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Review Article

Bioreactors

Traditionally, bioreactors are utilized for various biochemi-
cal engineering applications and bioprocesses. Such an 
example is bioreactor supporting microbial growth, estab-
lishing a vessel to convert nutrients that organisms extract 
from the culture media into biological compounds. Concerns 
include quantifying energy production and monitoring bio-
synthesis and product formation.

In 2006, Bilodeau and Mantovani defined bioreactors in 
tissue engineering and regenerative medicine as “any appara-
tus that attempts to mimic and reproduce physiological condi-
tions to maintain and encourage cell culture for tissue 
regeneration.”1 Through recent advances within the biomedi-
cal arena, bioreactors have been applied to create a cell culture 
environment more physiologically representative than 
2-dimensional cell culture.2-10 Traditional cell culture typically 
involves plating the isolated cells on a flat surface, usually a 
Petri dish or tissue culture treated flasks, and supplementing 
the cells with a nutrient media. Cells are stored, statically, at 
37°C with exposure to 5% carbon dioxide.

Opposed to 2-dimensional static culture, cells can be dif-
ferentiated into 3-dimensional tissue structures within a bio-
reactor, making possible several possible applications 
including microgravity environments11,12 and long-term tis-
sue culture,2 attributes that are further described in this 
review and used as a defining characteristics of a “bioreac-
tor.” Several classes of bioreactors exist in the biomedical 
field, and applications vary with bioreactor classification, as 
bioreactor design influences tissue formation and behavior. 
The “E-Cube System” from Corning may allow the culture 
to be explanted and incorporated into an in vivo model. 
Dynamic perfusion bioreactors deliver continuous, dynamic 

perfusion of nutrients and gas exchange to the tissue growing 
within.13 The dynamic perfusion bioreactor has been used to 
culture various tissue types, including cartilage,14 bone,15 
adipose,2 and neuronal.3 Cells in dynamic perfusion bioreac-
tor cultures grow and attach to an interconnected network of 
porous, polymeric fibers inside the bioreactor chamber while 
the nutrient medium is continuously recirculated throughout 
the system.13

In addition to cell culture, the dynamic perfusion bioreac-
tor has served as a “bridge to transplant” for patients on the 
ever-growing transplant lists. Irgang et al developed an 
extracorpeal bioartificial liver support system in a 3-dimen-
sional, hollow, fiber-based bioreactor to successfully treat 
patients with porcine liver cells before liver transplantation 
with no known negative immunologic responses or infec-
tion.16 Dynamic perfusion bioreactor studies in the same 
German bioreactor laboratory are ongoing with Miki et al 
and include differentiating human embryonic stem cells into 
human hepatocytes within the 3-dimensional culture system, 
further addressing drug discovery, toxicology studies, and 
bioartificial liver support systems.17
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Abstract
The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor 
technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. 
Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types 
and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor 
development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging 
bioreactor technologies used for diabetes-related cell culture and therapies.
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For other tissue culture models, a more simplistic spinner 
flask model is commonly used. The spinner flask bioreactor 
consists of a bottle of culture medium, well mixed by a mag-
netic stir bar, with the tissue matrix fixed to needles attached 
to the top lid or floating in the media suspension.13 Bioreactors 
with rotating wall vessels involve angular movement of 
polymeric cylinders within an encasing while the tissue sits 
between the cylinders on biomaterial scaffolds. Alternatively, 
rotating bioreactors involve movement or rotation of the 
entire bioreactor system as a whole. Rotation of the system 
introduces continuous free fall to the culture, improving 
nutrient transport to the tissues as well as a more homoge-
nous tissue growth.13

