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Little is known about the interactions between nicotinic and muscarinic acetyl-

choline receptors (nAChRs and mAChRs). Here we report that methacholine

(MCh), a selective agonist of mAChRs, inhibited up to 80% of nicotine-induced

nAChR currents in sympathetic superior cervical ganglion neurons and

adrenal chromaffin cells. The muscarine-induced inhibition (MiI) substantially

reduced ACh-induced membrane currents through nAChRs and quantal

neurotransmitter release. The MiI was time- and temperature-dependent.

The slow recovery of nAChR current after washout of MCh, as well as the

high value of Q10 (3.2), suggested, instead of a direct open-channel blockade,

an intracellular metabotropic process. The effects of GTP-g-S, GDP-b-S and

pertussis toxin suggested that MiI was mediated by G-protein signalling.

Inhibitors of protein kinase C (bisindolymaleimide–Bis), protein kinase A

(H89) and PIP2 depletion attenuated the MiI, indicating that a second messen-

ger pathway is involved in this process. Taken together, these data suggest that

mAChRs negatively modulated nAChRs via a G-protein-mediated second

messenger pathway. The time dependence suggests that MiI may provide a

novel mechanism for post-synaptic adaptation in all cells/neurons and

synapses expressing both types of AChRs.
1. Introduction
Acetylcholine (ACh)-receptors are widely expressed in neurons, endocrine cells

and muscle cells [1]. These receptors play essential roles in synaptic transmission,

gland secretion and excitation–contraction coupling [2–7]. The nAChRs are a

type of cation channel permeable to Naþ, Kþ and Ca2þ that are important to gen-

erate post-synaptic potential at synapses, endocrine cells and neuromuscular

junctions [3,6,7]. The mAChRs are G-protein-coupled receptors with seven trans-

membrane domains, which modulate/gate other ion channels via G-proteins and

second messengers [7–10]. Some cells (such as skeletal muscle) express only

nAChRs, and others (such as lacrimal cells and cardiac muscle) express only

mAChRs [11–13]. However, many central nervous system (CNS), autonomic

neurons and endocrine cells co-express nAChRs and mAChRs [8,14], but little

is known about the interaction of the two types of AChRs [2,10,15–17]. Here,

we have studied the inhibition produced on nAChRs by activation of mAChRs

in rat sympathetic superior cervical ganglion (SCG) neurons and rat adrenal chro-

maffin cells. SCG neurons and adrenal chromaffin cells develop from the same

neural crest precursors. Thus, they express similar subtypes of nAChRs (mainly

a3b4 [18–20]) as well as mAChRs [8,21]. Surprisingly, activation of mAChRs

by ACh inhibited up to 80% of nAChRs’ current evoked by their common natural

ligand ACh. Muscarinic receptors may also have such effects in certain presyn-

aptic endings because autoreceptor inhibition on further transmitter release

was widely observed in presynaptic endings [22–24].
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2. Material and methods
(a) Cell preparations
We dissociated SCG neurons from neonatal rats as described

previously [25]. Briefly, ganglia from P3–7 sprague dawley (SD)

rats were dissected and incubated in Ca2þ-free solution containing

collagenase (0.5 mg ml21) and trypsin (1.5 mg ml21) for 30 min at

318C. Subsequently, the isolated cells were obtained by dispersing

the ganglia on glass coverslips (50 � 50 mm2). For electrophysio-

logical recordings, the cells were used between 20 min and 8 h

after the plating. The incubation solution contained (in mM): 130

NaCl, 5 KCl, 1 MgCl2, 2 CaCl2, 10 HEPES, 10 glucose and 10

sucrose. pH was adjusted to 7.4. Rat adrenal chromaffin cells

were prepared by digestion of adrenal medulla from adult SD

rats (250 g) with collagenase D. The cells that were used for

recordings had been cultured for 1–7 days [14,26].

(b) Electrophysiological recordings
The membrane currents were acquired with a patch-clamp

amplifier (Axon 200B). Cell membrane capacitance and series

resistance were electronically compensated. Data analysis was

performed with the Igor software package. Graphs and current

traces were also produced with the Igor software package [27].

The pipette solution contained (in mM): 135 CsCl, 8 NaCl,

1 MgCl2, 10 H-HEPES. The pH was adjusted to 7.2, and the osmol-

ality was 299–301 mosm/kg H2O. The external solution consisted

of (in mM): 141 NaCl, 2.8 KCl, 2 CaCl2, 1 MgCl2 and 10 HEPES.

