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Abstract

Background: Most of the blood tests aiming for breast cancer screening rely on quantification of a single or few
biomarkers. The aim of this study was to evaluate the feasibility of detecting breast cancer by analyzing the total
biochemical composition of plasma as well as peripheral blood mononuclear cells (PBMCs) using infrared spectroscopy.

Methods: Blood was collected from 29 patients with confirmed breast cancer and 30 controls with benign or no
breast tumors, undergoing screening for breast cancer. PBMCs and plasma were isolated and dried on a zinc selenide
slide and measured under a Fourier transform infrared (FTIR) microscope to obtain their infrared absorption spectra.
Differences in the spectra of PBMCs and plasma between the groups were analyzed as well as the specific influence
of the relevant pathological characteristics of the cancer patients.

Results: Several bands in the FTIR spectra of both blood components significantly distinguished patients with and
without cancer. Employing feature extraction with quadratic discriminant analysis, a sensitivity of ~90 % and a specificity
of ~80 % for breast cancer detection was achieved. These results were confirmed by Monte Carlo cross-validation.
Further analysis of the cancer group revealed an influence of several clinical parameters, such as the involvement of
lymph nodes, on the infrared spectra, with each blood component affected by different parameters.

Conclusion: The present preliminary study suggests that FTIR spectroscopy of PBMCs and plasma is a potentially
feasible and efficient tool for the early detection of breast neoplasms. An important application of our study is the
distinction between benign lesions (considered as part of the non-cancer group) and malignant tumors thus reducing
false positive results at screening. Furthermore, the correlation of specific spectral changes with clinical parameters of
cancer patients indicates for possible contribution to diagnosis and prognosis.
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Background

Breast cancer is the most common malignancy in women
in the United States and the second leading cause of
death by cancer. It is estimated that 235,030 new
cases of breast cancer will be diagnosed in the United States
in 2014 [1]. Early diagnosis is a significant prognostic
factor. The American Cancer Society is recommending
annual screening mammograms starting at age 40 [2].
Conventional mammography is known to have a sensitivity
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of about 66 % and specificity of about 92 % [3]. However,
recent studies show that screening with mammography
does not reduce mortality, it may lead to a 30 % rate of
overdiagnosis and may increase unnecessary surgical
procedures and patient anxiety [4, 5]. Furthermore,
women with dense breasts, in whom mammography is
of limited value and high-risk patients with suspicious
mammography findings, usually require additional evalu-
ation with ultrasound or magnetic resonance imaging [6].
This may contribute to the diagnosis in some cases but
it may increase recall examinations due to false-positive
results in others [7, 8]. Alternative methods such as
thermography, transillumination, and positron emission
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tomography, have not been proven yet to have better
sensitivity or specificity than mammography [9].

In the last few decades, researchers have introduced the
use of serum tumor markers for cancer screening.
However, none of the markers tested has proved suitable for
screening the entire population because of low specificity
and sensitivity at the early stages of disease [10-12]. To
improve these results, attempts have been made to apply
combinations of markers [13, 14]. Thus, multi-molecular
biochemical analysis could be useful for this purpose.

Fourier transform infrared (FTIR) spectroscopy is a
simple, rapid, reagents-free biochemical tool that provides
information on the total molecular composition of bio-
logical samples [15]. Organic compounds absorb infrared
light at an energy (wavenumber) corresponding to the
nature of the bonds between its atoms, yielding a unique
spectral “fingerprint”. Thus, spectroscopy of a biological
sample generates an absorption spectrum of the com-
pounds in that sample, reflecting their molecular structure.
FTIR spectroscopy is a powerful analytical biochemical and
imaging method however, in a complex samples such as
blood components, it is complicated to locate a change in a
specific molecule due to the overlapping bands and the
plenty of vast molecules which compose biological samples.
Yet, FTIR can be widely used for differentiating between
two different samples and locate the bands and the possible
molecules which may contribute to the spectral differences.

