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ABSTRACT Genetic variants identified by mapping are biased toward large phenotypic effects because of
methodologic challenges for detecting genetic variants with small phenotypic effects. Recently, bulk
segregant analysis combined with next-generation sequencing (BSA-seq) was shown to be a powerful and
cost-effective way to map small effect variants in natural populations. Here, we examine the power of BSA-
seq for efficiently mapping small effect mutations isolated from a mutagenesis screen. Specifically, we
determined the impact of segregant population size, intensity of phenotypic selection to collect segregants,
number of mitotic generations between meiosis and sequencing, and average sequencing depth on power
for mapping mutations with a range of effects on the phenotypic mean and standard deviation as well as
relative fitness. We then used BSA-seq to map the mutations responsible for three ethyl methanesulfo-
nate2induced mutant phenotypes in Saccharomyces cerevisiae. These mutants display small quantitative
variation in the mean expression of a fluorescent reporter gene (23%, +7%, and +10%). Using a genetic
background with increased meiosis rate, a reliable mating type marker, and fluorescence-activated cell
sorting to efficiently score large segregating populations and isolate cells with extreme phenotypes, we suc-
cessfully mapped and functionally confirmed a single point mutation responsible for the mutant phenotype in all
three cases. Our simulations and experimental data show that the effects of a causative site not only on the mean
phenotype, but also on its standard deviation and relative fitness should be considered when mapping genetic
variants in microorganisms such as yeast that require population growth steps for BSA-seq.
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Characterizing the causal relationships between genotypes and phe-
notypes is a major goal of modern genetics. Bulk segregant analysis
(BSA), in which two phenotypically distinct subpopulations (bulks) of

recombinant progeny (segregants) are isolated from a genetic cross and
genotyped, is one way to achieve this goal (Michelmore et al. 1991).
With this method, regions of the genome contributing to the pheno-
typic difference between the two pools of segregants are identified
because causative alleles (and linked loci) occur at different frequen-
cies in the two bulks. BSA is a cost-effective approach to mapping
because genotypes are determined only for the two bulk samples
rather than each of the individual recombinants. The recent develop-
ment of high-throughput sequencing, which can be used to determine
allele frequencies for nearly all sites in the genome in each phenotypic
pool simultaneously, has made BSA particularly effective for mapping
polymorphisms in organisms with small genomes such as yeast
(Ehrenreich et al. 2010; Pomraning et al. 2011; Liti and Louis 2012;
Wilkening et al. 2013). Even small differences in allele frequency
between bulks can be detected with this genotyping-by-sequencing
approach (Parts et al. 2011), allowing detection of small effect variants.
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Because BSA requires sorting large numbers of individuals based on
their phenotype, it is particularly well suited to the analysis of traits
that can easily be selected or scored in the laboratory, such as growth
in different environments (Wenger et al. 2010; Ehrenreich et al.
2012; Swinnen et al. 2012; Yang et al. 2013) or expression of a fluo-
rescent reporter gene (Albert et al. 2014).

BSA can be used to identify sites contributing to natural variation
(Parts et al. 2011; Granek et al. 2012; Van Leeuwen et al. 2012; Bastide
et al. 2013) or mutant phenotypes isolated from genetic screens
(Wicks et al. 2001; Brauer et al. 2006; Xia et al. 2010). Experimental
design and statistical properties of BSA coupled with high-throughput
sequencing (BSA-seq) for mapping quantitative trait loci (QTL) have
been examined in detail (Magwene et al. 2011; Edwards and Gifford
2012); however, methods for mapping mutations using BSA-seq after
a mutagenesis screen have received less theoretical attention (but see
Birkeland et al. 2010). Compared with natural variation, the density of
polymorphic sites is usually much lower after a mutagenesis screen,
and the mutations are more likely to have effects on fitness. As a result,
optimal experimental design and statistical power are expected to be
different for BSA-seq when analyzing natural variation and mutant
genotypes created by random mutagenesis in the laboratory. For ex-
ample, sequencing information from linked segregating sites can be
combined when mapping natural variation to increase the power of
detection (Magwene et al. 2011; Edwards and Gifford 2012), but this is
usually not possible with the lower genetic diversity present after
mutagenesis. In such cases, sequencing coverage sufficient for statis-
tical analysis must be recovered from the causative site itself.

Here, we examine the influence of experimental design and
mutational properties on the mapping success of BSA-seq when the
density of segregating sites is low, with the goal of providing a general
framework for large-scale mapping of small effect mutations after
a mutagenesis screen. We describe the effect on mapping sensitivity of
four experimental parameters (population size, intensity of phenotypic
selection, number of mitotic generations between meiosis and sequenc-
ing, and sequencing depth) as well as three mutation properties (effect
on mean phenotype, effect on standard deviation of the phenotype, and
effect on fitness) that can potentially bias genotype frequencies in the
segregant bulks. Previous studies modeling BSA-seq for QTL mapping
primarily considered the effects of a genetic variant on the mean
phenotype for the trait of interest (Magwene et al. 2011; Parts et al.
2011).

We used the results from this computational modeling to design
a bulk segregant mapping experiment suitable for identifying
mutations in yeast causing small changes in expression of a yellow
fluorescent protein (YFP) reporter controlled by the Saccharomyces
cerevisiae TDH3 promoter. These mutations were previously isolated
from a low-dose mutagenesis screen in which each haploid mutant
recovered was predicted to have, on average, 47 new mutations with
only one affecting fluorescence of the reporter gene (Gruber et al.
2012). Our simulations indicated that isolating very large pools of
haploid segregants (.105 cells) with extreme fluorescence phenotypes
was essential for mapping success given the biological properties of the
mutant strains. To achieve this, we developed an experimental system
for efficiently collecting phenotypically divergent cells from a popula-
tion of haploid segregants that uses (i) a genetic background with
a greater meiosis rate than the typical laboratory strain (Deutschbauer
and Davis 2005), (ii) a robust and tractable mating type marker to
efficiently isolate stable haploid bulks (Chin et al. 2012), and (iii)
fluorescence-activated cell sorting (FACS) for high-throughput phe-
notyping and selection of individuals with extreme fluorescence levels.
Genetic variants responsible for changes in mean YFP expression as

small as 3% relative to the wild-type genotype were then successfully
mapped despite their significant impact on fitness and confirmed
using allele replacement, showing that BSA-seq is a powerful method
for identifying small effect mutations after a mutagenesis screen.

