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Human cardiac electrophysiology (EP) is a unique system for computational modelling at multiple scales. Due to the complexity of the cardiac
excitation sequence, coordinated activity must occur from the single channel to the entire myocardial syncytium. Thus, sophisticated computa-
tional algorithms have been developed to investigate cardiac EP at the level of ion channels, cardiomyocytes, multicellular tissues, and the whole
heart. Although understanding of each functional level will ultimately be important to thoroughly understand mechanisms of physiology and
disease, cardiac arrhythmias are expressly the product of cardiac tissue—containing enough cardiomyocytes to sustain a reentrant loop of
activation. In addition, several properties of cardiac cellular EP, that are critical for arrhythmogenesis, are significantly altered by cell-to-cell coup-
ling.However, relevanthumancardiacEPdata, uponwhich todeveloporvalidatemodels at all scales, hasbeen lacking.Thus,over several years,we
have developed a paradigm for multiscale human heart physiology investigation and have recovered and studied over 300 human hearts. We have
generated a rich experimental dataset, from which we better understand mechanisms of arrhythmia in human and can improve models of human
cardiac EP. In addition, in collaboration with computational physiologists, we are developing a database for the deposition of human heart experi-
mental data, including thorough experimental documentation. We anticipate that accessibility to this human heart dataset will further human EP
computational investigations, as well as encourage greater data transparency within the field of cardiac EP.
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Introduction
Since the start of the genomic research era, substantial research
efforts have led to mapping the human genome,1,2 considering
genes as drivers of system interactions.3– 6 Then, investigators have
isolated many of these genes, one-by-one, to detail the proteins
they encode and their anatomical and functional signatures.
However, the totality of genetic sequence data does not inform us
about physiological function,5,7 nor does a gene or protein’s role in
a reductionist context necessarily pertain in the greater environment
of tissues, organs, and systems.8 Emergent properties arise from non-
linear responses when components interact within profoundly
complex multidimensional and multiscale networks. As was elegantly
stated by O’Malley and Dupre,3 ‘it is crucial . . . to analyze systems as
systems, and not as mere collections of parts in order to understand
the emergent properties of component interactions’. Thus, compu-
tational tools that enable us to understand systems-level networks
will enhance biomedical research and discovery.

While human cardiac cell electrophysiology (EP) models have
become very sophisticated and highly complex, extensions of these
models to the tissue and whole-organ level are needed to elucidate
pro-arrhythmic mechanisms. However, more tissue-level experi-
mental data must be incorporated to generate improved models
with cardiac cell-to-cell coupling. While data on human cardiac
tissues are still emerging, we have developed a paradigm for multi-
scale investigation of the human heart, from molecules and cells to
intact tissue and organ preparations. To date, we have procured
over 300 live donor and failing human hearts, which we have
studied for arrhythmogenic properties. In addition, using criteria
established by the Physiome project,9 we are making these data avail-
able through an open-access, searchable database. We aim to review
the existing human ventricular cell EP models, and their incorpor-
ation into tissue-level simulations. We will also discuss our pro-
gramme for multiscale investigation of human heart physiology in
health and disease, and standards for data sharing and transparency
for cardiac EP.
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Modelling human cardiac cellular
electrophysiology
Computational modelling of cardiac myocyte EP is well established
and arose from the pioneering work of Hodgkin and Huxley (HH)
on cellular excitability.10,11 The HH current equations have served
as the foundation for computational EP due to similarities between
neuronal and cardiac excitable properties. As a modification of the
HH current equations, FitzHugh and Nagumo (FHN) developed sim-
plified equations, which could simulate excitation and propaga-
tion.12– 14 Though the FHN equations do not describe individual
ionic currents, reducing excitation and propagation to variables for
voltage, stimulus, and recovery, they enable simulation of two-
dimensional (2D) and 3D cardiac tissues with less computational
requirement.15,16 In contrast, for more recent cardiac cellular
models, more sophisticated Markovchain equations have largely sup-
planted HH formalism, enabling independent ion channel represen-
tations and improved model fidelity. This section aims to briefly
trace the development of EP models for the human ventricular
myocyte and specialized conduction system. We will discuss founda-
tional non-human models, which served as the basis for existing
human simulations, and the currently established human ventricular
EP models. For greater detail on other cardiomyocyte models, we
refer to other reviews on the subject.11,17,18