FTIR spectroscopy has been found to be useful for the
detection and characterization of a broad variety of cancer
cells and tissues [15-17]. A previous study by our group in
patients with leukemia identified markers of the disease by
FTIR spectroscopy of peripheral blood mononuclear cells
(PBMCs) which were then used to monitor the disease
during chemotherapy [18]. The method was effective even
in cases in which blasts were hardly present in the periph-
eral blood [18], indicating the overall biological influence of
malignancy on PBMCs. In another study, our group
demonstrated the potential of FTIR analysis of plasma for
the detection of solid tumors, mostly breast, colorectal, and
lung. Using advanced algorithms, we identified the patients
with cancer out of the whole study population with 93.33 %
sensitivity and 90.7 % specificity [19].

Prompted by these findings of the systemic effect of
malignancy on the FTIR spectra of PBMCs and plasma, in
the present study, we sought to investigate the utility of
FTIR spectroscopy for breast cancer screening in conjunc-
tion with the gold standard diagnostic methods such as
mammography and ultrasound.

Methods

Patients

The study was conducted at Rabin Medical Center under
local Ethics Committee approval at 2011 and 2012. The
study group included 29 patients with confirmed breast
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cancer and 30 control patients without breast cancer as
determined by biopsy and standard mammography
examination. The control group included 15 patients
without pathological findings and 15 patients with benign
neoplasms. The patients were randomly selected from
population performing routine breast cancer screening
and from population prior surgery. Qualified personnel
obtained informed consent from each participant. Exclusion
criteria were pregnancy, lactation, or presently undergoing
fertility treatment, known active inflammation or infection,
past treatment for malignant of benign tumor, any type
of active autoimmune disease, and current intake of
medications such as steroids. Cancer diagnoses were
confirmed by clinical, histological, and pathologic means.
Cancers were graded according to the National Cancer
Institute classification.

Blood sample collection and preparation

By preparing PBMCs and plasma samples for FTIR
measurements we considered all the possible contamina-
tions and interferences from biochemical materials
involved in the sample preparation due to the nature of
FTIR as highly sensitive biochemical analytical tool. Thus
the samples are needed to be clean from reagents. For
each participant, 2 ml of blood were collected from a
peripheral vein into EDTA tubes (BD Vacutainer” Tubes,
BD Vacutainer, Toronto) using standard phlebotomy
procedures. Samples were processed within 2 hours of
collection. Some of the patients with cancer underwent
lymphoscintigraphy with Tc-99 m-labeled nanocolloidal
albumin to detect the sentinel node a few minutes before
blood collection, but the possibility of an effect of lym-
phoscintigraphy on the spectra of the blood components
was ruled out using FTIR spectroscopy of pure Tc-99 and
plasma spectral comparison. The blood was diluted 1:1 in
isotonic saline (0.9 % NaCl solution), applied carefully to a
Ficoll 1077 gradient (Sigma Chemical Co., St. Louis, MO)
in 15 ml collection tubes, and centrifuged at 400 g for
30 min. To discard platelets and cell debris, we placed
1 ml of the plasma in 1.5 ml tubes which were centrifuged
at 6000 g for 10 min. The supernatant was transferred to a
new 1.5 ml tube, and 0.8 pl of plasma was deposited on a
zinc selenide (ZnSe) slide and air-dried for 1 hour under
laminar flow. The dried plasma was then subjected to
FTIR microspectroscopy.

PBMCs were obtained using a Histopaque 1077 gradient
(Sigma, St. Louis, MO) according to the manufacturer’s
protocol. The cells were aspirated from the interface, rinsed
twice with isotonic saline at 250 g, and re-suspended in 5 pl
fresh isotonic saline. Thereafter, 0.4 pl of washed cells were
deposited on ZnSe slides to create an approximate uniform
layer of cells. The cells were air-dried for 1 hour under
laminar flow and analyzed by FTIR microspectroscopy.
The samples need to be dried since water molecules
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strongly absorb infrared light which may mask the signal
from the sample.

