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Commentry

With the availability of so many glucose meters, one needs to 
know what acceptable performance is. Two standards orga-
nizations have addressed this with performance limits for 
glucose meters.1-2 Although I have commented that these 
standards fail to provide limits for 100% of the results,3 the 
limits provided for 95% of the data are an important criterion 
for glucose meter quality. Westgard stated that total error, 
which is represented by the location of 95% of the data, is of 
prime importance to clinicians.4 Moreover, he developed a 
simple model to estimate total error as:

                   Total error bias + 2 SD= ×  Equation 1

Thus, total error equals bias plus imprecision. This model is 
intuitively appealing, since what else could there be besides 
bias and imprecision. Boyd and Bruns have used this model 
to show combinations of bias and imprecision needed to 
keep total error within limits for glucose meters.5

The purpose of this article is to show that this model is 
incomplete and how it can mislead one in estimating glucose 
meter performance. First, it is noted that in the Westgard 
model, what is meant by bias is really average bias of a series 
of specimens. Lawton and coworkers provided a more com-
plete model to estimate total error.6 Their model adds a ran-
dom bias term (as a standard deviation) to the Westgard 
model. This additional term accounts for interferences that 
vary from sample to sample. A problem with the Lawton 
model is that the extra term is difficult to estimate.

This random bias term is sometimes thought to deal with 
large, rare interferences, but it accounts for any size of interfer-
ence, and this is especially pertinent to glucose meters. Thus, 
some glucose meters suffer from hematocrit interference and 

others not.7 The CLSI standard EP21-A takes a different 
approach to estimating total error by directly computing the 
differences between the candidate assay and reference.8 Thus, 
no modeling is required. The difference between EP21-A and 
the Boyd and Bruns method can be shown by comparing  
2 hypothetical glucose meters, A and B. As shown in Table 1, 
the 2 meters both have no statistically significant average bias 
and the same precision. But meter B shows 20% bias at the 
extremes of hematocrit.

According to the Boyd and Bruns model, glucose meters 
A and B have the same total error because they have the same 
average bias and precision (equation 1). But when analyzed 
with a CLSI EP21-A mountain plot,8-9 meter B with hemato-
crit interference is clearly not as accurate as meter A and fails 
the POCT12-A3 glucose meter standard (Figures 1-2). In a 
mountain plot, the glucose differences from reference are 
sorted from low to high and ranked. The Y axis represents the 
cumulative probability which normally ranges from 0 to 1. 
But to present a plot that is easier to visualize, the mountain 
plot cumulative probability values above 0.5 have been sub-
tracted from 1 to give adjusted values. Two worked examples 
of how to construct a mountain plot using a spreadsheet are 
explained in EP21-A.

This demonstration was performed by simulations and 
simulations always work. The hematocrits were chosen as 
discrete values uniformly spanning 32% to 56% and applied 
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to discrete glucose values uniformly spanning 30 to 280 mg/
dL. Had different simulation conditions been used, meter A 
would remain the same and meter B might have become more 
narrow or wider in Figures 1 and 2. Only hematocrit 

interference was chosen. Other interfering substances would 
widen a meter’s total error performance and at the same time 
not be detected by the Boyd and Bruns approach. The fact that 
the average bias is not statistically significant is because man-
ufacturers calibrate their systems to guarantee this property.

Yet, this commentary is not the first objection to the Boyd 
and Bruns model. I critiqued their model in a fashion similar 
to this commentary and they responded.10-11 In their response, 
they said I was correct but the sources of error I mentioned 
were “outside the scope of our study, in part because it is dif-
ficult to know how one might model the interferences.” They 
went on to say that in their article they discussed the need for 
manufacturers to “design instruments that avoid sources of 
error, such as those encountered by patients with special 
needs.” Unfortunately, my critique had no effect because 
their model continues in recent articles as if the critique 
never happened.12-13 Moreover, in the recently released CLSI 
glucose meter standard, POCT12-A3,2 these models are 
cited as a basis for the performance limits for glucose meters. 
Ironically, Boyd and Bruns11 state in their response to my 
critique: “The points raised in Dr. Krouwer’s letter do point 
out that our estimates of quality requirements, as demanding 
as they may seem, would become even more demanding if 
the additional sources of error were included.” In a similar 
story, I critiqued14 the NCEP’s use of the Westgard model to 
arrive at performance goals for cholesterol.15 In spite of 
objections, the Westgard model also persists.16 Perhaps these 
models persist because they are models and (simple) models 
are satisfying. In a total error analysis conducted using CLSI 
EP21-A, there is no means to separate error components nor 
a basis for setting limits on error components.

Finally, it is noted that total error only captures error that 
is allowed to occur in the experiment. For example, such 
experiments are often done with a single lot of reagent with 
many conditions controlled more tightly that would occur in 
routine use.
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Figure 1. Absolute differences for glucose meters for reference 
less than 100 mg/dL. The intersections of the horizontal and the 
straight vertical lines represent the limits to contain 95% of the 
data. A meter that is contained with this space meets goals. Thus 
meter A meets goals and meter B does not.
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Figure 2. Percentage differences for glucose meters for 
reference greater than 100 mg/dL. The intersections of the 
horizontal and the straight vertical lines represent the limits to 
contain 95% of the data. A meter that is contained with this space 
meets goals. Thus meter A meets goals and meter B does not.

Table 1. Performance Attributes of Two Glucose Meters.

Meter Average bias Precision (CV) Hematocrit interference

A 0 5% None
B 0 5% +20% low hematocrit, 

–20% high hematocrit
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