Purkinje cell modelling
Purkinje cells were the first simulated cardiac myocytes, in the foun-
dational work of Denis Noble.19,20 This initial model of the cardiac
Purkinje cell used modified HH formalism, accounting for Na, K,
and background Cl currents. Later, McAllister, Noble, and Tsien
extended this general model to include the newly discovered
inward Ca current, using HH formalism.21,22 While these early
models are limited due to challenges with experimental voltage-
clamp studies,23 they provided key conceptual innovations for com-
putational cardiac EP. The DiFrancesco–Noble (DN) 24 model of the
Purkinje cell was later created through elaboration of early ventricu-
lar and Purkinje cell models. The DN model incorporated updated
ionic currents, automaticity, and dynamic Ca handling.23 This was
the first model to depart from HH formalism to account for varia-
tions in K and Na during the AP.17 Due to the highly innovative
nature of this model, it has served as the foundation for numerous
future models of various cardiac cell types.

Ventricular cell models
Following the Purkinje cell model, the foundational ventricular cell
model was the HH formulated Beeler–Reuter (BR) model.25 This
model was notable as the first to include variations in intracellular
Na concentration, intracellular and extracellular K concentrations,
and sodium-potassium (Na-K) pump and sodium-calcium exchanger
(NCX) activities.22 Subsequently, due to the similarity between
guinea pig and human ventricular action potentials (APs), sophisti-
cated computational models were developed based guinea pig ex-
perimental data, most notably that of Luo and Rudy (LR).26 This
model was based on BR, with reformulation of key depolarizing
and repolarizing currents from improved experimental data. Luo
and Rudy then updated their original model by incorporating

dynamic Na, K, and Ca concentrations, which is referred to as the
LR dynamic model (LRd).17,27,28

The first cellular EP model of the human ventricular myocyte was
published by Priebe and Beuckelmann (PB)29 and was formulated
largely based upon the LRd model. This model incorporated INa,
INCX, INa-K, and background currents from the LRd model, while re-
formulating Ca and K currents based on human data. The PB model
had the benefit that Beuckelmann and colleagues generated much
of the human experimental data, and thus had a deep understanding
of the collection and analysis conditions. This model is also notable
for including data from both non-failing and failing human hearts. Un-
fortunately, the PB model failed to attract attention from the model-
ling community, because it was less freely distributed than other
models.22

Until relatively recently, two human ventricular models were pre-
dominantly used: the Ten Tusscher, Noble, Noble, and Panfilov
model (TNNP) and the Iyer, Mazhari, and Winslow (IMW)
model.30– 32 Both models use Markov chain equations for relevant
ionic currents and are based on the LRd model, with updated experi-
mental data for certain channels. As such, guinea pig data make up a
big portion of the experimental foundation for these human
models (Figure 1). Also, there were significant gaps in available
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Figure 1 Tree map representations of the (A) IMW and (B)
TNNP human cellular models, showing relative proportions of
experimental data from specific species. Due to lack of EP data
from non-failing human hearts, both models were generated based
on a large fraction of non-human work. Experimental data propor-
tions for each of these models were obtained from Niederer et al.33
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human datawhen these models weredeveloped. However, the more
recently improved TNNP model includes updated Ca dynamics,
IKs, and ICa,L.

