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Original Article

Continuous glucose monitors (CGMs) provide real-time 
information about interstitial glucose values that can be used 
to alert the patient or for automating glucose control.1,2 While 
the technology has evolved over the past decade, problems 
remain for effective management of diabetes. Outstanding 
progress in the development of glucose biosensors has not 
yet fulfilled the promise of tight diabetes management, and 
there are many challenges and obstacles facing highly stable 
and reliable continuous glycemic monitoring.3-5 Sometimes 
the sensors are miscalibrated, lose their calibration, or suffer 
from sensor signal dropouts and degradation due to fouling. 
Another common problem, particularly overnight when a 
subject sleeps on their sensor, is sensor attenuation, which 
we will refer to as pressure-induced sensor attenuation 
(PISA). The physical and biochemical basis of pressure- and 
movement-based sensor attenuations are presented by Helton 
et al.6,7 A computer-implemented method has been proposed 
by Breton et al8 for determining the probability of signal 
attenuation by receiving analyte sensor related signals and 

estimating sensor characteristics. Mensh et al9 studied the 
performance of CGMs as a function of sleeping position and 
used four sensors, two at each side of the abdomen. They 
observed sudden decreases in CGM readings where there 
was a significant pressure applied to the skin around the sen-
sor due to the sleep position.

Sensors are an important part of any form of a closed-
loop algorithm. For example, predictive pump shut-off (or 
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Abstract
Continuous glucose monitors (CGMs) provide real-time interstitial glucose concentrations that are essential for automated 
treatment of individuals with type 1 diabetes. Miscalibration, noise spikes, dropouts, or pressure applied to the site (e.g., lying 
on the site while sleeping) can cause inaccurate glucose signals, which could lead to inappropriate insulin dosing decisions. 
These studies focus on the problem of pressure-induced sensor attenuations (PISAs) that occur overnight and can cause 
undesirable pump shut-offs in a predictive low glucose suspend system. The algorithm presented here uses real-time CGM 
readings without knowledge of meals, insulin doses, activity, sensor recalibrations, or fingerstick measurements. The real-
time PISA detection technique was tested on outpatient “in-home” data from a predictive low-glucose suspend trial with 
over 1125 nights of data. A total of 178 sets were created by using different parameters for the PISA detection algorithm to 
illustrate its range of available performance. The tracings were reviewed via a web-based analysis tool by an engineer with an 
extensive expertise on analyzing clinical datasets and ~3% of the CGM readings were marked as PISA events which were used 
as the gold standard. It is shown that 88.34% of the PISAs were successfully detected by the algorithm, and the percentage 
of false detections could be reduced to 1.70% by altering the algorithm parameters. Use of the proposed PISA detection 
method can result in a significant decrease in undesirable pump suspensions overnight, and may lead to lower overnight mean 
glucose levels while still achieving a low risk of hypoglycemia.
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predictive low glucose suspend) algorithms rely on an esti-
mate of the rate of change of sensor glucose to shut-off an 
insulin pump to avoid hypoglycemia. Inpatient clinical 
studies have shown a 73% rate in avoiding hypoglycemia 
using a predictive pump shut-off algorithm,10 and prelimi-
nary outpatient (at-home) trials showed a reduction in over-
night hypoglycemia by almost 50%.11,12 PISAs caused false 
suspensions in these studies and should be prevented.13 
When a PISA occurred, the predictive algorithm underpre-
dicted glucose and, in some cases, shut off the pump inap-
propriately. This, in turn, led to higher than desired morning 
glucose levels. We refer to pump shut-offs that occur 
unnecessarily due to PISAs as undesirable pump shut-offs; 
an example is shown in Figure 1.13,14

The primary goal of this article is to introduce a novel 
method to detect PISAs and to illustrate its range of available 
performance by using 1125 nights of a recent large outpatient 
study.12

Methods

Generally, the start of a PISA is characterized by a sudden 
decrease in glucose levels that violate physiological rate-of-
change limits. The end of a PISA generally occurs at least 15 
minutes later and has a negative rate of rate of change. A 
Kalman filter algorithm was used to provide glucose predic-
tions at 1-minute intervals, which are updated when a new 
sensor signal is available (typically at 5-minute intervals); 
Kalman filter implementation details are available in 
Cameron et al.10