The pH was adjusted to 7.4, and the osmolality was 319–320.

Drugs were applied via RCP-2B multi-channels micro per-

fusion system (INBIO Inc., Wuhan, China), which had a fast

exchange time (less than 100 ms) with electronic switching

between seven solution channels [27,28]. The puffing pipette of

100 mm tip diameter was located approximately 120 mm from

the cell. GTP-g-S and GDP-ß-S were applied by dialysis from a

whole-cell pipette. Perforated whole-cell recordings and standard

whole-cell recordings were as described previously [29,30].

(c) Amperometric measurement of catecholamine
release

Electrochemical amperometry using carbon fibre microelectrodes

(CFEs) was done as described previously [26,29,31–34]. The

sensor tips of 5 mm polypropylene-insulated CFE (ProCFE,

Dagan, Minneapolis, MN, USA) were positioned to touch the

cell gently. The CFEs were held at þ780 mV by another patch-

clamp amplifier, PC-2B (INBIO Inc.), to allow oxidation of

released catecholamines [27]. The amperometric currents were

acquired by the pClamp8 with a low-pass filter of either 10 Hz

(for SCG neurons) or 500 Hz (for adrenal chromaffin cells). The

acquired data were analysed with Igor software (AveMatrix,

Lack Oswego, OR, USA).
3. Results
(a) Muscarinic inhibition of nAChRs currents
Methacholine (MCh) is a selective agonist of the mAChRs

[35]. Application of MCh (1 mM) from a puffer pipette to a

SCG neuron or a rat adrenal chromaffin cell failed to evoke

any current (not shown), whereas application of 100 mM

nicotine induced large inward whole-cell currents in both

cell types. When MCh was applied for 10 s before Nic appli-

cation, the Nic response was reduced by 80% (figure 1a).

After wash of MCh for 2 min, the Nic-induced current recov-

ered nearly completely. This muscarinic inhibition of nAChRs
was observed in all SCG neurons (n ¼ 57) and adrenal chro-

maffin cells (n ¼ 30) tested. The concentration dependence of

the MiI had a half maximal inhibitory concentration (IC50) at

4 mM, which is consistent with IC50 of selective muscarinic

agonists in other studies [7,8]. The dose–response curve of

nicotine showed a half maximal effective concentration

(EC50) of 69 mM for nAChRs (figure 1b). This result impli-

cated that stimulation with micromolar ACh induced both

nAChRs current activation and mAChRs mediated inhibition

on the nAChRs (see below).

(b) Kinetics of muscarine-induced inhibition
The MiI was time-dependent. Figure 2a shows the Nic-

induced currents at various times after application of MCh

(1 mM, the maximally effective concentration). Prepuff of

MCh for 0.5 s and 6 s inhibited 25+2% and 81+1% of

nAChRs currents in this cell, respectively. The Nic-induced

currents were fully recovered after MCh wash for 150 s. The

time course of MiI followed a single exponential curve. At

228C, 0.85 s prepuff were required to produce half maximum

MiI. The time constant of nAChR inhibition by 1 mM MCh

was 1.3 s (figure 2b).

MiI was fully reversible after removing MCh from the

bath. Half MiI of nAChRs was removed after wash of MCh

for 18 s (figure 2c). The nAChR recovery followed a double-

exponential curve with time constants of 13+2 s and 88+2 s,

respectively (figure 2d). The relative amplitudes of the fast and

slow recovery components were 76% and 24%, respectively.

Wash for 3 min was sufficient to remove the MiI completely.

Thus, the kinetics of both inhibition and recovery occurred on

a time-scale of seconds to minutes. The inhibition was set

approximately 10 times faster than recovery.

(c) Open-channel block cannot account for the
muscarine-induced inhibition of nAChRs current

One possible mechanism of MiI could be that MCh block the

opening nAChRs channels, i.e. a cholinergic ligand could

occupy the channel pore and reduce the permeation of

cations (Naþ, Kþ and Ca2þ) through the channel, as observed

in BC3H1 cells [36] and neuromuscular junction [37,38]. To

test whether the MiI was owing to open-channel block, we

first tested its temperature sensitivity. At room temperature,

the pre-activation of mAChR is necessary for MiI of

nAChRs current. Without prepuff of MCh or ACh, ACh or

a mixture of MChþNic produced no inhibition of nAChR

currents at 228C. There was no difference in peak nAChRs

currents induced by Nic (1 mM) and ACh (1 mM) at 228C
(figure 3a upper left panel). Similarly, peak nAChRs currents