34

More recently, several additional human ventricular models have
been developed to improve fidelity with human data, including
those of Grandi, Pasqualini, and Bers (GPB); O’Hara, Virag, Varro,
and Rudy (OVVR); and Carro, Rodriguez, Laguna, and Pueyo
(CRLP)34– 36 The GPB model of human ventricular AP includes dif-
ferent subcellular regions, including subsarcolemmal and junctional
compartments, along with several ionic currents and intricate Ca
handling from its rabbit model predecessor.36,37 Consequently, it
also mimics the rabbit model AP restitution properties. Due to the
inability of the GPB model to replicate human AP restitution proper-
ties and heart rate adaptation, CRLP successfully updated GPB model
to have more consistency with current human experimental data.
Carro, Rodriguez, Laguna, and Pueyo introduced fast and slow ICa,L

inactivation gates and reformulated NCX flux and K currents.34

Importantly, only human data were used to update and refine the
CRLP model. For the OVVR model, O’Hara and colleagues pull
extensively from human ventricular experimental data. Thus, the
OVVR model is the most up-to-date model of the human ventricular
AP, and it includes parameterization for ICa,L, Ito, INCX, IK1, IKr, IKs, INa,
and INa-K.35 In addition, the authors are transparent about model lim-
itations, especially with regard to deficiencies in human data.

Multiscale systems physiology
approach to cardiac modelling
The goal of systems physiology is to integrate multiscale physiological
and anatomical data to understand complex behaviours from cell to
organ system.38 However, to truly understand physiology, the func-
tional unit of a system must be of utmost consideration. For disorders
such as cancer, one might argue that the functional unit of disease is a
single cell, as cancer is initiated by abnormal signalling within a single
rogue cell. Thus, modelling properties of a cell may be scalable to help
understand more complex tumour behaviours, such as immune
system avoidance and metastasis. Though this approach may be suit-
able for some organs and/or diseases, most physiological function
cannot be reducedas simply. Cardiac EP is a keen exampleof the inabil-
ity to reduce function to the single-cell physiological scale. Though ab-
errant electrical behaviour can be demonstrated in single isolated
cardiac myocytes, most types of arrhythmia do not exist in isolated
cells. Generally, a ring of cardiomyocytes large enough to sustain a
reentrant loop of activation is the minimum requirement.

Thus, traditional approaches to modelling, including ‘bottom-up’,
which starts with genes and proteins and works upward to higher-
level function, or ‘top-down’, which begins with higher-level function
and then sorts out the details, should be augmented by ‘middle-out’
methodologies as well.3,39,40 In the field of cardiac EP, one might con-
sider the bottom-up approach as modelling of specific ionic currents
andcells, and the top-downstrategyasworkingdown fromthewhole
heart or circulatory system. A middle-out approach might instead
involve starting with a functional middle ground, such as multicellular
tissue preparations, that are able to encapsulate the functional prop-
erties and architectureof the entire relevant system, i.e. the ‘function-
al unit’ of cardiac arrhythmias. From this systems level, one could

understand the behaviour of arrhythmias, and then work towards
the ‘bottom’ to understand the underlying molecular/cellular
changes and towards the ‘top’ to understand the ultimate effects
on human health and well-being.

The importance of tissue-level modelling to comprehend human
heart EP is demonstrated by several electrical properties, fundamen-
tal to arrhythmia development, that do not exist in individual isolated
myocytes, but emerge with cell-to-cell coupling.41 For example, such
basic properties as conduction velocity (CV), conduction safety (CS),
and wavefront curvature (WC) are critical determinants of reentrant
wavefront maintenance, and all three are properties of tissues, not
cells. The primary determinant of CV is the degree of cellular coup-
ling, not the cellular-level correlate of maximum AP upstroke vel-
ocity. Conduction safety and WC also depend on cell-to-cell
coupling and cannot be conceptualized in a single-cell model. In add-
ition, other properties of cardiac AP morphology, such as amplitude,
restitution, and alternans, are significantly altered in tissues when
compared with single cells.