FTIR microspectroscopy

All spectroscopy studies were performed with the
Nicolet Centaurus FTIR microscope equipped with a
liquid-nitrogen-cooled mercury-cadmium-telluride detector
coupled to Nicolet iS10 OMNIC software (Nicolet,
Madison, WI). To achieve a high signal-to-noise ratio
(SNR), 128 co-added scans were collected in each
measurement in the 700 to 4000 cm™' wavenumber
region. At a spectral resolution of 4 cm™ (0.482 cm™
data spacing), each spectrum contains 6845 data points.
The dimensions of the measurement site were 100 um X
100 pm. Measurements were performed in transmission
mode at least 5 times at different spots in each sample of
PBMC:s or plasma.

Spectral preprocessing

The FTIR spectra for PBMCs and plasma were first
examined for unsuccessful measurements, such as
absorption intensity above or below normal (defined as
0.5 to 1 absorption units according to Amide I band) and
water vapor contamination. Next, we focused on the
relevant region of 1800-700 cm ™' which contains most of
the biochemical data of PBMCs and plasma. Following
standard vector normalization to obtain a unity total
energy of each spectrum [19, 20], we applied a moving
average filter to increase the SNR. Finally, we sought a
numerical estimation for the second derivative of the
spectra to accentuate the bands, reduce the background
interference, and reveal the genuine biochemical charac-
teristics [21]. Although the second-derivative method is
known to be highly susceptible to full width at half
maximum changes in the infrared bands, these changes
are not relevant in biological samples in which all cells of
the same type and plasma are composed of similar basic
components that vyield relatively broad bands [22].
Spectrum parameters were calculated by our in-house
algorithms; the code was employed using MATLAB
(Version R2011B: MathWorks Inc., Natick, MA).

Feature selection

The spectra obtained contained 2282 data points or
dimensions. For successful and less complex classification,
the number of dimensions needed to be reduced. Our goal
was to identify a subset of specific wavenumbers or
intervals in the spectra that represented the different
spectral patterns of the groups. To improve the model, we
defined two criteria for potential feature evaluation. First,
we performed a Student’s t-test analysis between the no
cancer class (benign or no breast tumor) and the cancer
class. A feature was considered significant at P <0.005.
Next, for each potential feature, we obtained the probability
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distribution of each class and measured the similarity of the
probability density functions. In this manner, we were
able to evaluate the amount of overlap between the
two populations.

Statistical analysis

Following feature selection, quadratic discriminant
analysis (QDA), a multivariate data analysis method,
was performed to classify the different groups under the
assumption that each feature is normally distributed. The
QDA classifier produces a new discriminative score for
each subject that can be classified according to the cut-off
point. The best cut-off point was determined by creating a
receiver operating characteristics (ROC) curve and choosing
the one with the best performance [23]. Monte-Carlo
cross-validation was used to determine the accuracy
of classifier predictions for different cut-offs [23].

Results

FTIR- MSP analysis of PBMC spectra

The characteristics of the study subjects are shown in
Table 1. Using FTIR-MSP, we first characterized the
spectral differences among women with malignant breast
tumor, benign breast tumor, or no breast tumor. The
averages of the infrared spectra of the PBMCs in each
group are presented in Fig. 1.

Figure la shows the macromolecules composing the
PBMC spectrum. The 1800-1500 cm™' (amide I and
amide II) region contains mostly information on protein
content and secondary structure. The 1300-800 cm™*
region is due to vibrations of functional groups such as
PO;, CO and CC present in proteins, lipids, nucleic
acids, and carbohydrates [24, 25]. It was difficult to
distinguish among the three study groups on the basis
of the raw infrared absorption spectra, and further
analysis was needed.

Figure 1b shows an expanded region of the spectra
resulting from applying a second derivative to the original
absorption spectra of the PBMCs. The thickness of the
lines represents the standard error of the mean (SEM).
The second derivative is a common mathematical oper-
ation on the IR spectra which reveals the bands composed
within the broad main absorption bands. Each band in the
absorption spectra is represented as sharper and more
pronounced minima in the second derivative spectra.