were smaller either when Nic (1 mM) alone or a mixture of

MCh (1 mM) and Nic (1 mM) were applied (figure 3a, lower

left). However, at a physiological temperature of 368C, MiI

of nAChRs was apparent even without pre-activation of

mAChRs. nAChRs currents induced by ACh (1 mM) or the

mixture of MCh (1 mM) þ Nic (1 mM) were considerably

smaller than those induced by Nic (1 mM) alone (figure 3a,

middle panels). This suggested that the latency of MiI after

activation of mAChRs is considerably reduced by the higher

temperature and that the inhibition occurs during the short

application time (1–2 s). The requirement of high temperature

for visible MiI upon a puff of nicotine (or MCh, or ACh) might

be the reason why the MiI was not discovered in previous
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Figure 1. Inhibition of nAChRs currents by prepuff of muscarinic agonists. (a) Inhibition of nAChRs currents by a prepuff of MCh. Left panel shows nicotine (Nic)-
induced currents in a SCG neuron via perforated whole-cell recording at – 70 mV. The inward currents were evoked by Nic (100 mM) before applying MCh (left
trace), during applying MCh (middle trace) and after wash of MCh (right trace). All traces were from the same neuron. Right panel shows the statistics of
the experiments in both SCG neurons and adrenal chromaffin cells. The inhibition of nAChRs current by a 10 s prepuff of 1 mM MCh was 77+ 4% in SCG neurons
(n ¼ 19), and 74+ 3% in adrenal chromaffin cells (n ¼ 11). (b) Dose-dependence of MCh inhibition of nAChRs currents. Left panel, the inhibition of 100 mM Nic-
induced currents at – 70 mV were 20% and 80% for 10 s-prepuff of 0.1 mM MCh (left traces, neuron 1) and 1 mM MCh (right traces, neuron 2), respectively. Right
panel, the dose curves of MCh versus currents induced by Nic (100 mM) (n ¼ 12), and of Nic versus nAChRs currents (n ¼ 9). The EC50 and IC50 of maximum
effects were 69 mM and 4 mM for nicotine and MCh, respectively.
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studies [14,15,19,39]. Figure 3b shows, in contrast to the results

obtained at room temperature, that the physiological tempera-

ture accelerated the muscarinic inhibition. With 0.5 s prepuff of

MCh (1 mM), the MiIs were 25% at 228C and 70% at 368C,

respectively. The time constants of MiI were 1.32 s, 0.58 s and

0.27 s at 228C, 308C and 368C, respectively (figure 3b). By con-

trast, the known open-channel blockades of nAChRs by 1 mM

atropine [40] as well as Ca2þ channels by 200 mM Cd2þ [41]

had no detectable time or/and temperature dependence (n ¼
6, data not shown), suggesting that MiI of nAChRs here was

not due to a direct open-channel blockade.

(d) G-proteins and protein kinases are involved
in muscarine-induced inhibition

To investigate whether the G-protein pathway is involved in MiI,

we tested the effect of intracellular GTP-g-S on nAChRs currents

in SCG neurons and adrenal chromaffin cells. If MiI is mediated

by G-protein activation, then including GTP-g-S (a non-hydro-

lyzable GTP analogue) in the whole-cell pipette solution

should mimic the MiI [42–45]. The experiments on GTP-g-S in

figure 4 required standard whole-cell recording, which caused

a significant rundown of nAChRs currents induced by Nic

(100 mM). This was evident in the absence of GTP-g-S in both

SCG neurons and adrenal chromaffin cells. In the absence of
GTP-g-S, the rundown of nAChRs currents after 8 min whole-

cell dialysis (average series resistance Rs ¼ 11 MV, membrane

capacitance Cm ¼ 14 pF) was approximately 42+5% (figure

4a left panel). However, in the presence of GTP-g-S (100 mM),

the nAChRs current was reduced by 72+2% (average Rs ¼

11 MV, Cm ¼ 13 pF). Thus, like the MiI, in contrast to whole-

cell control (figure 4a, left), GTP-g-S inhibited nAChRs current

significantly ( p , 0.01, figure 4a, right). A similar result was

observed in SCG neurons (data not shown).

G-protein activation can be inhibited by GDP-ß-S (a non-

hydrolyzable GDP analogue [42,44,45]). As shown in figure 4b,

whole-cell dialysis of 1 mM GDP-ß-S (average Rs¼ 11 MV,

Cm¼ 14 pF, dialysis for . 8 min) significantly reduced

MCh-inhibition from 34+2% to 16+2% ( p , 0.01).