Modelling electrophysiology
of human cardiac tissue
Due to computational feasibility of simulating interconnected cardiac
myocytes at the tissue or whole-heart levels, propagation of electric-
al activity is often conceptualized as a well-coupled syncytium and
modelled by the bidomain or monodomain equations.42 –44 In the
more comprehensive, but computationally costly, bidomain model,
the myocardium is approximated as a continuum of interconnected,
anisotropic resistive components, described by two separate (3D)
intracellular and extracellular conductivity tensors.45 The monodo-
main equations are a greater simplification of the bidomain model,
in which the myocardium is treated as a single compartment.41

However, as computational power continues to increase, individual
cell representations can be incorporated into tissue-level models.
While model detail must still be balanced by computational effi-
ciency, using more comprehensive cellular models will hopefully
enable greater fidelity to the properties of the myocardial syncytium.

Human tissue models incorporating
cellular units
Several human tissue-level computational studies have now been
published with varying degrees of cellular model simplification. By in-
corporating a modified version of their human TNNP cellular model
into a 2D sheet model, Ten Tusscher and Panfilov46 were able to in-
vestigate the role of restitution slope in the generation of alternans
and electrical instability. Then, by again reformulating their human
ventricular cell model, they developed a model that is computation-
ally efficient enough for simulations in cardiac tissue, while maintain-
ing detail to represent individual ionic current parameters.31 Thus,
they could reliably simulate the effects of ionic current abnormalities
that occur in human disorders, such as long QT syndrome. In add-
ition, they demonstrated consistent behaviour of the simplified cell
model with four times greater computational efficiency.

Another benefit of simulating human cardiac EP properties within
tissue is that additional parameters can be included to represent
various myocardial heterogeneities. These include fibre orientation
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and anatomical differences in ionic currents or conduction proper-
ties. In addition, cardiac extracellular matrix is very dense and can
become even more pronounced in disease, and fibroblasts make
up approximately half of the cells within the heart.47 Thus, Ten
Tusscher and Panfilov48 again adjusted their TNNP tissue model to
account for effects of fibrosis by incorporating inexcitable, no-flux
boundaries into 2D and 3D geometries. These boundaries lead to
increased pro-arrhythmic behaviour, including CV slowing and
spiral wave formation.

Furthering this work, the group of Dr Rahul Pandit examined the
effects of inhomogeneities in the TNNP cardiac tissue model in a
series of consecutive studies. First, Majumder et al.49 incorporated
fibre orientation and anatomical differences in cardiomyocyte EP
properties, resulting in altered scroll-wave dynamics, with anchoring
occurring at regions of heterogeneity. In the next model iteration,
they incorporate randomly inserted fibroblasts, which were non-
excitable but able to couple to a neighbouring cardiomyocyte.50

Importantly, conduction properties in the model were altered by
the degree of coupling between fibroblasts and myocytes. Nayak
et al.51 then expanded the previous models to allow for more
complex coupling between myocytes and fibroblasts. With this
model, they demonstrated more complex, non-linear relationships
of CV to fibroblast coupling parameters. In addition, local fibroblast
inhomogeneities could serve as anchoring centres for spiral waves.

Comparisons of human cardiomyocyte
models within tissue simulations
Given that there are several human cardiac cell models, with differing
parameters and resulting behaviour, tissue-level models can also vary
based on which cellular model is incorporated. Bueno-Orovio,
Cherry, and Fenton (BCF)52 developed a 2D tissue model based
on the minimal numberofdifferential equationsneeded to reproduce
experimentally derived EP properties from human epicardial, mid-
myocardial, and endocardial cells within tissue. They also compared
the results of their model to 2D simulations based on the PB, TNNP,
and IMW models. In their simulations of reentrant spiral waves, the
models showed different results for wave stability and dynamics.
The TNNP and BCF minimal ventricular models demonstrate
stable reentrantwaveswith similar dominant frequencies. In contrast,
the PB and IMW models both develop wave breakup, with the IMW
model producing a wide range of dominant frequencies that are in-
consistent with the range of ventricular tachycardia frequencies in
patients. Similarly, following the publication of the OVVR and GPB
human ventricular cell models, Elshrif and Cherry53 compared the
behaviour of these models in tissue. Both models agreed reasonably
well with experimentally measured AP duration, but other tissue-
level properties were less consistently reproduced. Such direct com-
parisons of cellular models within tissue will hopefully enable other
modellers to choose the appropriate computational method to
answer their question of interest.