Statistical analysis of the second derivative spectra
revealed significant differences mainly between the patients
with malignancy and the patients without malignancy
(namely subjects without tumors and patients with benign
tumors). Specifically, in the PBMCs from patients with
malignancy, a decline in absorption (higher value in
the second derivative) was found at ~1140 cm!
which corresponds to the oligosaccharide C-OH stretching
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Table 1 Demography, clinical characteristics and diagnosis of
the control and cancer groups included in this study

Cancer Control
No. of patients 29 30
Age
Range 286 - 839 204 -758
Average £ STD 60.1+13.2 457+165
History of Smoking 29.6 % 192 %
Family History of Cancer
Breast 413 % 63.3 %
Ovary 31 % 533 %
Histology
IDC (22) 759 %
ILC (4) 138 %
IDC+ILC (1) 34 %
Mucinous Ca (1)34 %
HG DCIS (1)34 %
Stage
I (1)34%
Il (14) 483 %
Il (4) 138 %
NA/NR (10) 34.5 %
Nodule Size (mm)
<10 (8) 276 %
10<20 (8) 27.6 %
20< (11) 379 %
NA/NR (2) 69 %
Receptors
ER+ (25) 86.2 %
PR+ (22) 759 %
Her2+ (2) 69 %
NA/NR (4) 138 %

band [25]. In addition, a morphological change was
observed at the amide II region at ~1545 cm™.

Since there are no significant clinical differences
between patients without tumors and patients with
benign tumors [26], they were combined into a single
control group for all further comparisons and statistical
analyses.

To statistically identify which region of the infrared
spectra was abnormal in the patients with malignancy,
we applied a z-test analysis to all second derivative spectra.
The results are presented in Fig. 1c. Comparison of the
PBMCs from the cancer and control groups revealed
two main regions with a significant difference (P <0.05):
1700-1450 cm™', which is due to amide I and amide II
absorption, and 1180-1000 cm ™, which is mainly due to
symmetric PO; stretching, C-C symmetric vibrations, and
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C-O symmetric vibrations of proteins, nucleic acids, car-
bohydrates, and phospholipids.

To further understand the influence of cancer on
PBMC biochemistry, the spectral results were analyzed
by the clinical parameters within the group of patients
with malignancy. The results are presented in Fig. 2.
Figure 2a shows that analysis by mass size (solid line)
yielded a significant difference in absorption at several
wavenumbers, such as 1394 cm™ (P =0.0058), 1137 cm™*
(P=0011), and 920 cm™' (P=0.0057), between patients
with a malignant mass of less or more than 20 mm.
Number of masses (one vs. two or more; dotted line) had an
even greater effect on absorption: at 1353 cm™ (P = 0.002),
911 cm™ (P=0.0012), and 899 cm™' (P=0.0013). On
analysis by lymph node involvement (data not shown), most
of the changes in absorption were located at ~1400 cm™
and ~800 cm™". As shown in Fig. 2b, cancer stage (1 or 2;
solid line) had no significant effect on absorption
except at 1306 cm™' and 1647 cm™'. Type of cancer
(invasive ductal carcinoma or lobular carcinoma; dotted
line), affected the PBMC spectra mainly at ~920 cm™
and ~801 cm™' and, at a lower level of significance,
at ~1404 cm™' and ~1120 cm ™. Vascular involvement
(dashed line) had a highly significant effect on absorption
along multiple regions of the spectra, mainly at 1012 cm ™
(P =0.00012) and 1452 cm™" (P = 0.00022).

FTIR-microscopy analysis of plasma

Figure 3 presents the averages of the infrared spectra of
the dried plasma for each group. As shown in Fig. 3a,
the pattern was much different from that of the PBMC,
mainly because of the relatively high content of proteins
(absorption band at ~1400 cm™ due to COO™ and sym-
metric CH3 bending of methyl groups) rather than nucleic
acids (absorption band at ~1240 cm ™' and ~1080 cm™* due
to POy) [27].