Pertussis toxin (PTX) inhibits activation of PTX-sensitive

G-proteins [9,44–46]. As shown in figure 4c, adrenal chromaf-

fin cells were pre-treated with 150 ng ml21 PTX overnight. In

contrast to untreated cells, PTX reduced the MiI of nAChRs

current by 5 mM MCh from 34+2% to 20+ 3% ( p , 0.01).

Control experiments ensured that the MiI of voltage-gated

Ca channels was also reduced from 85+6% (no PTX) to

35+ 5% (PTX-treated, n ¼ 5, data not shown).

In addition to the PTX-sensitive G-proteins, we tested PTX-

insensitive but Ca2þ-sensitive G-proteins. By including 20 mM

BAPTA in the whole-cell internal solution, the MCh (5 mM)
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inhibition of nAChRs currents (34+2%) was significantly

reduced to 21+3% (BAPTA) and to 12+2% (PTX and

BAPTA), respectively (figure 4d). This suggested that in

addition to PTX-sensitive G-proteins, the PTX-insensitive but

Ca2þ-sensitive G-proteins were involved in the MiI of

nAChRs. This finding was consistent with both M1 and M4 sub-

types of mAChRs contributing to the modulation of Ca currents

in SCG neurons [9]. Furthermore, the 0.5 mM muscarinic antag-

onist atropine removes the MCh-induced inhibition, indicating

the involvement of mAChRs (data not shown). Taken together,

these data suggested that G-proteins mediate the MiI.

Many G-protein-coupled receptors affect cell functions

through activation of second messages and kinases [46]. To
investigate whether kinases are involved in the MiI, we

tested effects of agonists and antagonists of protein kinase A

(PKA) and protein kinase C (PKC). Figure 5a,b demonstrates

that the PKC antagonist BIS significantly reduces the MiI,

whereas PKC agonist phorbol 12-myristate 13-acetate

(PMA) mimicks only part of the MiI. Figure 5c,d shows that

the PKA-specific antagonist H-89 reduces MiI significantly,

whereas PKA agonist 8-Br-cAMP mimicks part of MiI, indi-

cating that PKA signalling is also involved in MiI. In

addition, the MiI pathway is via a cytoplasmic diffusible

second messenger, because MiI of single channel recordings

are persistent even when MCh is applied from extracellular

patch area (data not shown). This is consistent with the
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finding that the M1-phospholipase C (PLC)-phospholipid

phosphatidylinositol 4,5-bisphosphate (PIP2) pathway of the

‘M current’ (a Kþ channel) [47] also mediates the MiI effect

(50 nM Wortmanin blocked . 50% of MiI, data not shown;

see also [48]). Taken together, these experiments provide

strong evidence that PKA, PKC and M1-PLC-PIP2 signalling

participate in MiI.
(e) Physiological impacts
To further address the physiological relevance, we tested the

effect of MiI on nAChRs-induced quantal catecholamine

secretion. In SCG neurons [25,49], quantal secretion of cat-

echolamines from somatic release sites can be detected by

electrochemical amperometry using micro-CFEs. Figure 6a
shows the MiI of quantal secretion evoked by Nic (100 mM)
in a SCG neuron. The cell was pre-treated with 1 mM thapsi-

gargin (Tg) for 10 min to remove intracellular Ca2þ stores

sensitive to activation of mAChRs. Nic-induced quantal

secretion was maximum when mAChRs were not activated

(figure 6a(i)). Prepuff of MCh (1 mM) for 10 s inhibited all

secretion (figure 6a(ii)). Nic-induced secretion recovered

gradually after removing MCh (figure 6a(iii)). Nic-induced

secretion recovered completely after wash of MCh for 3 min

(figure 6a(iv)). Similar results were observed in eight cells.