Challenges of simulating individual cardiac
myocytes within tissue
In addition to differences among cellular models, several other chal-
lenges arise when incorporating cellular units into larger scale
models. Existing cellular models, that are freely available in such

repositories as cell markup language (CellML), systems biology
markup language (SBML), and FieldML, are not formulated as tissue
model components.54– 57 Thus, relevant parameters must be
extracted from the cell model for incorporation into a tissue
model. Support for this process has been developed with the
Chaste (‘Cancer, heart and soft-tissue environment’) software
library, via the PyCml software, such that appropriately annotated
cell models can be used within a tissue simulation.58–60 However,
simply inheriting cell models and their parameters into tissue-scale
models does not guarantee that the output will behave as tissue
would behave.61

Incorporating single-cell models and data into multicellular tissue
models, without consideration of data reflecting tissue-specific be-
haviour, will lead to oversimplification and, potentially, inconsistent
model results. To extend cardiac cell models to 2D- and 3D-level
simulations of cardiacEPandarrhythmogenesis, tissue characteristics
must be reproduced, which impact reentrant wave initiation, dynam-
ics, and stability.52 Important considerations to assess cardiac EP
function and arrhythmogenesis at the tissue level include anatomical
differences in EP properties, dependenceof CVand repolarization on
rate, tissue resistanceanisotropy, andWC. In addition,APmorpholo-
gies are known to vary significantly between isolated cardiac myo-
cytes and tissue, presumably due to electrotonic effects or
consequences of the isolation procedure.62

Bridging middle-out with top-down
cardiac models
Although the tissue-level approach to cardiac EP modelling enables
arrhythmia simulation with some inhomogeneity, whole-heart archi-
tecture is much more complex than a block of tissue. The heart has
many constituent parts that behave differently, including atria, ventri-
cles, and the conduction system, and the interplay of these different
components can significantly impact cardiac electrical behaviour.
Also, regionally specific myocardial disease can promote arrhyth-
mias, which might not be observed in a uniform, isolated tissue.
Thus, studying EP behaviour in tissue has the limitation that one
must extrapolate properties to other heart regions. Tissue-level
models must ultimately converge with whole-heart simulations,
which are built from in vivo patient EP and imaging data and can repli-
cate global arrhythmia behaviour.63

Coupling model development with
experimental data from the human
heart
Computational modelling and wet-lab experimentation are like an it-
erative loop, continually feeding back, with each set of data informing
the other. ‘Without data, there is nothing to model; and without
models, there is no source of deep predictive understanding’.64

Models rely on experimental data for their formalism and para-
meters. Few researchgroups have successfully coupled experimental
and computational studies of cardiacEP, and reviewson this powerful
research paradigm have been published.43,65 However, most compu-
tational modellers rely upon published literature from other investi-
gators, making the original data less easily accessible and restricting
the understanding of the conditions under which the experimental
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data were derived. In addition, once a model has been developed, val-
idation using independent experimental data must occur.42 An im-
portant limitation of model development and validation for human
cardiac EP has been the supply of relevant data collected from
human hearts.