The requirements for engineering a rotating bioreactor 
vary based on the tissue to be studied and clinical need to be 
addressed. Korossis et al stated that “the overall goal is to 
have systems that reliably and reproducibly form, store, and 
deliver functional tissues that can sustain function in vivo.” 
Biomolecularly, variables include metabolic activity of the 
tissue, biochemical growth factors, and oxygenation to the 
tissue matrix. Regarding bioprocesses, considerations of a 
rotating bioreactor include angular velocity, angle of rota-
tion, removal of cellular waste products, time points, and 
which phase of culture the bioreactor should rotate. Each 
consideration is a function of the dimensions of the tissue, 
including concentration of cells at initial inoculation; com-
plexity and, therefore, the physiological environment 
required of the tissue; and stages of cellular differentiation 
and maintenance. In addition, the consideration of continu-
ous perfusion to the system contributes complexity to the 
system, particularly when scale-up is in question.13 
Bioreactors are also commonly utilized in tissue engineer-
ing to mechanically precondition tissue and biomedical 
devices before implanting in vivo.18-20

Diabetes Mellitus

While exact mechanisms of diabetes mellitus are still under 
speculation, it is widely accepted that both type 1 and type 2 
diabetes are characterized by the transport of glucose from 
blood to cells, a consequence of β-cell failure in the pan-
creas.21 Simply, β-cell apoptosis in type 1 diabetes mellitus is 
activated, in part, by cytokines produced by invading immune 
cells. Type 1 diabetic patients closely monitor insulin levels 
throughout their entire lifetime, and, while an inconvenience, 
glucose levels in type 1 diabetic patients are relatively man-
ageable. Alternatively, β-cell death in patients can result with 
type 2 diabetes mellitus occurs more gradually. β-cell dys-
function of type 2 diabetic patients results from elevated lev-
els of glucose and free fatty acids (FFAs) and, along with 
other factors, eventually leads to β-cell apoptosis.21

Patients diagnosed with type 2 diabetes mellitus are 
instructed to monitor their blood glucose levels through 
blood glucose monitoring devices in combination with life-
style adjustments and management. If the diabetic symptoms 

progress, oral medication, and possibly insulin, is prescribed. 
Type 2 diabetes is often associated with cardiovascular dis-
ease risk factors, including elevated blood pressure and cho-
lesterol levels, gall bladder disease, degenerative arthritis, 
gout, infertility, restrictive lung disease, stroke, and various 
types of cancers.22-27

According to the Centers for Disease Control, diabetes 
mellitus affected 29 million (9.3%) US residents in 2012, a 
national burden of $245 billion.26 As diabetic diagnoses and 
associated symptoms continue to escalate in industrialized 
countries, further understanding of the disease becomes 
more significant. The purpose of this review is to provide 
discussion and awareness of bioreactor technology devoted 
to type 1 and type 2 diabetes mellitus.

One of the first known groups to establish a microgravity 
environment for cell culturing purposes was a group within 
the National Aeronautics and Space Administration (NASA) 
Johnson Space Center in the late 1980s. The NASA team 
removed almost all shear forces traditionally applied to a cell 
culture system, forcing the cells to assemble in suspension 
and form a 3-dimensional tissue matrix.28 VivoRx, a Santa 
Monica–based pharmaceutical company, licensed the rotat-
ing vessel bioreactor technology in the early 1990s for thera-
peutic and diagnostic commercial applications. Due to short 
supply of pancreas cadavers, VivoRx intended to use the 
device to grow sufficient volumes of human islet cells as an 
answer to the expanding diabetic market. In 1997, the com-
pany reported commencement of FDA-approved phase I/II 
clinical trials.29 The license was later retracted by NASA, 
and Synthecon currently owns licensing rights and the rotat-
ing wall vessel (RWV) is commercially available and widely 
accepted as a 3-dimensional culture condition option. In a 
2012 update, Barzegari and Saei specifically outlined micro-
gravity tissue engineering and diabetes applications.30 The 
reviewers explained that microgravity has been proven to 
enhance survival and proliferation of beta islet cells in addi-
tion to reducing immunogenicity.31-33