The inhibition of secretion by MCh (figure 6a) could also

be owing to the MiI of voltage-gated Ca2þ currents (data not

shown), because the release site of the SCG neuron could not

be voltage-clamped. To be sure that the MiI can directly block

secretion induced by Ca2þ influx through nAChR channels

[39,50], we did similar experiments in adrenal chromaffin

cells, except that the cell was voltage clamped to exclude
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reduced from 34% (left first panel) to 21% (left second panel). The MiI was further reduced to 12% by combined PTX and intracellular dialysis of 20 mM BAPTA (left
third pane). Right panel, statistics of BAPTA experiments. On average, BAPTA and BAPTA þ PTX-treatment reduced 5 mM MCh-inhibition of nAChRs significantly
from to 34+ 2% to 21+ 3% ( p , 0.01) and 12+ 2% ( p , 0.01), respectively.
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Ca2þ channels. Figure 6b shows the MiI of nAChRs currents

and quantal secretion by combined patch-clamp and electro-

chemical amperometry in a chromaffin cell. Again, the cell

was pre-treated with Tg (1 mM) for 10 min to remove intracellu-

lar Ca2þ stores sensitive to mAChRs. The cell was voltage

clamped at –70 mV so that not all of the Ca2þ influx induced

by nAChRs was through voltage gated Ca channels, but also

through nAChRs channels, which contribute with a fractional

Ca2þ current of 2.5% [37]. nAChRs currents and quantal

secretion induced by 100 mM Nic were maximum when
mAChRs were not activated (figure 6b(i)). Prepuff of 1 mM

MCh for 10 s inhibited most Nic-induced current and elimi-

nated secretion (figure 6b(ii)). After removing MCh, the Nic-

induced nAChR current and secretion recovered gradually

(figure 6b(iii)). nAchRs current and secretion recovered com-

pletely after wash of MCh for 3 min or longer (figure 6b(iv)).

Similar results were observed in six cells tested.

For SCG neurons of figure 6a, in contrast to secretion

induced by 100 mM Nic, the average MiI of the Nic-induced

secretion was 16+8% (Nic þMCh without MCh prepuff ),



Nic Nic

Nic

Nic Nic

Nic Nic

Nic Bis

2 s

1s

1s

(a)

(b)

(c)

(d )

MCh
100

(16)

(4) (6)

(9)

(9)

(30)
(25)

(16)
(8)

(8)
(9)

(7)
(7)

(22)
(25)

(8)

0

cu
rr

en
t (

%
)

100

0

cu
rr

en
t (

%
)

100

0

cu
rr

en
t (

%
)

100

0

cu
rr

en
t (

%
)

PMA

MCh

MCh

control
and wash

control
and wash

control
and wash

control
and wash

MCh

control
 and wash

control
 and wash

wash
control

PMA

control
 and wash control MCh MCh

+ Bis

Bis
SCG RACC

SCG RACC

SCG RACC

SCG RACC

control PMA PMA
+ Bis

control MCh MCh
+ H-89

control cAMP cAMP
+ H-89

0.2 nA

0.1 nA

0.1 nA

0.2 nA

H-89 effect

H-89 effect 8Br-CAMP
8Br-
CAMP

H-89-treated

H-89

Bis effect

Bis effect

0.1 nA

0.1 nA

0.1 nA

0.2 nA

1s
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(middle, chromaffin cell 6). Rightmost panel, statistically H-89 removed the 8Br-cAMP-inhibition significantly from 47+ 9% to 5+ 18% and 40+ 9% to
10+ 8% in SCG neurons and adrenal chromaffin cells, respectively ( p , 0.01).
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99+ 1% (MCh prepuff for . 10 s), 68+7% (removing MCh

for 10 s) and 2+5% (removing MCh for 3 min), respecti-

vely (n ¼ 8, figure 6c). The statistics of the corresponding

inhibitions in adrenal chromaffin cells shown in figure 6b
were 12+ 6%, 97+1%, 62+5% and 0+10%, respectively

(n ¼ 6, figure 6c). This suggested that the MiI could abolish

the nicotine-induced secretion nearly completely.
4. Discussion
We discovered that activation of mAChRs caused inhibition of

nAChRs via a G-protein mediated pathway in SCG neurons

and adrenal chromaffin cells. The present results suggest

that, at room temperature, there was a delay of approximately

1 s for the MiI. However, if the cell was prepuffed with ACh or

a muscarinic agonist, the MiI could reduce 80% of nAChRs cur-

rent. At physiological temperature (368C), the MiI was much
faster so that 30% inhibition of nAChRs current occurred

during a single brief puff of ACh.
(a) G-protein as the mechanism of muscarine-induced
inhibition of nAChRs