Multiscale human cardiac
physiology data

Experimental basis for current models
Though there are several models specifically designed to reproduce
the behaviour of human cardiomyocytes, the data upon which these
models rely are inconsistent. Even for ‘human models’, experimental
data have been collected from different species or cell types and
under differing experimental conditions. Previously developed
models from various species are often inherited into newer
models, including human models, for efficient model generation.
Thus, models continue to propagate older datasets, from assorted
species, frequently with little reference to the primary data.33,66

From the standpoint of choosing reliable and consistent experi-
mental data for incorporation into models, Fink et al.67 argue that
establishing species and experimental conditions consistency are
main factors that will enable models to accurately represent physi-
ology. In addition, they argue that the cardiac modelling community
needs to reconcile the availability of current experimental data
with the complexity of the models being developed, and databases
should be constructed for deposition of experimental data for use
in modelling studies. Such a repository of original data and informa-
tion regarding experimental context in which it was acquired will
enable improved validation of model components.

Multiscale experimental physiology
in the human heart
To this end, we present an experimental paradigm for multiscale
human cardiac structure and function investigation. Until recently,
in vitro investigation of human heart physiology was a daunting
task, achieved primarily at the cellular level only in a limited
number of research centres, associated with robust organ recovery

organizations. Recent development of the first standalone organ re-
covery centre in St Louis created a unique opportunity for human
organ transplantation and research.68 The logistics of the human
heart tissue recovery have been fully detailed elsewhere.69 Briefly,
donor human hearts rejected for transplantation or end-stage
failing hearts from transplant recipients are recovered at the time
of explantation in the operating rooms of the Mid-America Trans-
plant Services (MTS) or Barnes-Jewish Hospitals, respectively.
Hearts are then treated with similar measures to hearts taken for
transplantation—they are perfused and maintained in ice-cold cardi-
oplegic solution during transport to the research laboratory. Heart
tissues can then be dissected for various functional experiments or
collected and preserved for later molecular and histological analyses.
Since the initiation of this programme, our laboratory has acquired
over 300 human hearts, with a historical average recovery frequency
of �1 heart per week. Since programme inception, heart recovery
numbers have increased annually, presumably in part due to improved
coordination with procurement teams over time (Figure 2C).

These human heart data serve as a superb platform from which
computational models of the human heart in health and disease can
be generated, refined, and/or validated. Data types acquired from
this invaluable human heart tissue resource range from gene and
protein expression levels to functional measurements conducted in
living human heart tissues. In many of our experiments, we have
used optical imaging of transmembrane potential and intracellular
calcium to examine conduction, repolarization, and Ca handling
properties in donor vs. failing hearts.70 –74 Structures of the specia-
lized conduction system, including the sinoatrial node and atrioven-
tricular junction have also been characterized.75,76 In addition, we
have begun conducting studies of structural and/ormetabolic remod-
elling in heart failure in relationship to EP changes. Importantly,
because we recover both donor and failing hearts, we have data for
EP properties in non-failing human hearts, as well as on remodelling
in disease.

Comparison with other human
experimental data
An advantage of our experimental approach for generating modelling
data is that our functional EP studies are conducted on intact tissue

15

10

5

0

20
07

20
08

20
09

20
10

20
11

20
12

20
13

Year

N
um

be
r 

of
 h

ea
rt

s/
m

on
th

Total = 288 Total = 288

Donor
Ischaemic CMY
Non-ischaemic CMY
Idiopathic CMY
Unidentified

Male
Female
Unidentified

A B C

Figure 2 Multiscale human heart physiology programme distributions. Pie charts representing the distribution of recovered human hearts by (A)
disease and (B) gender. (C) Chart representing the average number of hearts collected per month for the years spanning from 2007 to 2013. Points
represent collection numbers foreach individual month. Since initiation of the programme, numberof hearts recoveredhas been increasing annually.