The RWV system has since provided inspiration to many 
3-dimensional bioreactor culture models useful in diabetes 
mellitus applications.33-37 A horizontally rotating high aspect 
ratio vessel was described by Murray et al to improve struc-
tural and functional viability of isolated human islet cells 
within the microgravity environment.34 Throughout a 10-day 
period, structural integrity and glucose-stimulated insulin 
release were maintained in islets cultured within the system, 
compared to islets cultured under conventional standards. 
Islets cultured conventionally were reported to exhibit pro-
gressive fragmentation and a rapid loss of secretory function. 
Furthermore, the authors noted that islets cultured within the 
microgravity environment were able to reaggregate and 
exhibit enhanced secretory capacity.34

Samuelson and Gerber35 applied the microgravity concept 
to a pancreatic progenitor cell population in a 3-dimensional 
culture system. The researchers developed a RWV bioreactor 
consisting of a pivoting platform to rotate around a fixed 
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point, with motor-controlled rotation power and revolution 
speed. Cell cultures were contained in transparent fluoroeth-
ylene propylene closed culture bags with Cytodex-3 micro-
carrier beads along with beta-TC-6 cell lines added in culture 
media suspensions. Bags were continuously rotated on the 
bioreactor platform and nutrient media was manually 
changed 2 times per week. Cultures were maintained for 5 
and 12 days within the RWV bioreactor, and the pancreatic 
cell line proliferated robustly with enhanced transcriptional 
signaling and improved translation of the insulin gene. The 
authors proposed a future for the novel device in the poten-
tial cell-based therapy for treatment of diabetes.35

Tanaka et al more recently described optimization of a 
cell culture technology using a simulated microgravity gen-
erator to induce development of a large amount of pancreatic 
beta-cell spheroids.36 Via the described methods, 100 spher-
oids of 250 micrometer diameters per 1 ml of culture media 
are produced. The spheroids were transplanted in vivo into 
the portal vein of streptozotocin-induced diabetic mice and 
lowered glycemic levels were observed over 28 days.36

Besides the RWV bioreactor, hollow fiber bioreactors38,39 
have been developed to address type 1 diabetes mellitus ther-
apeutics as well as spinner flask bioreactors with islet cells in 
suspension.40 Hoesli et al developed a mammalian cell 
immobilization in alginate-filled hollow fiber bioreactors for 
large-scale batches.38 The model was successfully applied to 
primary neonatal pancreatic porcine cell culture for 10 days. 
The authors described potential future study directions that 
include donor-scale immobilized mammalian cell culture 
with cell recovery, such as in vitro culture of islet-like clus-
ters for use in islet transplantation.38

Due to the vast mechanical and pathological difference in 
the cause of type 1 versus type 2 diabetes mellitus, it is only 
logical for therapy and treatment of the 2 diseases to also vary 
significantly. Since type 2 diabetes mellitus is typically tied to 
other health complications, many tissue engineers have taken 
to bioreactor technologies to address the diseases’ symptoms 
and characteristics, including diabetic retinopathy41 and foot 
wound ulcers.42,43 Dutt et al applied the horizontally rotating 
bioreactor developed by NASA to establish a coculture of 
human retinal cells and bovine endothelial cells incorporated 
onto laminin-coated Cytodex-3 microcarrier beads over 36 
days.41 The bioreactor was reported to accelerate capillary 
formation as well as differentiation of retinal precursor cells. 
With such neovascularization modeling, the bioreactor sys-
tem could provide an ideal 3-dimensional platform to study 
retinal diseases, including diabetic retinopathy.41