MATERIALS AND METHODS

Power analyses
To identify parameters that influenced and maximized power for
BSA-seq, we modeled the effects of sequencing depth, phenotypic
selection cutoff for choosing bulks, total population size, and
generations of growth after meiosis as functions of a causal mutation’s
effect on mean expression, standard deviation of expression, and fit-
ness. Because of the low density of mutations expected in mutants
isolated from mutagenesis screens, we assumed only one causal mu-
tation influenced the phenotype of interest in each mutant. We also
assumed that noncausal mutations were in linkage equilibrium with
the causal site. Finally, for simplicity, we assumed that noncausal
mutations did not affect fitness. Violating this final assumption should
not affect allele frequencies for the causal site as long as it is not linked
to these noncausal mutations.

Power analyses were performed in two steps. First, a deterministic
model was used to calculate the expected mutant and reference allele
frequencies for the causal site in both phenotypically high and
phenotypically low bulks prior to sequencing (Supporting Information,
Figure S1). Then, using these expected frequencies, sampling was used
to account for variation introduced by library preparation, sequencing
depth, and allele frequency from sequencing. For each set of param-
eters, we simulated 1000 sets of reference and mutant allele read counts
for both the high and low bulks. These modeling and simulation steps
were all performed in R (v 2.14.1; R Development Core Team 2013)
and are described fully in File S1 with R code provided in File S2.

Strains used for mapping
Haploid mutant strains from Gruber et al. (2012) with trans-regula-
tory effects on expression of a fluorescent reporter gene in S. cerevisiae
were used in this study. These mutants were isolated from a low-dose
ethyl methanesulfonate (EMS) mutagenesis of a BY4724 (MATa
lys2D0 ura3D0) derivative called YPW1 with a PTDH3-YFP reporter
gene inserted on chromosome I at position 199,270 (Gruber et al.
2012). Based on Canavanine resistance assays, each strain was esti-
mated to contain 47 6 17 (99% confidence interval) EMS-induced
point mutations, with exactly one mutation expected to affect YFP
expression in 98.7% of the strains (Gruber et al. 2012). A red fluores-
cent protein (RFP) marker was inserted at the MATa locus in each of
these mutant strains before crossing to the mapping strain described
below to avoid diploid contamination when sorting haploid segregant
progeny (FASTER MT approach; Chin et al. 2012). The genetic basis
of altered fluorescence was mapped for the YPW89, YPW94, and
YPW102 mutants from Gruber et al. (2012), which showed +10%,
+7%, and 23% changes in mean fluorescence relative to the non-
mutagenized reference strain, respectively (Table 1 and see Figure
S2A). These mutants also reduced the standard deviation of fluores-
cence phenotypes for each strain (Table 1 and see Figure S2B). The
mapping strain (MATa met17D0 ura3D0 PTDH3-YFP RME1(ins-
308A)) that each of these mutants was crossed to was obtained from
a series of crosses involving YPW1 (MATa lys2D0 ura3D0 PTDH3-
YFP), BY4722 (MATa leu2D0 ura3D0), BY4730 (MATa leu2D0
met17D0 ura3D0), and a YAD373 derivative (MATa leu2D0 ura3D0
RME1(ins-308A) TAO3(E1493Q) MKT1(D30G)) from Deutschbauer
and Davis (2005). The dominant RME1(ins-308A) allele increased
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sporulation frequency of heterozygous diploids relative to the starting
strain, which facilitated isolating large numbers of spores.

Obtaining bulk segregant populations
For each mutant, the segregating pools were obtained as follows. First,
the mutant strain was crossed to the mapping strain on YPD plate and
diploid colonies were isolated on SC-Lys-Met medium. A single
diploid colony was then inoculated to 2 mL of GNA (5% D-glucose,
3% Difco nutrient broth, 1% yeast extract) and grown to saturation at
30�. Then, 0.2 mL of this culture was diluted into 1.8 mL of GNA and
grown 4 hr to log-phase. Next, cells were washed twice in 1 mL of
H2O, resuspended in 30 mL of H2O and spotted on KAc plate to
induce sporulation. Sporulation plates were incubated at room tem-
perature without Parafilm sealing to allow oxygenation. Sufficient
sporulation (.5%) was usually observed after 4 d, at which point
random spores were isolated.

For each strain, the whole yeast spot (about 5 · 107 cells and
tetrads) was resuspended in 1 mL of H2O in a microcentrifuge tube,
washed once in 1 mL of H2O and incubated in 200 mL of zymolyase
20T (1 mg/mL) for 50 min on a rotor at room temperature. Once
ascus walls were digested, samples were washed in 1 mL of H2O and
resuspended in 100 mL of H2O. To enrich for spores relative to
vegetative cells, each tube was vortexed vigorously for 2 min, which
resulted in spores visibly sticking to the tube wall; diploid cells
remained in suspension. The supernatant was then carefully aspirated
off and the spores were washed once more with 1 mL of H2O. To
release spores from tube walls, 1 mL of Triton-X (0.02%) was added to
the empty tubes on ice and samples were briefly sonicated at low
power (10 sec at power 3.5 using a Sonic Dismembrator Model 100
from Fisher Scientific). Spore suspensions with nonaggregated cells
were observed under a microscope after this step, with less than 5%
vegetative contaminants (diploid carryover). Spores suspension needed
to be grown to log-phase to express the fluorescence phenotype. To
avoid mating during growth, approximately 3 · 105 MATa spores
were sorted using a BD FACSAria II based on the absence of RFP
expression. These cells were then centrifuged, resuspended in 2 mL of
YPD (to clear off traces of Triton-X) and incubated at 30� for 14 hr.

