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Original Article

Neonatal hypoglycemia is common and may often be unde-
tected in new born infants.1 It has been associated with per-
manent brain injury, seizures, poor vision, and poor 
neurodevelopment in affected babies.2 However, the defini-
tion of neonatal hypoglycemia and the best course of treat-
ment remain a contentious subject.1,3,4

Continuous glucose monitoring (CGM) devices, with their 
1- to 5-minute measurement interval, have recently been used 
to identify hypoglycemia in a more effective, less invasive 
manner than blood glucose (BG) measurements alone.1,5-7 
CGM devices typically consist of a small pager-like monitor-
ing device that receives a signal from a sensor inserted into 
the subcutaneous layer, just beneath the skin. Calibration 
algorithms convert the signal into a meaningful glucose con-
centration by comparing it to known calibration BG measure-
ments, which are entered into the monitor by the user.

In the busy critical or neonatal care environment it is pos-
sible for time delays to occur between measuring BG and 
entering the value into the CGM device for calibration. The 
magnitude of time delays can depend on a number of factors, 
including the meter/method used to measure BG and the 
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Abstract
Neonatal hypoglycemia is common and can cause serious brain injury. Continuous glucose monitoring (CGM) could improve 
hypoglycemia detection, while reducing blood glucose (BG) measurements. Calibration algorithms use BG measurements 
to convert sensor signals into CGM data. Thus, inaccuracies in calibration BG measurements directly affect CGM values 
and any metrics calculated from them. The aim was to quantify the effect of timing delays and calibration BG measurement 
errors on hypoglycemia metrics in newborn infants. Data from 155 babies were used. Two timing and 3 BG meter error 
models (Abbott Optium Xceed, Roche Accu-Chek Inform II, Nova Statstrip) were created using empirical data. Monte-Carlo 
methods were employed, and each simulation was run 1000 times. Each set of patient data in each simulation had randomly 
selected timing and/or measurement error added to BG measurements before CGM data were calibrated. The number 
of hypoglycemic events, duration of hypoglycemia, and hypoglycemic index were then calculated using the CGM data and 
compared to baseline values. Timing error alone had little effect on hypoglycemia metrics, but measurement error caused 
substantial variation. Abbott results underreported the number of hypoglycemic events by up to 8 and Roche overreported 
by up to 4 where the original number reported was 2. Nova results were closest to baseline. Similar trends were observed in 
the other hypoglycemia metrics. Errors in blood glucose concentration measurements used for calibration of CGM devices 
can have a clinically important impact on detection of hypoglycemia. If CGM devices are going to be used for assessing 
hypoglycemia it is important to understand of the impact of these errors on CGM data.
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location of the BG meter relative to the patient.8-10 Calibration 
algorithms cannot currently detect or correct for these time 
delays. Consequently, any delay could potentially introduce 
significant error in the output CGM trace, especially when 
the BG level is rapidly changing.11,12

Another source of error that could impact CGM data is 
calibration BG measurement error. Typical point-of-care glu-
cometers have measurement error in the range of 2-10%.13-16 
However, these devices are often designed for otherwise 
healthy people with diabetes and they can exhibit reduced 
performance in critically ill or neonatal care patients, particu-
larly due to medications or fluctuating hematocrit levels17-19 
and at low glucose concentrations. In contrast, blood gas ana-
lyzers (BGAs) can measure BG concentrations with less than 
2% error for a wide range of patient states, with little influ-
ence from hematocrit, pH, or PaO

2
, which are often actively 

measured and accounted for.20 Hence, the choice of calibra-
tion measurement method could have a significant impact on 
CGM accuracy, independent of calibration timing.

These errors can add uncertainty to the CGM trace and to 
any glycemic metrics calculated from it. Therefore, studies 
utilizing CGM devices to detect and quantify hypoglycemia, 
or other glycemic events, should be aware of these potential 
sources of error and the potential impact on results. In par-
ticular, the resulting uncertainty or variability would limit the 
detectable resolution of any true clinical changes and should 
be accounted for in the study design. This study quantifies 
the effect of timing delays and calibration BG measurement 
errors, both together and separately, on metrics used to clas-
sify hypoglycemia in newborn infants.