Pressure-Induced Sensor Attenuation (PISA) 
Detection Algorithm

There are two sets of rules to be used for detecting/entering a 
new PISA event/series and for ending/leaving ongoing 

attenuations. When the algorithm reads a new CGM at time 
step k, it checks the following criteria,

a.	 k ≥3
b.	 ′ < ′g gk in

c.	 { }′ ′ > ′
−

g g gk ratio
k 1

OR{ }′ >−g k 1 0

where ′gk  is the rate of change (ROC) in CGM and is calcu-
lated as g g t tk k k k−( ) −( )− −1 1 . It should be noted here that 
k is the index of a valid CGM reading and the time between 
consecutive readings, t tk k−( )−1 , might not be constant. The 
algorithm applies these rules starting from the third valid 
reading (a) to perform successful calculation of current and 
previous ROCs. The second rule (b) is related to the magni-
tude of the last ROC in CGM. The algorithm compares this 
value ( ′gk ) with a threshold value ( ′gin ) to see if the decrease 
in CGM is rapid and larger than expected. In addition to 
these two rules, we need a confirmation of having a rela-
tively (by the order of ′gratio ) larger decrease in CGM by 
checking the ratio of current and previous ROC values (c). 
The latter will be ignored if the previous ROC of CGM is 
positive. If all three conditions above are satisfied, then the 
CGM value, gk , will be marked as the start of a PISA and 
will not be used by the pump shut-off algorithm.

Each subsequent reading is assumed to be a continuation 
of the PISA unless one of the following conditions is 
satisfied,
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where nPISA  is the total number of CGM values marked as 
PISA since last known good reading. If the current PISA is 
longer than or equal to a given time window, tPISA,max  (d), or 
if the time between the last two CGM readings is greater than 
a sensor dropout threshold, tdropout ,max  (e), then the PISA is 
accepted to be over. The PISA also ends if the last CGM 
ROC is greater than a given limit, g'

out
, and one of the follow-

ing four rules are satisfied: (i) the current CGM, gk , has 
risen back above the Kalman estimated glucose value, gk est, , 

Figure 1.  In this overnight study there are three periods where 
a pump shut-off occurred. The third shut-off is due to a PISA 
event, and was deemed to be an undesirable pump shut-off.13,14
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(ii) a decreasing ROC over the last four CGM readings indi-
cates that the CGM drop is recovering to a physiologically 
likely value, that is, negative ROC of last two CGM ROC 
values which is calculated as g''

k
 = (g'

k
-g'

k-1
)/(t

k
 - t

k-1
) , (iii) 

and (iv) there was a recalibration in CGM and this is a false 
positive PISA detection. If the ratios of the CGM ROC val-
ues calculated in this subrule fall in the given range (between  
g'ratio,min and g'ratio,max, the values are given in Table 1), the 
trend of CGM before and after the sudden drop are similar 
(i.e., their signs should be the same and therefore the ratios in 
the inequalities should be positive), and this behavior could 
be because of a recalibration. At this time, we should also 
make an additional comment on the CGM ROC values (first 
derivatives) when subrule (ii) was executed to end PISA: 
while positive CGM ROC values could be a clear indication 
of a rebound, their negative values might be a recovery from 
a potential false PISA detection.

The proposed approach for detecting CGM sensor attenu-
ations were assessed retrospectively on 1125 nights of an 
outpatient, “in-home” trial where the patients used a pump 
suspension system that included a MiniMed Paradigm® 
REAL-Time Veo™ System and Enlite™ glucose sensor 
(Medtronic Diabetes, Northridge, CA).12 The data include 
nearly 108 000 CGM readings at mostly 5-minute intervals 
with at least 4 hours of data in each night. The gold standard 
for PISAs was determined by visual inspection of all data 
points by an expert engineer since no reference glucose val-
ues are available. This evaluation was performed on an in-
house developed web-based data analysis environment and a 
total of 3267 CGM readings (~3%) that are believed to be 
attenuated (PISA) were manually picked.

To illustrate the available range of performance, 178 dif-
ferent “parameter sets” were formed by selecting a value for 
each parameter from the ranges given in Table 1. These val-
ues were fed to the algorithm along with the CGM data 
obtained from the outpatient study (1125 nights). The read-
ings detected as PISA were compared with PISA gold values 
and corresponding truth measures were found using the fol-
lowing definitions:

If any CGM reading is detected by the algorithm as 
PISA, we call it as “positive,” and if any CGM reading is 
marked as PISA by the gold standard, we accept it as 
“true.” Table 2 summarizes the criteria for the decision of 
truth measures.