Next, log-phase cultures (�2 · 107 cells/mL) were washed in water
and resuspended in 3 mL of SC-Arg (media that has lower autofluor-
escence than YPD). Cells were acclimated to their medium for 3 hr at
30� before sorting through the FACSAria II instrument. Cytometric
gating was set up using FACSDiva software to sort 2 · 105 cells from
both tails (,225 and.95298 percentiles) of the YFP distribution in
two separate tubes. Only events of intermediate size were sorted based
on FSC.A, the area of forward scatter signal (10% tails of FSC.A

distribution were discarded) and special care was made to keep the
FSC.A median (a proxy for median cell size) the same in the two bulks
of cells. Finally, low-fluorescent and high-fluorescent bulks were
resuspended in 3 mL of YPD, grown to saturation at 30� and genomic
DNA was extracted using a Gentra Puregene Yeast/Bact. Kit from
QIAGEN. From this, genomic DNA libraries were prepared using
a modified version of a previously described approach (Rohland
and Reich 2012) as explained in File S1. Then, 100-bp paired-end
sequencing was performed on Illumina HiSeq2000 platform at the
University of Michigan Sequencing Core Facility.

Analysis of Illumina sequencing data
For each sample, FASTQ files containing all paired-end reads data
were generated with CASAVA v1.8.2 software. Before alignment, low-
quality ends were trimmed from reads using sickle v1.2 (https://github.
com/najoshi/sickle) with default settings (2q 20 –l 20). Trimmed
reads were then aligned to the S288c reference genome (http://www.
yeastgenome.org, R64 release from 03-Feb-2011) with PTDH3-YFP
inserted on chromosome I using Bowtie2 v2.1.0 (bowtie2 2p 2 2x
ref.fasta 21 SampleX.R1.fastq 22 SampleX.R2.fastq 2I 0 -X 900 2S
SampleX.sam –t; Langmead and Salzberg 2012). Next, bamUtil v1.0.9
was used to clip overlaps between mate reads that could bias our
estimation of allele frequencies (bam clipOverlap–in SampleX.sam–
out SampleX.clipped.sam–stats–readName). MPILEUP files contain-
ing base calls from overlapping reads at each genomic position were
generated with SAMtools v0.1.19 (samtools view –q 10 –bS; samtools
sort; samtools mpileup –BD –f; Li et al. 2009).

For each mutant, two different MPILEUP files were generated: one
was used to call a set of high confidence single-nucleotide poly-
morphisms (SNPs) using VarScan v2.3.6 (Koboldt et al. 2009, 2012;
http://varscan.sourceforge.net), and the other was used to estimate
allele frequencies for a broader set of genomic positions using Popoo-
lation2 v1.201 (Kofler et al. 2011). The first MPILEUP file was
obtained from a BAM file containing sequencing data for the mapping
strain and another BAM file merging reads for the low and high
fluorescence bulks. SNPs were called using VarScan somatic and
somaticFilter commands with the mapping strain considered as “nor-
mal” and the merged F1 segregant bulks as “tumor” (somatic–min-
coverage 5–min-var-frequation 0.01; somaticFilter–min-coverage
5–min-reads2 3–min-strands2 2–min-var-frequation 0.05). Filtering
out sites with strong strand bias was critical to remove false positive
variants. In parallel, the second MPILEUP file was generated from two
separate BAM files containing reads data for the low and high bulks.
Allele frequencies at variable sites were computed using Popoolation2
(mpileup2sync.jar–min-qual 20–threads 2; snp-frequency-diff.pl–min-
count 10–min-coverage 10–max-coverage 500).

Finally, G tests were computed for each variable sites using likeli-
hood.test() function from the R package Deducer (Fellows 2012). A
large fraction of variable sites identified through Popoolation2 were
absent from the set of high confidence SNPs obtained with VarScan
and were removed before plotting P-values of G-tests. Mutant alleles
at these sites were considered as mapping errors as they usually oc-
curred at low frequency, at the end of reads or only in one strand
direction.

Single-site mutagenesis
Targeted mutagenesis was performed using the delitto perfetto ap-
proach (Storici and Resnick 2006) to introduce each candidate muta-
tion into the genetic background of the mutant ancestor (BY4724 with
PTDH3-YFP inserted on chromosome I). The CORE-UK cassette

n Table 1 Fluorescence phenotypes and selection coefficients for
the three mutants analyzed

Mutant
Mean Effect

%a SDb SDc Selection Coefficientd

YPW89 +10.45% +1.38 25.33% 0.127
YPW94 +7.21% +0.95 213.8% 0.130
YPW102 23.25% 20.43 27.49% 0.009
a

Mean expression of mutant relative to wild type expressed as a percentage of
change in fluorescence phenotype relative to wild type.

b
Mean expression of mutant relative to wild type expressed as a number of
wild type standard deviation (SD) from wild type mean.

c
Standard deviation (SD) of expression phenotype of the mutant strain relative
to the reference strain.

d
Selection coefficient was measured using competitive growth of each mutant
against the control population, as described in the Materials and Methods.
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(COunterselectable REporter KlURA3 and kanMX4) was first inserted
at the candidate mutation position in each target gene (SSN2, TUP1,
or ROX1) by homologous recombination. Then, coding sequence har-
boring the candidate mutation was amplified by polymerase chain
reaction from the mutant strain (YPW89, YPW94, or YPW102)
and introduced in place of the CORE-UK cassette. Sanger sequencing
of the target gene confirmed allele replacement.