Subjects and Methods

Patients

This post hoc analysis uses CGM and BG data from 155 
newborn infants admitted to Waikato Hospital Neonatal 
Intensive Care Unit (NICU) between December 2008 and 
November 2010. Babies greater than 35 weeks gestation, 
less than 48 hours old, and at risk of neonatal hypoglycemia 
were eligible for the study. Primary risk factors for neonatal 
hypoglycemia included having a mother with diabetes, pre-
maturity, and/or being small or large for gestational age. All 
patients had a SOF sensor inserted shortly after birth, and 
data were recorded using a CGMS System Gold device 
(Medtronic Minimed, Northridge, CA, USA). Patients with 
less than 24 hours of CGM data were excluded, and CGM 
data after 72 hours were trimmed. The median [interquartile 
range; IQR] duration of CGM recordings were 1.8 [1.5, 2.0] 
days with 5.9 [5.1, 6.9] calibrations per day. These data were 
used to create 1 of 2 timing error models and for the main 
analysis presented here. This study and use of data were 
approved by the Northern Y Ethics Committee, New 
Zealand.

Timing Error Models

Timing error models are used to assess the impact of delays 
entering BG measurements into the CGM for calibration. 
Two models were created for this study, 1 using data from the 
Waikato Hospital NICU study and 1 using data from an 
ongoing CGM study in the Christchurch Hospital ICU. The 
Christchurch Hospital ICU study and use of data were 
approved by the Upper South A Regional Ethics Committee, 
New Zealand.

Both centers used BGAs for calibration BGs (Waikato: 
Radiometer ABL800Flex, Copenhagen; Christchurch: 
Radiometer ABL90Flex, Copenhagen). The BGA recorded 
the time and glucose concentration electronically, but nurses 
had to manually enter the BG value into the CGM, which 
stored this time/value. The distribution of time discrepancies 
between measuring BG and calibrating the CGM were used 
to create the model. Any time delays between obtaining the 
blood sample and determining the glucose concentration 
were considered negligible due to the close proximity of the 
BGA to the patients. Figure 1 shows the raw data and empiri-
cally derived models of timing error used in this study.

Measurement Error Models

Measurement error models describe calibration BG measure-
ment errors, commonly parameterized by accuracy and pre-
cision. A wide range of error levels for different devices can 
be found in the literature,21-25 but this study focused on 3 
glucose meters: Abbott Optimum Xceed (Abbott Diabetes 
Care, Alameda, CA, USA), Nova Statstrip (Nova Biomedical, 
Waltham, MA, USA), and Roche Accu-Chek Inform II (F. 
Hoffmann-La Roche Ltd, Basel, Switzerland).

All 3 models were developed using data from the 
Christchurch ICU study. Under this protocol, BG is deter-
mined using a BGA and the remaining blood is distributed 
across up to 15 separate BG meters (up to 5 of each model). 
Not every model of glucometer was available for each patient 
in the study, resulting in different numbers of paired meter-
BGA values for each glucometer. All measurements were 
made by trained staff, minimizing user associated error.10 All 
devices used in this study measure glucose concentration in 
whole BG and display a plasma equivalent glucose concen-
tration as recommended by the International Federation of 
Clinical Chemistry and Laboratory Medicine (IFCC). 
Furthermore, BGAs in the same family as the one used in 
this study have also been shown to correlate well with labo-
ratory plasma glucose determinations,26 allowing direct 
comparison between all devices.

For each glucometer measurement, the error between the 
glucometer and BGA value was calculated as (meter – BGA). 
Errors were stratified into bins, based on the BGA gold stan-
dard measurement. Mean and standard deviation of each bin 
were then used to describe the error distribution, and assumed 
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Gaussian around any bias. Positive bias assumes the glucose 
meter is reading higher than the recorded BGA value and 
vice versa.

The Abbott Optium Xceed is an inexpensive and com-
monly available device that measures the glucose concentra-
tion of a whole blood sample, and estimates the plasma 
equivalent glucose concentration using a constant adjust-
ment factor of 1.12.13 This factor is derived from the differ-
ence between plasma glucose and whole BG concentration 
for an individual with a normal hematocrit level. The Abbott 
test strips are validated for a hematocrit range of 20-70.13 

The top section of Table 1 shows the error model derived 
from the experimental Abbott and BGA data. There were a 
total of 724 paired meter-BGA measurements available for 
the model.