There were clear differences in the absorption spectra
of plasma derived from the patients with malignant
tumors, patients with benign tumors, and subjects
without tumor. To gain more information and to
reduce the influence of scattering, we analyzed the
second-derivative spectra. The results are presented in
Fig. 3b and c. Significant differences (beyond SEM) were
found at ~1160 cm™" (corresponding to absorbance of
C-O of proteins and carbohydrates) and at ~1655 cm™*
(corresponding to absorbance of amide I) [25, 27]. A
common spectral trend was observed for patients with
malignant or benign tumor at ~1160 cm™'. Plasma from
both tumor groups showed significantly higher absorption
at 1152 cm™' than plasma from the healthy subjects.
Interestingly, in the amide I region, the spectra of the
benign group were more similar to the spectra of the
healthy group than to the spectra of the malignancy group
(Fig. 3¢), compatible to the PBMC results.
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thickness of the graph lines. (c) t-test analysis of the second derivative spectra of control group vs. cancer patients group. The t-test is represented
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Changes in plasma biochemical composition by clinical
parameters within the group of cancer patients are pre-
sented in Fig. 4. Figure 4a shows significant differences in
absorption bands at three main regions between patients
with a malignant mass larger or smaller than 20 mm (solid
line): 923 cm ™, 1072 cm™" and 1205 cm ™. More significant

biochemical changes were observed on analysis by number
of tumor masses (one vs. two or more). For most of the
bands, the P value was below 0.01; the most prominent
bands were found at 1608 cm™, due to COO; polysaccha-
rides and adenine vibration in DNA, and at 857 cm™ due
to C3' endo/anti (a-form helix) conformation [25]. By
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contrast, lymph node involvement was not associated with
any significant change in absorption (data not shown).
Analysis by tumor stage (1 or 2, solid line; Fig. 4b)
yielded significant differences mainly at ~1316 cm™
(amide III) and around 876 cm™ (C3 endo/anti a-form
helix), and by tumor type (ductal or lobular carcinoma, dot-
ted line), mainly at ~1190 cm ™, 961 cm™ and ~808 cm ™
which correspond to deoxyribose, C-O deoxyribose, C-C,
and C3’ endo/anti (a-form helix) conformation, respectively
[25]. Vascular involvement (dashed line) had a highly
significant effect on only two regions of the spectra:
1447 cm™ and 898 cm ™.

To determine if our method is suitable for the detection
of cancer and to make use of all the available biochemical
information on each patient, we combined the spectral
data of the PBMC and plasma for 26 controls (patients
with benign tumors + healthy controls) and 24 subjects
with cancer. (A few plasma samples were excluded
because of hemolysis). Our mathematical model generated
a QDA score for each subject and a ROC curve for

determining its sensitivity and specificity for identifying
patients with cancer (Fig. 5). The training set curve in the
figure appears in a solid line, and the validation set
curve, in dashed line. The area under the curve was
0.898 [SD: 0.894 - 0.903] and 0.857 [SD: 0.835 -
0.878] for the training and validation sets respectively,
indicating good accuracy for the diagnostic test by the
traditional academic system. Using the ROC curve, we
were able to select the optimal cut-off that distinguished
the two groups. This yielded a sensitivity of 89 % and a
specificity of 80 % for the training set. The validation
values were similar: 87 % and 78 %, respectively.

Discussion

The present study describes a novel concept for breast
cancer detection based on the immune system response
to the presence of tumor in the body rather than on
observation of the tumor cells themselves. Furthermore,
by using infrared spectroscopy, we were able to analyze
the entire biochemical signature (including proteins,
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lipids, nucleic acids, and carbohydrates) of the affected
immune cells rather than focusing on a single specific
protein as a biomarker. We also analyzed the malignancy-
induced biochemical changes in plasma to obtain more
information about the disease and as an auxiliary means
of cancer detection.

The results provide evidence that the PBMCs and
plasma of patients with breast cancer are biochemically
distinct from the PBMCs and plasma of healthy subjects,

including patients with benign tumors, with no significant
differences in PBMC spectra between patients with benign
tumors and healthy subjects. For plasma, there was a
biochemical similarity between patients with benign
tumors and healthy subjects for some spectral absorption
bands, and between patients with benign tumors and
patients with malignant tumors for other absorption
bands. Further analysis of the data within the group of
cancer patients revealed a correlation of the spectral
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changes of PBMCs and plasma with clinically relevant
parameters known to influence the diagnosis and prognosis
of breast cancer, such as disease stage and vascular
invasion.