Expression level of fluorescent reporter for
PTDH3 activity
Expression level of the YFP fluorescent reporter protein was quantified
in the wild-type, EMS-induced mutants, and single-site mutants using
flow cytometry. Eight replicates of each strain and the nonfluorescent
BY4724 were arrayed at random positions in a 96-well format on YPG
agar rectangular plates (OmniTrays). In addition, 20 replicates of the
wild-type fluorescent strain were arrayed at specific positions to
control for plate position effects. After growth on YPG, arrayed strains
were transferred into 0.5 mL of YPD in a 96 deep-well plate using
a V&P Scientific Pin Tool and grown for 20 hr at 30� to saturation.
Cells were maintained in suspension by the addition of a 3-mm glass
bead in each well and constant shaking at 220 rpm. Immediately
before flow cytometry, 20 mL of each culture was diluted into 0.5
mL of SC-Arg in another 96-well plate. Fluorescence was then quan-
tified for an average of 104 events per sample using a HyperCyt Auto-
sampler (IntelliCyt Corp) coupled to a BD Accuri C6 Flow Cytometer
(533/30nm optical filter used for YFP acquisition).

Flow cytometry data were analyzed with custom R scripts. First,
a set of cytometric events considered as single fluorescing cells was
filtered for each sample using Bioconductor flowCore and flowClust
packages. An average of 5 · 103 events per sample were retained after
this step. Next, a fluorescence phenotype was calculated for each single
event corresponding to log(FL1.A)2/log(FSC.A)3, which corrected for
the correlation between fluorescence level and cell size. FL1.A and
FSC.A are the area of the YFP fluorescence signal and forward scatter
signal (proxy for cell size), respectively. The phenotype of a given
sample corresponds to the median phenotype of all filtered events.
Finally, we tested for plate position effects by fitting a linear model to
the fluorescence data obtained from the 20 control samples. We in-
cluded in this model the effects of each plate, row, column and half-
plate (plates were scored one half at a time). A stepwise approach
based on Akaike information criterion for model selection was con-
ducted using the step() function in R and showed that a simple model
including only the half-plate effect explained 74.9% of the fluorescence
variation across the 20 control samples. Therefore, the effect of each
half-plate was extracted from the linear model and subtracted from all
samples occurring on the same half-plate. To calculate mean expres-
sion relative to wild type, the fluorescence phenotype of the reference
strain YPW1 was subtracted from the fluorescence phenotype of each
tested strain and this was divided by the difference in fluorescence
phenotype between YPW1 and the non-fluorescent control BY4724.

Fitness assay
Competition experiments were performed to estimate fitness of the
parental strain YPW1; the EMS mutants YPW89, YPW94, and
YPW102; and the three single-site mutants with mutation in SSN2,
TUP1, and ROX1. Fitness was also measured for five mutants ran-
domly chosen from the 179 trans-regulatory mutants described in
Gruber et al. (2012) to estimate the range of selection coefficients for
this set of mutants (see Figure S2C). In all cases, fitness was measured
relative to a common reference strain expressing GFP (MATa lys2D0

ura3D0 PTDH3-GFP) as follows. Each strain was grown for 24 hr to
saturation in 5 mL of YPD medium, and then cultures were diluted to
6 · 106 cells/mL based on optical density measurement. A total of 500
mL of each YFP yeast culture was mixed thoroughly with 500 mL of
GFP culture and 9 mL of YPD. Next, 500-mL samples of each mix were
randomly arrayed in 8 wells of a first 96 deep-well plate and 10-mL
samples were diluted to 104 cells/mL into the same eight random wells
of a second 96 deep-well plate containing 490 mL of YPD per well. The
first plate was used to estimate the proportion of YFP and GFP cells at
the beginning of the competition assay (T0) using flow cytometry. The
second plate was grown for 24 hr at 30� with constant shaking (220
rpm with glass beads to keep cells in suspension). Then, 20 mL of each
culture was diluted in 500 mL of YPD in a clean 96-well plate, and the
proportion of YFP and GFP cells was estimated at the end of the
competition assay (T1) using flow cytometry. Fluorescence was re-
corded for at least 2 · 104 events per sample using a HyperCyt Auto-
sampler (IntelliCyt Corp) coupled to a BD Accuri C6 Flow Cytometer
(585/40 nm optical filter used for YFP acquisition and 533/30 nm
optical filter used for GFP acquisition). Despite considerable overlap
of the YFP and GFP signal detected through the 533/30 nm filter,
control experiments showed that cells expressing YFP or GFP could
be distinguished using this filter combination. Custom R scripts were
used to filter out spurious events from flow data and to compute the
proportion of YFP and GFP cells for each sample. A selection coeffi-
cient was then calculated for each replicate using the following formula:

s ¼

�
ln
�
YFP1
GFP1

�
2 ln

�
YFP0
GFP0

��

g
;

where YFP0 and GFP0 are the observed number of cells expressing
YFP and GFP at time T0 and YFP1 and GFP1 are analogous numbers
of cells at time T1 for each sample. The experiment was started from
an average density of 104 cells/mL and stopped at 6 · 107 cells/mL,
yielding an approximate number of generations g = 12.55. The se-
lection coefficient obtained by competing mutants expressing YFP
against a GFP reference strain can be explained by the mutant
genetic background or by YFP expression itself. The fitness effect
of the YFP marker was quantified by competing the parental strain
YPW1 to the GFP reference strain. From this, the selection coeffi-
cient associated with the mutant background was calculated as fol-
lows, assuming the effect of EMS-induced mutations and YFP on
fitness were additive:

smut ¼ sþ 1
sYFP1

2 1;

where smut is the selection coefficient for the mutant background,
sYFP is the selection coefficient for the YPW1 reference strain
expressing YFP measured in competition to the GFP strain and s
is the selection coefficient for the mutant strain expressing YFP
measured in competition with the same GFP reference strain.

RESULTS

Optimizing experimental design for mapping mutations
of small effect
To determine how power for detecting different types of mutations
varies with mutational properties and experimental parameters, we
developed a flexible simulation that models mapping via BSA-seq
computationally. This power analysis was parameterized for mapping
mutations affecting fluorescence in S. cerevisiae that can be efficiently

1208 | F. Duveau et al.