The Nova Statstrip GLU was designed for point-of-care 
testing in the hospital environment and adjusts for hemato-
crit level when calculating plasma glucose concentration. 
The Nova test strips used in this study were validated for a 
hematocrit range of 20-65%.27 The middle section of Table 1 
shows the error model derived from the 229 paired meter-
BGA measurements.
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Figure 1. Distribution of time delay data from both Waikato (left) and Christchurch (right) data sets. Waikato Hospital data had 1947 
time delay values and an exponential decay model (µ = 12.96) fit the empirical data. Christchurch Hospital had 155 delay values and an 
exponential decay model (µ = 8.84) captured the empirical data.

Table 1. Measurement Error Data for the Abbott Optium Xceed, Nova Statstrip, and Roche Accu-Chek Inform II Glucose Meters.

Abbott error model

Reference BG (mmol/l) <5.9 6.0-6.9 7.0-7.9 8.0-8.9 >9.0
Number of measurements 141 277 224 42 40
Error mean (mmol/L) 0.5099 0.5433 0.2299 0.1952 0.635
Error SD (mmol/L) 0.4982 0.7519 0.5521 0.8748 0.3965

Nova error model

Reference BG (mmol/l) <6.9 7.0-7.9 >8.0
Number of measurements 67 74 123
Error mean (mmol/L) –0.0134 –0.0823 –0.1905
Error SD (mmol/L) 0.2564 0.2471 0.3463

Roche error model

Reference BG (mmol/l) <6.9 7.0-7.9 >8.0
Number of measurements 174 160 10
Error mean (mmol/L) –0.181 –0.4212 –0.27
Error SD (mmol/L) 0.2615 0.2645 0.0949

The Nova and Roche models have a reduced number of bins to avoid skewing due to low measurement numbers.
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Table 2. Overall Cohort Results From Each 1000-run MC Simulation Showing the Median [IQR] (90% CI) Difference in Hypoglycemia 
Metrics From Baseline.

Baseline hypoglycemia

Number of hypoglycemic events 2 [1, 5] (0, 13)  
Percentage duration 6.13 [1, 13] (0, 29)  
Hypoglycemic index 10.13 [1.3, 27] (0, 87)  

Results from error Monte Carlo simulations using error models

Number of Hypoglycemic events
No measurement 

error
Abbott measurement 

error
Nova measurement 

error
Roche measurement 

error
 

No timing error –1 [–3, 0] (–8, 0) 0 [0, 1] (–3, 2) 0 [0, 2] (–3, 4)
Waikato timing error 0 [0, 1] (–2, 2) –1 [–2, 0] (–8, 0) 0 [0, 1] (–3, 2) 1 [0, 2] (–3, 4)
Christchurch timing error 0 [0, 0] (–2, 2) –1 [–2, 0] (–8, 0) 0 [0, 1] (–3, 2) 1 [0, 2] (–3, 4)
Percentage Duration  
No timing error –4.68 [–9.0, –1.0] (–17, 0) 0.49 [0.1, 1.6] (–0.1, 6.7) 4.45 [1.8, 10] (0, 23)
Waikato timing error 0.21 [0, 1.3] (–1.7, 4.1) –4.25 [–9.0, –1.0] (–15, 0) 1.02 [0.1, 3.2] (–0.5, 8.7) 5.36 [2.1, 11] (0, 26)
Christchurch timing error 0.17 [0, 0.9] (–1.5, 3.6) –4.40 [–8.5, –0.6] (–15, 0) 0.84 [0, 2.7] (–0.4, 8.1) 5.23 [2.2, 11] (0, 25)
Hyperglycemic Index  
No timing error –7.64 [–22, 0] (–59, 0) 2.93 [0.5, 8.2] (0, 16) 19.4 [4.2, 38] (0, 70)
Waikato timing error 0.27 [0, 3.1] (–3.3, 14) –6.84 [–22, –0.3] (–48, 0) 3.84 [0.7, 12] (–0.1, 27) 20.8 [4.1, 42] (0, 82)
Christchurch timing error 0.18 [0, 2.3] (–2.9, 11) –7.24 [–21, –0.4] (–50, 0) 3.77 [0.60, 11] (0, 23) 21.3 [4.7, 42] (0, 80)

The Roche Accu-Chek Inform II was also designed for 
point-of-care testing and monitoring in hospitals. This device 
also adjusts for hematocrit level and test strips were vali-
dated for a hematocrit range of 10-65%.15 The bottom sec-
tion of Table 1 shows the error model derived from 344 
paired meter-BGA measurements.