ACh may cause some open-channel block in nAChRs chan-

nels in the neuromuscular junction [37,38]. However,

because the MiI described here was sensitive to prepuff

time (figure 2) and temperature (Q10 ¼ 3.2, indicating a bio-

chemical rather than a physical process, see figure 3), which

was not observed for other known open-channel blocks, we

concluded that the majority of MiI in this work is not

owing to open-channel block. In addition, the MiI was pre-

sent in all experiments testing the G-protein pathway. This

is strongly supported by adding the agonist outside the pip-

ette. These include GTP-g-S, GDP-b-S and PTX (figure 4),
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suggesting that the mechanism of MiI is mediated by G-protein

signal transduction. The G-protein pathway involves GTP-

binding G-protein, hydrolyzation of GTP to GDP and

breakdown of the G-protein into bg-subunit and a-subunit

[15,46,49]. There are two general signal pathways to affect ion

channels. First, the G-protein bg subunit produces a mem-

brane-delimited short-cut action, in which the bg-subunit

diffuses to a nearby nAChR. Second, the second messenger

pathway is activated by the a-subunit, which produces a diffu-

sible second messenger in the cytoplasm and activates one or

more kinases to phosphorylate the cytoplasmic site of

nAChRs. For MiI on nAChR, we favour the diffusible second

messenger pathway, because the MiI is preserved in

cell-attached recordings when MCh was applied through the

perfusion (data not shown).

PLC mediates depletion of PIP2 and modulates ion chan-

nels even in cell-attached recordings when muscarinic

agonists are applied through the perfusion to other parts of

the cell surface [47,48]. Similarly, it is likely that PIP2

depletion is involved in the MiI of nAChRs (data not shown).

(b) Subtypes of ACh-receptors
Superior cervical ganglion (SCG) neurons have at least two

types of mAChRs: M1 and M4 [9,15]. M4 is PTX-sensitive and

likely to be responsible for the PTX-sensitive MiI (figure 4).

The M1 signal pathway is sensitive to Ca2þ and should be

responsible for the BAPTA-sensitive fraction of MiI. Accord-

ing to figure 4c, the PTX-sensitive mAChRs including M4

should be responsible for about 50% of the MiI in rat SCG neur-

ons, while the PTX-insensitive and Ca2þ-sensitive mAChRs

(including M1) took about 30% of MiI (figure 4).

(c) Crosstalk between ligand receptors
There are a few reports about crosstalk between different

receptors in SCG neurons. For example, two ligand-gated

receptor channels, nAChR and P2X, coexist in a sympathetic

neuron. Activation of nAChR channels inhibits the nearby

P2X channels [51,52]. Further crosstalk occurs was between

prostaglandin E2 (PGE2) receptor and nAChR [53]. The meta-

bolic inhibition of PGE2 is via G-protein [18]. Although more

and more receptor crosstalks are being discovered in other

neurons/cells, the crosstalk between nAChRs and mAChRs

is the first example where both receptors are activated by a

common ligand.

(d) Muscarine-induced inhibition of neurotransmitter
release

Muscarine inhibits nicotine-induced secretion [54]. However,

the MiI was interpreted exclusively as the inhibition of
voltage-gated Ca2þ channels [15,46]. On the other hand,

Ca2þ influx through nAChRs receptors is sufficient to trigger

secretion [39,50]. In figure 6, we provide direct evidence that

mAChRs blocked quantal release elicited by Ca2þ influx

through nAChRs channels. Thus, in addition to MiI of vol-

tage-gated Ca2þ channels, our data provide another

mechanism for MiI of nAChR-induced secretion.

To produce large MiI, in some experiments (figures 2, 3, 5

and 6), we used a high concentration (1 mM) of ACh and

MCh. However, as shown in the dose curves (figure 1 and

figure 4), as much as 35% of MiI existed even at a physiological

concentration of 5 mM MCh. This indicates that the MiI with

1 mM MCh and ACh should also apply to MiI with the phys-

iological concentrations (micromoles), although the inhibition

level under physiological concentrations was less profound.

In conclusion, the muscarinic inhibition on nAChRs discovered

in this work is sensitive to the history of mAChRs activation

in the time window of seconds or sub-seconds. Release of

presynaptic ACh stimulates both mAChRs and nAChRs in

the post-synaptic membrane. The activation of mAChRs may

then reduce nAChRs’ response to subsequent ACh stimu-

lations. Indeed, this phenomenon had been observed in

adrenal chromaffin cells previously [14], although the mechan-

isms were not known until the present work. Since similar

inhibition through autoreceptors exits in soma of cortical neur-

ons (data not shown), as well as synapses [22–24], the MiI in

this work might provide an adaptation upon repeated presyn-

aptic transmitter release. Such adaptation should be gradually

removed if presynaptic release stops for 1–3 min (figure 2).

Future work should determine whether the MiI exists during

synaptic neurotransmission.
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