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002851
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000680
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006269
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002851
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000680
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006269
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.114.011783/-/DC1/FigureS2.pdf
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000319
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000000747
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003424


scored in large populations of recombinant cells using FACS but can
be adapted to other biological systems with different genome sizes,
mutation effects, or attainable population sizes. Variant discovery and
allele-frequency estimation were modeled assuming whole genome
sequencing of DNA extracted from bulks of recombinants with high-
and low-fluorescence phenotypes. We included two phases of cell
growth during which competition among genotypes can affect allele

frequencies. The first growth phase between meiosis and bulk selec-
tion was required to express the fluorescence phenotype and the
second between bulk selection and DNA extraction to increase the
amount of genomic DNA for sequencing (Figure 1A). Experimentally
controllable parameters included in our simulation were population
size, intensity of phenotypic selection, sequencing depth, and number
of generations between spore isolation and DNA extraction. Innate

Figure 1 Experimentally controllable parameters affect statistical power for detecting a significant difference in the frequency of a causal
mutation between bulks. (A) An overview of the modeled BSA-seq experiment is shown, with the four experimental parameters we allowed to vary
(population size, generations of growth, cutoff for bulk selection, and average coverage of sequencing) indicated. Power is shown for various
population sizes (B2D), generations of growth (E2G), bulk selection cutoffs (H2J), and average sequencing coverages (K2M), for a range of
effects of the causal mutation on mean expression (B, E, H, K), standard deviation of expression (C, F, I, L), and fitness (measured in terms of the
selection coefficient) (D, G, J, M). In all plots, the dashed line indicates 90% power. Gray shaded regions represent 90% confidence intervals of the
mean effect and standard deviation of the fluorescence phenotypes observed in a recent set of trans-regulatory mutants (Gruber et al. 2012, see
Figure S2, A and B). The 90% confidence interval for selection coefficients was inferred from fitness assays performed on 8 mutants (see Materials
and Methods and Figure S2C). In all analyses, only the indicated parameters were allowed to vary; all other experimentally controllable
parameters were fixed at values ultimately used in our mapping experiment (sequencing depth = 100, population size = 107, cutoff percent =
5%, generations = 20), and mutational parameters were fixed at values representative of the mutants used for mapping (mean effect = 5%,
standard deviation = 100%, selection coefficient = 0.03).
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biological properties of a mutation included were the effects on the
mean and standard deviation of the fluorescence phenotype as well as
the effect on fitness, which changes the frequency of the mutation
during growth. We used the range of biological properties observed
for trans-regulatory mutants affecting fluorescence of a reporter gene
isolated in Gruber et al. 2012 (see Figure S2) to identify experimental
parameters that provide a high probability of detecting a causal mu-
tation for a minimal cost.

We found that the size of the population from which the bulks
were selected did not have a large impact on power as long as the
population size was at least an order of magnitude higher than
sequencing depth (Figure 1, B2D). When segregant pools were
smaller than sequencing depth, a high rate of false-positive results
was observed (see Figure S3). For the range of biological parameters
observed among mutants isolated in Gruber et al. (2012) (shaded
areas in Figure 1, B2M), we found that 20 generations or less of
mitotic growth provided sufficient power to detect most causal muta-
tions (Figure 1, E2G). Increasing this number to 50 generations
allowed competition among genotypes to strongly bias allele frequen-
cies, causing a loss of power to detect mutations with selection coef-
ficients greater than 0.05 (Figure 1G). Our analyses also suggested that
selecting cells from the 10% or smaller tails of the fluorescence distri-

bution is sufficient to achieve high detection power under most con-
ditions. Generally, sampling cells from more extreme tails by decreasing
the fluorescence cutoff for selection increased power (Figure 1, H2J);
however, mutations causing very large increase or decrease in the stan-
dard deviation of the fluorescence phenotype were found to require
a particular range of cutoff percentages to maximize power (Figure 1I).

Unlike in our simulations, population size, generations of growth,
and the fluorescence cutoff for bulk selection are inter-dependent in
a real experiment. Starting with a larger population size, for instance,
decreases the number of generations of growth required to obtain
sufficient cells for analysis, which in turn decreases the impact of the
selection coefficient of the mutation on mapping success. However,
increasing the population size requires more time and money spent
phenotyping individuals before bulk selection. Considering the
ease of creating large populations of yeast and the high-throughput
phenotyping possible when using FACS to measure fluorescence,
we decided to fix the population size at 107 cells and the cutoff for
bulk selection at 2% for the rest of this study, resulting in 2 · 105

cells in each bulk. This allowed us to keep the total number of
generations to 20, with 10 generations of growth between spore
isolation and bulk selection, and 10 generations between bulk se-
lection and DNA extraction.

Figure 2 Inherent properties of mutations affect statistical power to detect a difference in the frequency of a causal mutation between bulks.
Power is shown for various mutation effects on mean (B, C), standard deviation (D, F), and relative fitness (G, H). Comparisons of hypothetical wild-
type (red) and mutant (blue) populations with effects of a mutation on mean expression (A), standard deviation of expression (E), and relative
fitness (I) are also shown. In all plots, the dashed line indicates 90% power. Gray shaded regions represent values of the mean effect, standard
deviation, or selection coefficient of causal mutations observed in a recent set of expression mutants (see Figure S2). In all analyses, only the
indicated parameters were allowed to vary; all others were fixed. These fixed values were: mean effect = 5%, standard deviation = 100%, selection
coefficient = 0.03, sequencing depth = 100, population size = 107, cutoff percent = 5%, generations = 20.
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Using these conditions, we investigated the impact of sequencing
depth on mapping power. As expected, increasing the average genome
coverage always improved the power to detect causal variants (Figure
1, K2M), but this requires increased cost. Selecting the ideal sequenc-
ing coverage therefore depends on the properties of the mutation(s)
that the researcher seeks to identify. For mutations similar to those

isolated in Gruber et al. (2012), we deemed 100· genome coverage the
best compromise between power and cost. We note, however, that
mutations with a mean effect of 5% or larger can be reliably detected
with sequencing coverage as low as 25· (Figure 1K) as long as the
mutation does not have a large impact on the phenotypic standard
deviation (Figure 1L) or relative fitness (Figure 1M). Mutations with
mean phenotypic effects smaller than 2% or with selection coefficients
larger than 0.15 would likely require .100· sequencing coverage in
each bulk to be mapped.