All 3 measurement error models were validated against 
the error characteristics described by the manufactur-
ers.13,16,21 The Roche and Nova measurement error models 
compared well to the manufacturers’ data. The Abbott mea-
surement error model has increased bias and variation com-
pared to the manufacturer’s data. Finally, the models 
described here are comparable to what has been reported in 
the literature for these devices.17,28

Analysis

This analysis used CGM and BG data from 155 babies admit-
ted to the Waikato NICU study. Timing and measurement 
errors from the models described in Sections 2.2/2.3 were 
added to calibration BG measurements, before CGM data 
were recalibrated using a published calibration algorithm.12 
Hypoglycemia of each infant was quantified by

•• Number: Number of independent hypoglycemic 
events

•• Duration: Percentage of CGM recordings below 2.6 
mmol/L

•• Hypoglycemic index: Total area between the 2.6 
mmol/L threshold and the CGM trace (when CGM < 
2.6 mmol/L), divided by the total monitoring 
duration

Monte Carlo (MC) methods were employed to reduce the 
impact of randomly sampled outliers on results. A 1000-run 
MC simulation was completed for each individual model (2 
timing and 3 measurement error models) resulting in 5 simu-
lations. Simulations were also run for all possible combina-
tions of timing/measurement error models (a further 6 
simulations). The simulation protocol can be summarized as 
follows:

1. For every MC run on a given infant CGM trace, the 
difference between the number of hypoglycemic 
events in the CGM data for that MC run and the num-
ber of hypoglycemic events in the baseline (no added 
error) clinical data was determined as [Number(MC 
run) – Number(baseline)]

2. The median difference across 1000 MC runs for each 
patient was recorded

3. The Median [IQR] (90% confidence interval) of the 
values calculated in step 2 for all patients were 
included in the results table

4. Steps 1-3 were repeated for hypoglycemia percent-
age duration and hypoglycemic index.

Results

Timing Error Only

Timing error tends to have little effect on the number of 
hypoglycemic events, shown in Table 2. Both timing error 
models have a median difference from the original metrics of 
0 and the 90% CI variation is only ±2 events. Percentage 
duration and hypoglycemic index are increased by timing 
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error for both models. The Waikato model had a positive 
median difference of 0.21 (duration) and 0.27 (index) and the 
Christchurch model had a positive median difference of 0.17 
(duration) and 0.18 (index). The Waikato timing error model 
shows a larger increase in duration and index, and greater 
variation, resulting in it overreporting more frequently than 
the Christchurch model.

Glucometer Error

The Abbott Optium Xceed results have a negative median dif-
ference across all metrics and the variation is skewed to the left, 
shown in Table 2. Hence, the Abbott results tended to underre-
port all hypoglycemic metrics. The number of hypoglycemic 
events recorded had a median difference of –1 [IQR: –3, 0]. 
The Nova Statstrip tended to overreport percentage duration 
and hypoglycemic index, with median and IQRs of 0.49 [0.1, 
1.6] and 2.93 [0.5, 8.2], respectively. The Roche Accu-Chek 
Inform II tended to overreport hypoglycemia the most and also 
had the largest variation, with median differences of 4.45 [1.8, 
10] for duration and 19.4 [4.2, 38] for index. When compared 
to the Abbott and Roche results, the Nova results are closest to 
the baseline hypoglycemic metrics.

The tendency to under- or overreport hypoglycemia met-
rics can be seen in Figure 2, which shows a single patient 
data set simulated with each measurement error model. The 
original recalibrated trace (dark blue line) shows a signifi-
cant hypoglycemic event between 430 and 570 minutes. 
With the Abbott error model (A in Figure 2) this hypoglyce-
mic event only appears in approximately 50% of the 1000 
MC runs. In the Nova (B in Figure 2) and the Roche (C in 

Figure 2) simulations this hypoglycemic event is detected for 
100% of the MC runs. As a consequence of the negative bias, 
especially in the Roche model, this event tends to drop below 
the 2.6 mmol/L threshold earlier and rise later than the base-
line trace, resulting in a concomitant increase in duration and 
index.

Figure 3 shows the baseline (no error) duration of hypo-
glycemia (x-axis) plotted against the duration of hypoglyce-
mia for each MC run (y-axis), for a 1000 MC run simulation. 
Essentially, the spread in the y direction shows the amount of 
variation in the hypoglycemia metric for the 1000 MC runs. 
The left plot shows results when using the Abbott model, 
with a clear tendency to underreport the duration of hypogly-
cemia. The right plot is for the Roche model, showing that 
the duration metric has been overestimated, with the major-
ity of results above the MC = baseline 45° line.