Human cardiac systems electrophysiology and arrhythmogenesis iv81



preparations, typically tens of cm3 in volume. We have conducted
studies from perfused left ventricular wedge, right ventricular,
atrial, and conduction system preparations. In contrast,most current-
ly published human heart functional EP data are either from isolated
cells or from in vivo patient measurements during EP study.77– 80 Iso-
lated cells enable recordings of transmembrane potential to obtain
AP morphology, and they also allow individual ion currents to be iso-
lated with voltage-clamp protocols. However, properties of isolated
cells differ significantly from the properties of cardiomyocytes in
tissue. Electrotonic effects of cell-to-cell coupling are lost, and
there are other potentially detrimental effects on ionic current func-
tion due to disruption of normal cell connections to the extracellular
matrix scaffold.62 In addition, we can couple functional EP data with
molecular and histological analyses, in a way that is difficult to
achieve with in vivo patient studies, to help examine the mechanistic
underpinnings of functional alterations in disease. In other work, we
have taken advantage of the large and diverse number of samples to
answer more specific questions, such as the role of gender in EP
remodelling at the gene expression level in the atria and ventricles.81

While in vivo EP measures have the important benefit of being
collected under conditions with normal autonomic input and neuro-
hormonal signals, these recordings are typically limited in type or
number and/or by anatomical region. Improvements in catheter
mapping have enabled increases in the number of electrogram
recordings; however, these still lack the detail provided by transmem-
brane potential recordings.82 Instead, in vivo recordings of membrane
voltage can only be collected through monophasic AP recordings,
which are typically limited in number.78,83,84 In addition, concerns
of patient safety limit the regions from which in vivo recordings can
be collected. Electrophysiology study recordings are less frequently
obtained from the left ventricle due to concerns of embolus forma-
tion and potential stroke as a result of procedure.

Other non-invasive methods have been developed to examine in
vivo human cardiac EP. Electrocardiographic imaging is a method by
which electrogram morphologies can be calculated from a large
numberof body surface potential recordings combinedwith anatom-
ical data collected via computed tomography scan.85 Currently,
though, this technology is only able to resolve electrograms on the
epicardial surface, as the inverse problem using body surface electro-
grams to determine cardiac electrogram morphologies is ill-posed.

Modelling of donor and failing human
heart properties from human
experimental data
Already, data from our human donor and failing heart gene expres-
sion analysis have been utilized for computational study.81,86

mRNA expression levels were used to determine parameter values
in the OVVR human cardiac cell model for ionic currents, which
were up- or downregulated in failure. Simulations revealed that
alterations in gene expression could determine EP remodelling, as
cellular EP properties were consistent with EP changes in human
heart failure, including AP prolongation and increased Ca transient
duration. In addition, this computational study predicts the relative
importance of the different ionic currents for driving EP remodelling
in heart failure. This work highlights the important interplay of
wet-lab experiments and computational models, as experimental

data lead to parameter optimization, and then the model produced
results that were not plausibly obtained by experiment.

Implementation of a multiscale human
experimental data repository
In addition to generating a large amount of data from human hearts in
health and disease, we also aim to make this information accessible to
the modelling community based on standards that have been devel-
oped for the Physiome project87 –89 and the Minimum Information
for Cardiac Electrophysiology Experiments (MICEE).90 In collabor-
ation with the laboratory of Dr Alexander Panfilov from University
of Ghent, we are developing a database for deposition of human
heart experimental data from each of our hearts. We continue to
populate and update this database as new data are available for distri-
bution.This includes analyseddata, aswell as rawdatameasurements,
and the methods with which these data were acquired (Figure 3).

Transparency of models and
experimental data
The International Union of Physiological Sciences (IUPS) initiated the
Physiome project in 1993, with the goal to ultimately develop a quan-
titative model for the intact organism.9,91,92 To achieve this, compu-
tational biologists must develop standards for defining models, such
that they can communicate with one another. These standards span
from seemingly simple details, such as units employed in models, to
establishing a language that can encapsulate many of these models.
Markup languages, such as CellML and SBML, ensure that models
are in consistent form and can be imported into simulation packages
in standard format.55,58 In addition,manyconventions forexperimen-
tal data must be established, including ontologies for structure and
function from the micro to macro scales.