With the population size, generations of growth, intensity of
phenotypic selection, and sequencing coverage fixed as described
previously, we used our simulation to further investigate the relation-
ship between power to detect a causative mutation and that mutation’s
effects on mean expression (Figure 2A), standard deviation of expres-
sion (Figure 2E), and relative fitness (Figure 2I). We found that muta-
tions that change the mean phenotype at least 3%, cause a phenotypic
standard deviation ranging from 75 to 150% of the wild type, and have
a selection coefficient less than 0.1 should be detected with a power
greater than 90% with this experimental design (Figure 2). This com-
bination of effects on mean and standard deviation includes .90% of
the 179 trans-acting mutants isolated by Gruber et al. 2012 (see Figure
S2, A and B). It also includes five of the eight mutants for which we
measured relative fitness (see Figure S2C). Fitness measurements for
mutants isolated from a mutagenesis screen are expected to overesti-
mate the fitness effects of a causative mutation, however, because
mutations that do not affect the phenotype of interest can also affect
fitness. Therefore, using the relative fitness of a mutant strain to de-
termine the best experimental design is expected to underestimate the
true power for mapping the causative mutation in that strain. Increas-
ing the mean effect of a mutation always improved detection power
(Figure 2, B, C, D, and G), but a more complex relationship was
observed between the effects of a mutation on the phenotypic stan-
dard deviation and selection coefficient. Specifically, when a mutation
had a large effect on the standard deviation, more deleterious muta-
tions could have greater detection power than less deleterious muta-
tions under some conditions (Figure 2, F and H). This is because these
parameters bias mutation frequency in the two bulks in opposite direc-
tions: increasing the selection coefficient lowers the mutation frequency
in both bulks, while increasing the standard deviation raises it.

Identifying single candidate mutations in
trans-acting mutants
To empirically evaluate the BSA-seq approach using parameters
selected based on the simulations described previously, we attempted
to map mutations responsible for altered fluorescence in three trans-
regulatory mutants carrying a YFP reporter protein under the control
of the S. cerevisiae TDH3 promoter. Assuming that a single causative

Figure 3 Overview of experimental design for mapping small effect
mutations affecting the expression of a fluorescent reporter in EMS-
induced mutants. This approach is based on the isolation of a large
number of random F1 segregant haploid cells, followed by high-
throughput phenotypic selection using FACS, and estimation of allele
frequencies genome-wide using next generation sequencing. Note
the selection of haploid MATa cells using expression of the RFP re-
porter linked to MATa locus that is indicated with a red dot. Quanti-
tative differences in the level of YFP expression are indicated by
differences in the intensity of yellow background.

n Table 2 Average genome coverage and number of mutations
detected from Illumina sequencing of the two segregant bulks
for each of the three mutants

Low Bulk High Bulk No.
Mutant Meana IQR Meana IQR Mutations G:C ➔ A:T

YPW89 134.1 1092160 111.7 1032126 65 91.0%
YPW94 134.0 1072163 75.3 61290 73 84.4%
YPW102 91.9 742109 132.2 1212147 33 84.9%

IQR, interquartile range of genome coverage.
a

Mean coverage obtained after read alignment using genomecov tool from
BEDTools.
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mutation explains the phenotypic effects observed in each mutant
(Table 1), a mapping power .97% is expected for bulks consisting
of 2 · 105 cells sorted from the 2% tails of the fluorescence distribu-
tion, with 20 generations of growth and an average sequencing cov-
erage of at least 75· (see Figure S4).

To efficiently obtain such large and stringently selected bulks of
pure haploid segregants, we followed the protocol shown in Figure 3.
Each haploid mutant strain was mated to a common mapping strain
and sporulation (meiosis) was induced in the resulting diploids. In-
cluding the RME1(ins-308A) allele (Deutschbauer and Davis 2005) in
the mapping strain increased sporulation frequency from 2 to 20%,
making it easier to isolate a large population of F1 haploid segregants.
To prevent mating between MATa and MATa haploids in the pop-
ulation of segregants, we sorted ~3 · 105 cells lacking expression of
a RFP reporter gene that we had inserted at the Mata2 locus in each
MATa parent. More than 99.6% of cells lacking expression of this
FASTER MT marker (Chin et al. 2012) were confirmed to be MATa
haploids. After 10 generations of growth to allow these MATa cells to
robustly express their YFP fluorescence phenotype, high- and low-
fluorescence bulks of ~2 · 105 cells each were isolated via FACS.
Attention was paid during cell sorting to avoid introducing other
phenotypic variation between the two bulks. For instance, no more
than 1% variation in median cell size (FSC) was allowed between
bulks (see Figure S5). After an additional 10 generations of growth,
genomic DNA from the low- and high-fluorescing bulks was se-
quenced to at least 75· coverage (Table 2) using 100-bp paired-end
Illumina sequencing.

Sequencing data were analyzed using a pipeline with two main
parallel steps (Figure 4). First, a set of high confidence variants was
called for each mutant with VarScan (Koboldt et al. 2012, 2009) based
on genome sequencing data from the mapping strain and genomes of
the segregant bulks, with reads from both bulks merged. The number
of mutations identified in each mutant ranged from 33 to 77 (Table 2),
which closely matches the number of mutations (30264) predicted
using Canavanine-resistance mutation rates in Gruber et al. (2012).

Most of these mutations (85–94%) were G:C to A:T transitions, as
expected for EMS-induced mutations (Table 2). Allele frequencies
were then estimated at every variable site for each bulk using Popoo-
lation2 (Kofler et al. 2011). These allele frequencies were strongly
correlated (r = 0.983) with independent estimates determined by
pyrosequencing (see Figure S6 and File S3). The number of reads
containing reference and mutant alleles at high confidence polymor-
phic sites was compared between low and high fluorescence bulks
using a two-sided G-test.

