diabetes Control & Complications Trial (DCCT) 
displayed discrepant associations with microvascular com-
plications,6,7 and 1 study that followed 100 participants with 
T1D for 11 years found GV to be an independent predictor of 
prevalence of peripheral neuropathy.8

One potential reason for the variability in trial results is 
that there is no accepted gold standard measure of GV, lead-
ing to marked heterogeneity in methods used for its assess-
ment. With the emergence of continuous glucose monitoring 

(CGM), description of up to 30 different measures of GV has 
ensued, each method with its own strengths and weak-
nesses.9,10 Despite ongoing discussion as to the best metric of 
GV, little debate has taken place regarding the properties 
required of the data set from which GV can be derived. The 
minimum frequency of glucose measurements required 
within a data set to consistently assess GV has previously 
been defined, but no published data exists regarding dura-
tion.11 The purpose of this study was to identify the minimum 
duration required of a CGM data set to be able to approxi-
mate GV to a 3-month gold standard duration.
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Abstract
Despite much discussion regarding the clinical relevance of glycemic variation (GV), little discourse has addressed the 
properties of the data set from which it is derived. We aimed to assess the minimum duration of data required using 
continuous glucose monitoring (CGM) that most closely approximates to a gold standard 90-day measure. Data from 20 
children and adolescents with type 1 diabetes were examined. All participants had CGM data sets of 90 days duration, from 
which standard deviation (SD), coefficient of variation (CV), mean amplitude of glycemic action (MAGE), and continuous 
overlapping net glycemic action (CONGA

1-8
) were calculated for the overall period and then investigational periods of 2, 

4, 6, 12, 18, 24, and 30 days. The percentage difference between each measure and the overall measure per time period 
was assessed. As the duration of the CGM data set increased, the percentage error continued to decrease, giving a metric 
approximating more closely toward the overall measure. Median SD and CV differed from the overall measure by <10% 
at 12 days duration. The frequency of interruptions to the CGM trace rendered MAGE and CONGA unreliable, hence SD 
and CV were reported. We suggest that data sets used to infer GV should be of a minimum duration of 12 days. MAGE and 
CONGA exhibit poor performance in the setting of frequent trace interruption.
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Methods

Twenty CGM traces were chosen randomly from our clinical 
research data set of patients. All had confirmed T1D and 
were using continuous subcutaneous insulin infusion (CSII). 
Each patient used the CGM system (Medtronic Minimed 
Paradigm, Northridge, CA, USA, mean absolute relative dif-
ference 13.86%)12 for 90 days in total. As this approximates 
to a standard time period assessed by HbA

1c
,13 we took this 

period as the gold standard duration. Users of the system 
calibrated the CGM trace with a minimum of 3 capillary 
blood glucose measurements per 24 hours. Review of cali-
bration frequency and excision of gaps in the CGM trace was 
undertaken using Stata (v11, StataCorp, College Station, TX, 
USA).

GV was initially assessed using: standard deviation of all 
glucose values (SD), coefficient of variation (CV), mean 
amplitude of glycemic excursion (MAGE), and continuous 
overlapping net glycemic action (CONGA

n
) at n = 1, 2, 4, 

and 8 hours for the entire 90-day period, using methods as 
previously described.14-16 The estimates were then repeated 
using 2, 4, 6, 12, 18, 24, and 30 days of CGM data within the 
same data set provided for each patient. The percentage dif-
ference between the corresponding values obtained and the 
“gold standard” 90-day GV measure was then calculated for 
each of the time periods. Overall median and interquartile 
ranges of the percentage difference from the gold standard 
for each time period were calculated.

Results

Participants were 35% male and had a mean age of 13.5 ± 2.6 
years (range 10.1-18.3), duration of diabetes of 5.6 ± 2.7 
years, and mean HbA

1c
 of 7.6 ± 0.6% (59 ± 6 mmol/mol).

Gaps in the CGM trace were a very frequent occurrence, 
with a mean of 446.2 ± 239 hours of trace dropout per patient, 
per 90-day period (mean 20.7% of time recorded; range 
112.6-803.8 hours). The frequency of these interruptions to 
the 90-day overall CGM traces dramatically reduced the 
interpretability and reliability of both MAGE and CONGA, 
hence SD alone was used for reporting all outcome data. CV 
was also calculated to control for mean glucose values.

As the duration of CGM trace increased, there was a dem-
onstrated continued reduction in the percentage error of both 
the SD and the CV for that time period from the overall “best 
estimate” 90-day value (see Figures 1 and 2). This reaches a 
median value of <10% error at 12 days for both measures 
(see Table 1 for absolute values).

Discussion

This study assessed 90 days of CGM traces from pediatric 
participants with T1D and suggests that a 12-day minimum 
duration of trace is required to approximate GV to a “best 
estimate” value using SD and CV as the GV metrics, measur-
able in a HbA

1c
-equivalent time-frame. In the current technol-

ogy environment, this is the equivalent duration of continuous 
usage of 2 sensors. We judged <10% error from the overall 
measure as acceptable, which was also selected as an accept-
able discrepancy in an abstract with similar aims.17 This study 
examined 50 days of CGM data from 68 participants and con-
cluded that 6 days was a sufficient time period to approximate 
GV using MAGE. However, this was conducted in adult par-
ticipants with T1D who may exhibit a more stable glycemic 
profile than children. MAGE was developed in 1970 during 
in-house highly controlled conditions, using pooled results of 
arbitrarily designated adjacent blood glucose swings.15 
However, it exhibits high sensitivity to frequent trace discon-
tinuity when 288 data points per day are obtained over a more 

Figure 1.  Boxplot of percentage difference of SD from 90-day 
standard for each time period. Box indicates interquartile ranges, 
line represents median, whiskers represent range of values.