Previous studies of cancer cells and tissues using FTIR
spectroscopy reported an abnormal biochemical profile,
expressed by various changes in the phosphate region which
corresponds mainly to nucleic acids and carbohydrates
[28, 29]. Others also noted a significant increase in the ratio
of CH,/CHj3 in the higher region of lipids and protein
absorption [29, 30]. These changes were consistent
for most of the tumors and depended on the stage of
disease [28, 30]. They were compatible with our findings in
an earlier study of PBMC biochemistry in patients with
acute leukemia [18]. However, in the present study, which
included patients with solid tumors, there was no significant
change in CH,/CHj;. The major changes observed between
the groups were found in proteins structure and in several
functional groups of nucleic acids, carbohydrates and
phospholipids, suggesting that PBMCs from patients
with solid tumors have a different profile than PBMCs
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from patients with hematological malignancies. Thus, our
results indicate cancer-type-dependent changes in the
PBMC population.

The differences in PBMC biochemistry between patients
with and without cancer may be related to malignancy-
induced biological effects, such as changes in the
composition of the mononuclear population; specifically,
the relationships between B and T cells [31, 32]. The
presence of CD4 + CD25- T cells in the peripheral blood
as well as in the tumor site leads to a significant
increase in the number of regulatory T cells (Treg cells,
CD4 + CD25+) [33, 34]. These findings have been reported
not only in breast cancer [31, 35, 36], but also in gastro-
intestinal [37], and lung cancer [38]. Treg cells regulate
effector T cells and disable them in order to prevent them
from attacking the tumor [33]. The level of Treg cells is
apparently correlated with disease stage and declines with
tumor dissection [11, 37, 38]. Studies have also provided
evidence of the role of natural killer cells as a prognostic
parameter and therapy target [39—41]. These studies sup-
port our finding of the contribution of clinical parameters
(tumor size, blood vessel and lymph node involvement) to
the biochemical changes in PBMCs and highlight the
potential of FTIR-spectroscopy as a prognostic and treat-
ment follow-up tool. Although the changes in the PBMC
population may be correlated with stage of disease, in the
present study, there were no cases of advanced-stage
breast cancer, so further studies in animal and human
models are needed to address this issue.

Many studies have investigated the difference between
healthy and malignant tumors, but only a few addressed
the biochemistry of benign tumors (45, 46). They found
no or only slightly significant differences from malignant
tumors [42, 43]. On the contrary, in the present study,
only small differences were observed in the PBMC spectra
between patients with benign tumors and healthy subjects.
However, more extensive studies are needed to verify
these preliminary results.

Our previous study showed that FTIR spectroscopy of
plasma is a promising mean for distinguishing patients
with cancer from healthy subjects however the benign
tumors were not investigated by Ostrovsky et al. [19].
Most of the common serum biomarkers cannot be used
for distinguishing between benign and malignant tumors
[42, 44], perhaps because of the immunological similarity
of the tissues. Indeed, in the present study, we identified
several vibrational bands in the plasma spectra that were
common to both benign and malignant tumors which
correspond to carbohydrates and proteins. We further
identified bands which are common to healthy and benign
groups in the Amide I band which correspond mainly
to protein secondary structure. Thus, the significant
contribution to cancer detection may be related to
the structure of proteins in the plasma rather than
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carbohydrates. For our purposes, we can relate only
to the bands that are common to benign and healthy
tissues and improve the detection of malignant tumors.

The algorithm presented here makes use of the global
biochemical information obtained both for PBMCs
and plasma. The sensitivity was about 90 % and the
specificity was about 80 %. These values are promising
considering that we were able to distinguish between
nonmalignant and malignant tumors and most of the
patients with malignancy were at early stages of the
disease. We aim to further improve our algorithm with a
larger sample size.

Conclusion

In light of the present preliminary results, we conclude
that analysis of the biochemical composition of the PBMC
and plasma using FTIR spectroscopy may serve as a
simple, cost effective, automated and minimally invasive
test for the presence of breast cancer. Additional studies
to improve and validate our results are required before this
method can be applied to clinical practice, in conjunction
with other accepted diagnostic methods such as mammog-
raphy. Expansion of this preliminary study will provide
further insight into the full potential of FTIR spectroscopy
for mass screening and early detection of breast cancer.
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