Combined Measurement and Timing Error

The combination of measurement and timing error leads to 
an increase in both the median difference and variation of 
these across all metrics. However, the results are not addi-
tive, and the contribution from timing error is dominated by 
measurement error, as shown in Table 2.

Discussion

Timing Error Versus Measurement Error

The observed timing errors noted in the clinical practice have 
little impact on CGM hypoglycemic metrics. Measurement 

Figure 2. Example continuous glucose monitoring (CGM) traces showing the effect of (A) Abbott measurement error, (B) Nova 
measurement error, and (C) Roche measurement error. The colored band in each plot shows the 5th-95th percentile variation in the 
CGM trace over 1000 MC simulations.
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error alone has a much larger effect on the hypoglycemic 
metrics than timing error alone. The best performing mea-
surement model, the Nova, increases the median duration of 
hypoglycemia by more than double that of the Waikato tim-
ing error model. The median hypoglycemic index of the 
Nova measurement error model is 10 times that of the 
Waikato timing error model. The variation seen in these met-
rics is also greater for the Nova. In addition, when the effects 
of measurement and timing error are combined, there is little 
change to the results compared to measurement error alone. 
Thus these results clearly illustrate the dominance of mea-
surement error over timing error in the overall cohort.

Clinically, when real-time CGM devices are used to help 
detect neonatal hypoglycemia, the effects of these errors can 
be reduced by assessing the state of the CGM trace at the 
time of calibration. It is widely recommended that CGM 
devices be calibrated during periods of stable glycemia to 
avoid substantial errors in CGM data that may result from 
timing errors. In these cases, time and care can be taken to 
ensure the most accurate measurement of BG levels is 
obtained, employing a BGA (if available) instead of a point-
of-care glucometer.

If the CGM must be calibrated during a time of rapidly 
changing glucose, the user should be aware that the discrep-
ancy between the calibration BG measurement and the true 
BG level increases with delay in entering the calibration 
measurement. This is potentially a problem in newborn 
babies whose glucose levels can fluctuate significantly dur-
ing the first few hours of life. In these specific cases, it is 
highly recommended that the calibration measurement is 
obtained and entered into the CGM without delay, suggested 
within 5 minutes. In the context of hypoglycemia, any error 

in the “calibration factor” due to time delay can have an 
effect on the level of measured hypoglycemia hours after the 
calibration has occurred. However, if BG levels are low and 
trending downward at the time of calibration it may be more 
advisable to obtain a very accuracy BGA measurement as a 
measure of safety.

The Impact of Bias

The tendency of Abbott to underreport the hypoglycemic 
metrics, while Nova and Roche overreport, is related to the 
direction and magnitude of their measurement bias. The neg-
ative biases of the Nova and Roche models cause the trace to 
be pulled down more frequently during calibration. Hence, 
the number of hypoglycemic events tends to increase, as do 
the time and area below the threshold. In contrast, the posi-
tive bias in the Abbott meters causes the trace to be pulled up 
during calibration causing hypoglycemia to be 
underreported.

It is likely that the Abbott meter, not being designed spe-
cifically for the ICU environment, is more sensitive to clini-
cal factors including varying hematocrit and medications 
such as acetaminophen, ascorbic acid and dopamine.29 The 
cohort data used to create the models came from patients 
with median [IQR] (90%CI) hematocrit levels of 27.7% [25, 
31] (24, 36), and while they all remained within the validated 
range for the test strip, the median is significantly lower than 
the normal hematocrit level of 40-45%. The combination of 
low hematocrit levels and a constant correction factor of 1.12 
is likely to have contributed to the positive bias seen in the 
Abbott model. Using a whole blood to plasma conversion 
equation30 and a hematocrit value of 27%, the “true” 

Figure 3. Duration of hypoglycemia in each of 1000 MC runs plotted against baseline duration of hypoglycemia, for all 155 CGM data 
sets. (A) Simulation results using Abbott measurement error. (B) Simulation results using Roche measurement error.
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conversion factor is calculated to be 1.07, which is 5% lower 
than the constant Abbott value. In addition, newborn babies 
can have hematocrit levels as high as 65%31 causing the 
Abbott meter to underreport the true plasma glucose by ~6%.