Figure 2.  Boxplot of percentage difference of CV from 90-day 
standard for each time period.
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prolonged period than the original 48 hour evaluation, and 1 
study has shown that MAGE was only weakly associated 
with clinical assessment of lability (r = .328).18

The reality of the real-life CGM experience is that trace 
dropout is an inevitably frequent occurrence, mainly due to 
delays in calibration, distance from the receiver during sport/
swimming, or during the 3-hour initialization phase postsen-
sor insertion. Children and adolescents are also much less 
likely than adults to wear CGM continuously, despite the 
attendant HbA

1c
 benefit conferred with >70% usage.19,20 

CONGA was originally conceived using 72 hours of CGM 
data, and although there now exists automated methods of 
analysis, the regular absence of corresponding 1-, 2-, or 

4-hour data points where required renders this method unre-
liable for analysis of data sets of longer duration.

Our findings should be interpreted as preliminary as we 
analyzed traces from 20 patients with reasonable baseline met-
abolic control, however, it is the first to our knowledge which 
has examined 90 days of data from each participant in this 
context. Repeating this analysis in a higher number of patients 
with a broader spread of HbA

1c
 values would be worthwhile, 

although minimization of trace interruption and achievement 
of the required usage of CGM may be challenging.

Of the 8 studies of participants with T1D chosen for the 
aforementioned systematic review,5 only 3 used CGM for 
GV estimation.21-23 Of these studies, only 72 hours of CGM 

Table 1.  Absolute Values of SD (Upper Figure) and CV (Lower Figure, %).

Pt 90 days 2 days 4 days 6 days 12 days 18 days 24 days 30 days

1 3.40
39.1

3.29
38.8

3.01
32.9

2.92
33.0

3.07
32.6

3.1
34.0

3.19
35.5

3.18
35.4

2 4.23
47.0

3.24
29.6

3.52
40.7

3.91
48.5

3.97
48.7

3.89
46.9

3.86
45.6

4.35
47.2

3 3.39
41.0

3.58
42.3

3.71
41.5

3.46
40.0

3.45
38.6

3.60
40.5

3.53
40.0

3.55
40.3

4 3.11
40.6

2.24
27.6

2.90
36.1

2.70
33.6

2.56
33.2

2.64
36.0

2.67
36.5

2.85
38.1

5 3.71
42.3

2.99
36.6

2.86
32.1

2.90
32.1

3.08
34.8

3.22
38.7

3.25
40.8

3.38
40.9

6 4.38
42.7

3.37
30.5

3.38
35.5

3.66
38.2

4.15
41.3

4.38
43.4

4.48
44.3

4.44
44.9

7 3.48
43.0

3.62
53.9

3.09
41.7

2.97
39.8

3.54
42.3

3.49
42.0

3.41
40.3

3.48
41.6

8 2.74
37.0

3.28
41.2

3.04
37.8

2.94
34.6

3.21
37.3

3.14
38.5

2.94
36.8

2.83
36.8

9 3.29
44.5

3.25
44.8

3.13
42.0

3.07
40.1

3.05
39.2

2.81
38.9

2.95
40.3

2.78
39.5

10 2.94
35.0

2.84
27.5

2.68
26.7

2.75
29.4

2.86
32.7

2.89
34.6

2.95
35.5

2.97
35.6

11 4.30
46.0

4.76
41.9

4.98
47.0

4.87
50.8

4.15
47.8

4.12
46.9

3.91
43.6

4.31
46.4

12 3.07
38.5

3.06
36.9

2.80
35.0

2.66
33.3

2.71
32.2

2.83
33.8

2.91
34.8

2.91
35.7

13 4.21
44.1

3.19
35.1

3.72
37.6

4.18
41.8

4.23
39.9

4.32
41.1

4.27
41.9

4.17
41.3

14 4.22
41.4

3.11
37.7

3.0
36.1

3.11
36.9

4.47
43.7

4.25
44.2

4.18
44.1

4.13
43.8

15 3.38
45.8

3.10
35.4

3.71
42.2

3.94
46.2

3.44
45.0

3.51
48.1

3.44
47.7

3.33
46.7

16 4.06
40.3

4.09
32.0

3.76
33.5

3.99
35.7

3.84
35.6

3.70
36.0

3.92
38.9

3.83
39.8

17 3.97
43.6

4.16
44.1

4.82
47.0

4.85
46.3

4.50
45.6

4.36
45.9

4.16
44.4

4.16
45.5

18 4.28
43.3

2.49
33.8

2.33
32.6

2.74
34.4

3.32
38.4

3.74
39.2

3.79
39.5

3.76
39.4

19 4.11
43.0

2.32
28.3

2.41
30.7

2.52
31.1

2.52
31.1.

2.73
34.4

3.54
40.2

3.44
40.3

20 4.72
43.9

4.96
44.6

5.91
47.7

5.59
50.9

5.37
46.6

4.96
45.1

4.93
45.2

4.92
44.7
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data were utilized to infer GV. Other studies used either 2.5-
point or 7-point capillary glucose profiles, previously dem-
onstrated to be a suboptimal frequency for consistent GV 
assessment.11 For standardization of methodology and 
improved homogeneity, we suggest that future studies of GV 
estimation use a data set obtained from a minimum of 12 
days of continuous CGM usage, with no longer than 2 to 4 
hours between glucose data points. This should assist to 
improve the consistency of correlation of GV with relevant 
clinicopathologic outcomes in T1D. Development of auto-
mated computer assessment would also be advantageous.
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