Challenges with model development,
inheritance, and transparency
Because cardiac modelling is the most advanced field of organ system
modelling, many key issues have surfaced which need to be addressed
toensuremodel accuracy. Several importantproblems were raised in
the meta-analysis by Niederer et al.33 In particular, they demonstrate
the pervasive re-use of model components within the modelling
community.33 This pattern is seen in single-cell modelling as well as
whole-organ models.39,42,63 In addition, due to the historical lack of
non-failing human data, experimental results have often been bor-
rowed from non-human species, even in the construction of
‘human’ cell models. In their network evaluation of the TNNP and
IMW human ventricular models, Niederer and colleagues found
that only 50% of experimental data came from humans, 25% came
from guinea pigs, and the last 25% came from a variety of other
species. In addition, only 60% of the data originated from ventricular
cell experiments.93 We have represented the relative contributions
of data from various species for the TNNP and IMW models in
Figure 1A and B.

In a review on Physiome project standards, Smith et al.66 outline
how experimental data for cardiac myocyte contraction have been
inherited into successive generations of computational models.
The same datasets, generated 25–30 years ago, on binding affinity
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of the Ca ion to troponin C have continued to propagate into current
models for cardiac excitation and contraction. However, since the
development of the original models, much more reliable experimen-
tal data have been acquired, while few models have updated their
parameters with these current data. The same issue is prevalent in
human cardiomyocyte EP modelling, with the TNNP and IMW
models both relying heavily on data from the 1990s, generated
using dated methods.33

In contrast to this inheritance paradigm for model development,
Niederer et al.94 developed a model for cardiac relaxation, in which
all parameters were determined from many experimental sources
after extensive literature review. In addition, they provide original
references for their formulation of each parameter, addressing the
challenge of tracing experimental data sources used for model devel-
opment. This particular model serves as an exemplary standard for
computational model development and documentation.

Challenges for cardiac electrophysiology
experimentalists: data transparency and
model usage
Accurate model development not only depends on computational
biology, but also on access to relevant experimental data. The

primary goal set out in the MICEE publication is that experimental
EP data should be made available in online repositories, which are
referenced in the corresponding publication.90 Quinn and colleagues
highlight five key components that represent the most important
aspects of any cardiac EP experiment and publication, and these
include (i) material, (ii) environment, (iii) protocols, (iv) recordings,
and (v) analysis. Also, standards for the treatment of data are likely
going to become more common, as funding agencies and journals
will continue to develop more rigorous data-sharing requirements,
which will likely result in improved tools for data sharing and annota-
tion. Currently, some foundational data-sharing resources have been
implemented, including the database of Genotypes and Phenotypes
(dbGAP; http://www.ncbi.nlm.nih.gov/gap/) and the Gene Expres-
sion Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/).

In addition, experimentalists often fail to appreciate the signifi-
cance of computational models, underutilizing their predictive
power to help determine important experimental questions to
address. Models can provide key insights into cardiac EP function,
providing direction for experiments, or even completely substituting
for wet-lab studies in some cases. Importantly, while much experi-
mental research must take a reductionist approach to tease out
physiological mechanisms, computational models have the ability
to integrate information from many experiments and scales; thus,
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models can address more systems-level questions that are difficult to
address by experiment.

Conclusions
In tracing the development of cardiomyocyte EP models, several im-
portant themes arise including (i) model re-use, resulting in overarch-
ing models that are assembled frommanydifferent speciesof data and
models; (ii) significant differences in model behaviour; (iii) failure to
incorporate improved experimental data as it arises; (iv) the lack of
sufficient data, especially from non-failing human hearts; and (v) the
scarcity of appropriately documented cardiac EP experimental
results. To address many of these issues, formalized reporting stan-
dards should be developed and adopted, for both computational
and experimental cardiac EP studies. In addition, for the lack of rele-
vant data from the human heart, we have presented a powerful re-
search paradigm for human cardiac physiology investigation. The
growing body of research resulting from our multiscale studies, and
the open availability of data, will enable improvements in human
heart EP modelling. In turn, we hope for greater progress in transpar-
ency for the greater cardiac EP community.
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