For each mutant, we observed a single, highly significant (P ,
0.001) association with YFP fluorescence level (Figure 5); physically
linked sites also showed significant associations with comparatively
higher P-values (Figure 5). To determine the likelihood that similar
associations would have been detected for other mutants, we exam-
ined the distribution of aligned sequence reads in more detail (see File
S4). We found that ~3% of the genome had little-to-no sequencing
coverage in each mutant (see Figure S9) and that this was due to
difficulty obtaining and/or aligning sequence reads from these regions
rather than stochastic fluctuations in coverage due to sampling (see
Figure S10, A and B). We also found that reducing sequencing depth
would have caused us to miss the significantly associated site in
YPW89—the mutant with the largest effect on mean fluorescence
of the PTDH3-YFP reporter gene—because of its strong deleterious
effect on fitness (see Figure S10, C and D).

The sites with the strongest statistical associations in YPW89
(Figure 5A), YPW94 (Figure 5B), and YPW102 (Figure 5C) were
nonsynonymous substitutions affecting the SSN2, TUP1, and ROX1
genes located on chromosomes IV, III, and XVI, respectively (Table
3). These three mutations are all coding substitutions, which is not
surprising given that open reading frames constitute 73% of S. cer-
evisiae genome (Saccharomyces Genome Database). TUP1(G696D)
and ROX1(R12K) are both missense mutations that change one amino
acid, whereas SSN2(Q971�) introduces an early stop codon truncating
450 amino acids of the protein. All three mutations affect amino
acids that are highly conserved across Saccharomyces species, with
TUP1(G696D) and ROX1(R12K) substitutions predicted to be delete-
rious using SIFT (SIFT score = 0 for both; Kumar et al. 2009). The
fitness estimates of each substitution are similar to the fitness con-
sequences reported for deletion alleles of these genes (W = 0.859,
0.954, and 0.983 for single-site substitutions in SSN2, TUP1, and
ROX1; W = 0.896, 0.921, and 0.971 for deletions of SSN2, TUP1,
and ROX1 [Breslow et al. 2008; Deutschbauer et al. 2005]), suggesting
that the mutations observed severely impair the function of the cor-
responding proteins. Interestingly, TUP1 appears to be a direct regu-
lator of TDH3 expression: TUP1 protein is a general transcriptional
repressor that was shown to directly bind TDH3 promoter in ChIP-
chip experiments (Hanlon et al. 2011). ROX1 is a repressor of hypoxic
genes that might indirectly affect TDH3 expression through the reg-
ulation of Pdr1 transcription factor (Harbison et al. 2004; Larochelle
et al. 2006). The Tup1-Ssn6 complex is also a well-established regu-
lator of ROX1 expression (Mennella et al. 2003), suggesting that Tup1
acts at multiple levels of the regulatory network controlling TDH3
expression. Finally, SSN2 encodes a facultative subunit of the RNA
polymerase II holoenzyme (Song et al. 1996), which could potentially
act on several components of the TDH3 regulatory network.

Validating bulk segregant mapping results
In parallel to the method described previously, we used a more
traditional mapping approach involving tetrad dissection (Birkeland
et al. 2010) to analyze the YPW89, YPW94, and YPW102 mutants.

Figure 4 Analysis of Illumina sequencing data. A set of high
confidence variants was called using the somatic command in VarScan
(dark gray), with reads from the mapping strain treated as “normal”
data and reads from merged bulks treated as “tumor” data. Allele
frequencies were then estimated for these sites in the low fluorescence
and high fluorescence bulks with Popoolation2 (light gray). Differences
between these two bulks were assessed using G-tests.
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Each mutant was crossed to a common mapping strain (see File S1);
the resulting diploids were sporulated, and a dozen tetrads were dis-
sected. For each tetrad, the fluorescence phenotype of each spore was
determined by measuring mean fluorescence of their haploid mitotic
progeny using flow cytometry, and the two colonies most likely to
carry the causative mutation were identified manually (see Figure S7).
Segregant progeny deemed to show the mutant phenotype were
pooled together, genomic DNA from this pool was extracted and
subjected to Illumina sequencing, and allele frequencies were esti-
mated for each variable site. G-tests were used to compare the ob-

served mutation frequency at variable sites to a null model with
a frequency of 0.5.

For YPW89, YPW94, and YPW102, the best candidate mutations
identified with the BSA-seq approach were also highly significant with
the tetrad dissection method (see Figure S8). Compared with the mass
sporulation and BSA, however, tetrad dissection was tedious and less
amenable to the analysis of a large number of mutants. The tetrad
approach was also very sensitive to errors in phenotype assignment,
which can be caused by environmental variation or stochastic noise.
Indeed, several mutants failed to yield a significant candidate site
when using this approach (data not shown). For such mutants, some
tetrads showed a clear 2:2 segregation of the fluorescence phenotype
(see Figure S7A), whereas others were harder to characterize (see
Figure S7B). This might be explained by the fact that each of the four
sister spores was grown in a separate vial prior to phenotyping with
the tetrad dissection approach, but all spores were grown together
in the same vial for BSA-seq, minimizing the influence of micro-
environmental factors.

We also tested directly whether the variants identified by BSA-seq
in YPW89, YPW94, and YPW102 were responsible for their mutant
phenotypes by using site-directed mutagenesis to introduce each
candidate mutation individually into the genetic background carrying
the PTDH3-YFP transgene that was originally used for the EMS muta-
genesis screen. In all three cases, the single site mutation completely
recapitulated the fluorescence phenotype of the EMS-mutant from
which it was identified (Figure 6). This result, combined with the
absence of any other significant mutation unlinked to these causative
sites (Figure 5), shows that each original mutant carried exactly one
causative mutation and that this mutation could be unambiguously
identified using BSA-seq despite its small phenotypic effect.