True positive rate, TPR (sensitivity) = TP/P = TP/(TP + 
FN), and false positive rate, FPR (1 – specificity) = FP/N = 
FP/(FP + TN) values for each parameter set were calculated.

Results
Truth measures were calculated for each parameter set and 
corresponding TPR and FPR values were plotted in Figure 2. 

Table 1.  Parameters and Their Ranges Used in PISA Detection 
Algorithm.

Parameter Values

′gin ∈ {–1.90, . . . thru . . . –3.10, in –0.10 
intervals}

′gout ∈ {–2.80, –2.90, –3.00, –3.10}
′gratio ∈ {1.20, 1.30, 1.50, 1.70}
′gratio,max , ′gratio,min ∈ {1 ± 0.30, 1 ± 0.20, 1 ± 0.10}

Table 2.  Definition of Truth Measures for Each CGM Reading in 
Parameter Testing.

If marked as PISA by the gold standard

  True False

If detected as PISA 
by the algorithm

+ TP (true positive) FP (false positive)
– FN (false negative) TN (true negative)

Figure 2.  Receiver operating characteristic curve shows the 
effect of various parameter sets. Inset is the magnified area 
for better visualization. Larger dots represent various sets of 
parameters selected for further analysis. Aggressive set has the 
highest true positive rate while on the other hand; cautious set 
has the lowest false positive rate. Nominal set has parameters 
between aggressive and cautious, and the trial set was determined 
in the region relatively closer to the aggressive and currently 
being used in a clinical study.

Table 3.  Selected Parameter Sets With Corresponding Values.

Set g'
in

g'
out

g'
ratio

g'ratio,max, 
g'ratio,min TPR (%) FPR (%)

Aggressive −1.90 −2.80 1.20 1 ± 0.10 88.34 6.96
Trial −2.00 −3.10 1.50 1 ± 0.30 82.25 5.00
Nominal −2.50 −2.80 1.30 1 ± 0.30 81.05 3.36
Cautious −3.10 −2.80 1.30 1 ± 0.30 63.64 1.70



1094	 Journal of Diabetes Science and Technology 8(6)

There are four sets represented by larger symbols and differ-
ent colors in the figure: “aggressive,” “nominal,” “cautious,” 
and “trial” (the values used during an ongoing clinical trial). 
These specific sets were chosen to further illustrate the effect 
of parameters on individual nights. In the aggressive set, we 
obtained the highest true positive (88.34%) and false positive 
(6.96%) rates. On the other hand, the cautious set yielded the 
lowest TPR (63.64%) and FPR (1.70%) values. Although 
both parameter sets seems reasonable to use to detect PISAs, 
it also gives an option to the user to trade-off between true/
false positive rates according to their comfort level. The TPR 
and FPR values for the nominal set were found to be 81.05% 
and 3.36%, respectively. The parameters used in these sets 
are listed in Table 3.

The “trial” parameter set is in a region between the aggres-
sive and the nominal sets with TPR and FPR values of 
82.25% and 5.00%, respectively. This parameter set is cur-
rently being used in a PISA detection algorithm which is 
implemented in an active outpatient trial to investigate the 
reduction of nocturnal hypoglycemia by using predictive 
algorithms and pump suspension.15 The study includes 90 
individuals with type 1 diabetes from an age group of 3- to 
15-year-old children and the length of the trial is planned to 
be 42 nights per individual.

Figure 3 shows four sample plots that illustrate the differ-
ence in performance between the different parameter sets. 
The diamond symbols refer to the PISA gold standard, and 
red, blue, green and orange upper arrow symbols are used for 
detected PISA regions by using aggressive, trial, nominal, 
and cautious sets, respectively. In Figure 3a, there are no 
CGM readings detected as PISA using the cautious parame-
ter set since none of the negative ROC values in blood glu-
cose readings are greater than 3.1 mg/dL in that region. 
Similarly the first PISA region was not successfully detected 
by the nominal parameter set. Figure 3b shows the impor-
tance of the ratio of the last two ROC of CGM values. The 
aggressive and nominal sets detect a PISA just before 10:00 
am while trial and cautious sets do not. Since the negative 
ROC of CGM parameters in these sets are in ascending order, 
g'

ratio
 value of 1.50 for the trial set prevented the detection of 

the PISA. Figure 3c is a good example for the aggressive set. 
All others could not detect the attenuation at around 1:55 am 
because of a relatively small drop in the CGM value. To 
understand the behavior of the next plot, recall the rule 
(f{iv}) of the PISA detection algorithm. This part of the 
algorithm checks the trend of readings before and after a 
sudden decrease in CGM to see if there is a recalibration. In 
Figure 3d, both aggressive and trial sets detected a PISA just 