One common precursor to diabetes mellitus is the meta-
bolic syndrome, which is influenced by obesity and charac-
terized by abdominal, visceral adipose deposits, causing an 
“apple shape.”27 Adipose plays a dominant role in diabetes 
mellitus as adipocytes contain FFAs and release hormones 
that even further increase FFAs, high levels of which are 
toxic to β-cells and lead to dysfunction. As adipocytes 
increase in size and mass, macrophages accumulate and 

cause inflammation, increasing a patient’s risk to develop 
diabetes.44 In muscle and adipose tissues, glucose transporter 
4 (GLUT4) is responsible for the transportation of glucose 
from intracellular stores to the plasma membrane.45 
Therefore, metabolism and blood glucose monitoring are 
widely studied.46

Two particular studies observed the stomach as a biore-
actor.47,48 Kanner and Lapidot simulated possible reactions 
that could occur in the acidic pH environment of the stom-
ach that could affect lipid peroxidation.47 The study hypoth-
esized that prevention of overall lipid peroxidation in the 
stomach could have an important impact on health and may 
aid in explaining health benefits of diets rich in polypheno-
lic antioxidants. Acidic pH of gastric fluid amplified lipid 
peroxidation and incubation of heated muscle tissue in sim-
ulated gastric fluid enhanced hydroperoxide accumulation 
by 6-fold over 2 hours. The authors suggested that human 
gastric fluid might be an excellent medium for enhancing 
the oxidation of lipids and other dietary constituents.47 
Similarly, Gorelik et al evaluated hydroperoxide and malo-
ndialdehyde levels of the stomach during and after diges-
tion in rats.48 Rats were fed either (1) red turkey meat 
cutlets or (2) red turkey meat cutlets and red wine concen-
trate, and stomachs were analyzed 90 minutes after feeding. 
The study tested the hypothesis that the stomach can act as 
a bioreactor, in which lipid peroxidation of partially oxi-
dized food (such as red meat and red wine) could occur, 
resulting in accumulation of lipid peroxidation products. 
Results indicated that stomach hydroperoxide and malondi-
aldehyde concentrations both dropped substantially 90 
minutes after meals, and the addition of red wine polyphe-
nols enhanced hydroperoxide reduction by 3-fold. The 
authors concluded that the addition of antioxidants such as 
red wine polyphenols to meals may reduce potentially 
harmful effects of oxidized fats in foods.48

Other additional work has been conducted on lifestyle 
management factors for patients with diabetes.49,50 Jung et al 
optimized a stable cell culture condition within a packed-bed 
bioreactor for production of tagatose, a novel bulk sweetener 
that tastes similar to sucrose with potential to be used as a 
low-calorie sweetener in foods, beverages, health foods, and 
dietary supplements.49 Ho et al developed a long-life capil-
lary enzyme bioreactor for highly sensitive determination of 
blood glucose concentration.50

Conclusion

Bioreactors pose influential and pivotal roles in tissue engi-
neering and restorative medicine, providing a longer, more 
accurate in vitro cell culture, shaping drug discovery and tis-
sue explants. Every bioreactor system is unique, and several 
biomolecular and bioprocess parameters must be taken into 
consideration prior to each tissue engineering application.

With diabetes mellitus on the rise in developed countries, 
countless studies are being conducted worldwide to address 
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treatments and therapies for both type 1 and type 2. Table 1 
describes the studies discussed in this review. Several pieces 
of work incorporating bioreactors into type 1 diabetes mel-
litus research include pancreatic cell line development and 
culture within a 3-dimensional microgravity environment 
for long-term maintenance and assembly. On the other hand, 
bioreactor studies addressing type 2 diabetes mellitus appear 
to focus on lifestyle management and the side effect dis-
eases associated with type 2 diabetes.

While the use of bioreactors for pancreatic cell culture 
dates back to 1980,51 the field has been validated, modified, 
and optimized over the past few decades, including kinetic 
modeling,52 mass transfer of insulin and glucose,53 and oxy-
gen consumption rate of islet culture,54 to list only a few. 
Indeed, much room for advancement continues to exist in the 
field, fusing alterations on a classic biochemical engineering 
tool and the fundamental yet constantly growing biomedical 
issue of diabetes mellitus.
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