The clinical impact of these findings could be significant 
for future studies using CGM devices to classify hypoglyce-
mia in neonates. However, it is not yet possible to quantify 
what percentage of under-/overreporting of hypoglycemia is 
clinically significant, as the long-term effects of hypoglyce-
mia on infants are still being investigated. Glucometer device 
characteristics such as bias and clinical factors such as hema-
tocrit could have a substantial impact on the results of a study 
of glycemia. For example, if 2 separate studies were investi-
gating hypoglycemia using CGM devices, the study outcomes 
could differ simply due to the type of glucose meter used to 
calibrate the CGM. Systematic reviews and meta-analyses 
need to be considered when studies using different glucome-
ters are compared. Thus, it is important to select an appropri-
ate method of measuring glucose for calibration when 
undertaking CGM studies, and to understand the range of 
impact or uncertainty that the device may impart to the results.

Variation in Hypoglycemia Metrics

The IQR and 90%CI in the results table are used to assess the 
variation in the hypoglycemia metrics across the 1000 MC 
runs. The results showed a counterintuitive trend: the Roche 
results had a wider 90%CI (more variation in results), for 
duration and index, than the results from the lower precision 
Abbott meter. The negative bias of the Roche was deemed to 
be the cause of this unexpected result as the increased amount 
of hypoglycemia allows more variation to be observed.

In Figure 3 it is evident that truncation in the variation of 
hypoglycemia metrics occurs when calibration causes the 
CGM to be lifted above the hypoglycemic threshold. Plot A 
in Figure 3 illustrates how the negative bias in the Roche 
model increases the area and time below the 2.6 mmol/L 
threshold, allowing more variation to be seen in the hypogly-
cemia metrics. Conversely, plot B in Figure 3 shows that the 
full effect of the Abbott precision is only experienced by 
patients with large baseline durations of hypoglycemia. The 
positive bias of the Abbot error causes the majority of points 
to fall below the 45° line and the variation observed in dura-
tion is truncated at zero, causing the tighter 90%CI seen in 
results. Finally, the widths of the bands in Figure 2 reinforce 
this point and show the true effect of precision on the overall 
CGM trace.

Limitations

The main limitation of this study is the method used to cali-
brate the CGM after adding timing and measurement error to 
calibration BGs. The proven calibration algorithm from 
Signal et al12 was designed to be used with very accurate 
calibration BG measurements, with little or no timing error. 

Thus, it inherently assumes the calibration BGs are perfect 
and forces the CGM trace to pass through them. Inbuilt CGM 
calibration algorithms typically use regression techniques32 
to reduce the impact of individual erroneous measurements 
on the output CGM trace. However, the details of these algo-
rithms are not typically fully disclosed, and therefore it was 
not possible to use one directly in this study. Although the 
effect of glucometer calibration errors on hypoglycemic met-
rics might be reduced with the use of an inbuilt calibration 
algorithm, it is likely that the trends discussed in this study 
will still remain as such algorithms would only moderate the 
impact of calibration error and not eliminate it.

A second limitation is that the CGM devices used in this 
study are not the latest CGM technology available on the 
market. This is a post hoc analysis of data that were collected 
between 2008 and 2010, using devices purchased for first 
use in 2006 as part of another research study. At the time of 
purchase, the CGMS Gold was the most widely reported 
CGM device used for research. While the exact numerical 
results may differ with newer devices or different technolo-
gies, it is likely that the trends in results and overall conclu-
sions reported in this study would still be observed.

Finally, the assessment of hypoglycemia in CGM data 
does not account explicitly account for potential inaccuracies 
in the CGM data itself. The recalibration algorithm exploits 
the very accurate and frequent calibration BG measurements 
to minimize CGM error, but it is likely that the recalibrated 
CGM data still contain some degree of error. This remaining 
error could potentially affect the exact numerical results 
when quantifying hypoglycemia, but again, it is likely the 
key trends and observations discussed in this study would 
still remain.

Conclusions

This study aimed to quantify the effect of calibration delays 
and glucometer measurement error on the hypoglycemic 
metrics detected using CGM devices in infants at risk of 
hypoglycemia soon after birth. Overall, measurement error 
tends to have a much larger impact on hypoglycemia metrics 
than timing error. The effect of bias in calibration BG mea-
surements was 2-fold: (1) a negative error bias increases the 
prevalence of hypoglycemia and (2) it also increases the 
amount of variation seen in hypoglycemic metrics. The 
opposite was also true for positive biases. Finally, if CGM 
devices are to be used clinically for assessing events such as 
hypoglycemia, it is important that the investigators are aware 
of the potential impact that errors in calibration BG measure-
ments can have on event detection.
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