Figure 3.  The effect of each parameter set is shown in individual night continuous glucose monitor (CGM) plots.
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after 5:00 am but recover it by applying this recalibration 
check. It is very obvious that the existence of recalibration 
information along with CGM data would improve quality of 
the detection of sensor attenuations.

Discussion

Sensor anomalies can cause problems in open-loop, low glu-
cose suspend, or fully closed-loop studies. One sensor anom-
aly occurs when a patient applies pressure on the sensor site. 
Another anomaly is infusion set failure, which can occur due 
to blocked or dislodged sets, inflammation, or leakage. 
Techniques for both infusion set failure and CGM sensor 
attenuation detection16 are also presented by Baysal et al.13 
Facchinetti et al17 present a Kalman-filter-based algorithm to 
detect sensor and infusion set anomalies and apply the 
approach in simulation studies using the UVa simulator.18 In 
another study, different cases were investigated to evaluate 
the performances of CGM systems.19

This algorithm only uses CGM readings. Adding extra 
information can only improve performance. Particularly, 
adding information about calibrations would remove false 
positives. Adding orientation information could allow this 
algorithm to be enabled only when the patient is prone and 
potentially sleeping. Adding extra CGM sensors would pro-
vide hardware redundancy, mitigate the lost readings during 
a PISA, and provide reference values to further tune the algo-
rithm.9 Information about insulin, meals, and exercise just 
before sleep could help eliminate false positives around rapid 
decreases in the glucose level.20

Conclusions

Application of the PISA algorithm detected 88.34% of the 
PISA gold standard readings successfully with a 6.96% false 
positive rate. It was shown that the latter could be reduced to 
1.70% by altering the parameters of the algorithm from 
“aggressive” to “cautious.”

The proposed PISA detection algorithm for use in over-
night studies can lead to a significant reduction in undesired 
pump shut-offs that occur due to PISA-related events. This in 
turn may lead to a lower risk of elevated mean glucose levels 
and also lead to a lower overall A1c and better health out-
comes for people with type 1 diabetes.

Appendix

In Home Closed-Loop Study Group

Clinical Centers: Listed with clinical center name, city, and 
state. Personnel are listed as (PI) for principal investigator, 
(I) for co-investigator, and (C) for coordinator: Division of 
Pediatric Endocrinology and Diabetes, Stanford University, 
Stanford, CA: Bruce A. Buckingham, MD (PI); Darrell M. 
Wilson, MD (I); Tandy Aye, MD (I); Paula Clinton, RD (C); 

Breanne P. Harris (C). Barbara Davis Center for Childhood 
Diabetes, University of Colorado, Denver, CO: H. Peter 
Chase, MD (PI); David M. Maahs, MD, PhD (I); Robert 
Slover, MD (I); Paul Wadwa, MD (I); Jaime Realsen (C); 
Laurel Messer, RN, CDE (C). St. Joseph’s Health Care, 
London, ON: Irene Hramiak, MD, FRCP (PI); Terri Paul, 
MD, MSc, FRCPC (I); Sue Tereschyn, RN, CDE, CCRA 
(C); Marsha Driscoll, BScN, RN, CDE (C). Rensselaer 
Polytechnic Institute, Troy, NY: B. Wayne Bequette, PhD 
(PI); Fraser Cameron, PhD (I), Nihat Baysal, PhD (I). 
Coordinating Center: Jaeb Center for Health Research, 
Tampa, FL: Roy W. Beck, MD, PhD (PI); John Lum, MS; 
Craig Kollman, PhD; Peter Calhoun, MA; Judy Sibayan, 
MPH, Nelly M. Njeru, BA; Werner Sauer, BS; Jennifer Lott. 
Data and Safety Monitoring Board: John C. Pickup, BM, 
DPhil (chair), Irl Hirsch, MD; Howard Wolpert, MD.

Abbreviations

CGM, continuous glucose monitor; PISA, pressure-induced sensor 
attenuation; ROC, rate of change.
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