DISCUSSION
Using both simulated and empirical data, we describe the impact of
innate properties of genetic variants and controllable experimental
factors on the success of mapping single nucleotide variants using
a BSA with high-throughput sequencing after a mutagenesis screen.
We show how mapping success is affected by a mutation’s effect on
the mean phenotype as well as its effects on phenotypic variance and
fitness. By using simulations to determine optimal experimental con-
ditions and new genetic tools to efficiently isolate large pools of in-
formative segregants, we demonstrated the efficiency of the approach
by identifying mutations in SSN2, TUP1, and ROX1 with small effects
on the expression of the PTDH3-YFP reporter gene in S. cerevisiae. In
the sections to follow, we discuss (1) how the effects of a mutation on
fitness affect mapping using BSA-seq; (2) how our findings can be
applied to mapping other traits in other organisms; and (3) how our
conclusions and methods can be used to study QTL underlying nat-
ural variation.

Impact of fitness on mapping success
Previous statistical models of BSA-seq focused on the effect of
segregating sites on the mean phenotype (Magwene et al. 2011;
Edwards and Gifford 2012), but their effects on the standard deviation
and relative fitness can also impact mapping success when using
pooled segregant approaches in S. cerevisiae (Wilkening et al. 2013).
Fitness effects could be an especially important source of discovery
bias in BSA-seq data given the high proportion of random mutations
showing detrimental effects on growth (Eyre-Walker and Keightley
2007; Wloch et al. 2001). We examined this issue computationally and
found that starting with a large population of spores and selecting
large pools of segregants (2 · 105) was essential for achieving high

Figure 5 BSA-seq clearly identified a single causative site in three
trans-regulatory mutants affecting fluorescence of a reporter gene.
Significance of the difference in allele frequency between low fluores-
cence and high fluorescence bulks is shown as the negative of loga-
rithm of P-value from G-test for mutants YPW89 (A), YPW94 (B), and
YPW102 (C). Each bar shows significance for an individual EMS-
induced mutation with its genomic position represented on x-axis.
Roman numerals indicate each of the 16 S. cerevisiae chromosomes.
Insets in (A) and (B) are magnifications of chromosomes harboring
causative sites and show linked mutations with significant effects. Hor-
izontal dotted lines represent a significance threshold of a = 0.001.
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mapping power when a mutation affected both the phenotype of in-
terest and relative fitness. For example, our model predicted that
selection of only 103 segregants would be sufficient to map a mutation
with a 3% effect on the mean and no effect on fitness, yet reducing the
size of the segregant bulk in this study from 2 · 105 to 103 would have
caused the SSN2(Q971�) mutation with a.10% effect on the mean to
remain undetected because of its deleterious fitness effects. Because
deleterious alleles tend to be purged from both bulks during growth,
the power to detect a significant difference in allele frequencies be-
tween the two bulks is decreased. One solution to reduce the impact of
fitness on mapping success would be to decrease the generations of
growth after meiosis, but this is not always possible. For example, in
our case, growth was needed for the cells to express the fluorescence
phenotype as well as to increase the amount of genomic DNA avail-
able for sequencing. This latter growth phase could be shortened by
using a protocol for preparing DNA libraries that requires less geno-
mic DNA, but this usually increases noise and cost.

In the absence of fitness effects and competitive growth, alternative
alleles for a site not affecting the trait of interest should be found in
50% of segregants in each bulk. Comparing the allele frequency in
a single segregant bulk after phenotypic selection to a null frequency
of 0.5 to detect causative mutations should be avoided, however,
because any effects of a genetic variant on fitness can cause allele
frequencies to deviate from this null model, increasing false positives.
Rather, allele frequencies should be compared between bulks from the
extremities of the phenotypic distribution. If only one tail of the
distribution is amenable to phenotypic selection, for instance when
selecting for drug resistance, cells that have not been subjected to
phenotypic sorting but have otherwise undergone the same experi-
mental steps as the segregant bulks should be used to define the null
model (Ehrenreich et al. 2010; Parts et al. 2011).

Applications for other traits and organisms
BSA is a powerful approach to mapping for species and traits in which
large numbers of recombinant offspring can be analyzed and
individuals with extreme phenotypes can be efficiently isolated.
Selected bulks can now be genotyped en masse by high-throughput
sequencing whenever a reference genome is available or can be
obtained. When these conditions are met, BSA-seq can quickly iden-
tify mutations causing a mutant phenotype, even when the phenotypic
effect of a mutation is very small. Our data show that the experimental
design needed to most reliably and cost-effectively identify such muta-
tions is different in each case. We encourage researchers to use the
simulations and statistical models described in this study to identify
experimental parameters that will maximize their own mapping suc-
cess by tuning the parameters in the model to their specific system.
These parameters include not only a mutation’s effect on the mean

phenotype and fitness, but also its effect on the standard deviation of
the phenotype. For example, we found that when the mutant pheno-
type has a standard deviation much larger or much smaller than the
wild-type phenotype, mapping power decreases quickly with a wide
range of BSA-seq experimental designs. Under these conditions, se-
quencing individuals from the two symmetric tails of the phenotypic
distribution is not recommended and an alternative approach should
be considered, such as selection of asymmetric bulks. Analysis of
larger bulks should also help increase power in these cases.

When extrapolating our findings to mapping other species and
traits, it is important to consider that we modeled a BSA-seq experiment
in yeast including population growth between meiosis and pheno-
typing as well as between phenotyping and DNA sequencing. This
competitive growth is not necessary when using BSA-seq in
multicellular organisms such as fruit flies or nematodes. Therefore,
mapping power should be much less affected by mutations that
impact reproductive fitness, allowing smaller population sizes to be
used. Still, the minimum effect size that can be mapped in these
types of organisms will usually be larger than the minimum effect
size that can be mapped in yeast, both because of the increased
genome size and because of the smaller attainable bulk size. For
example, if a single causative mutation is segregating in an F2 pop-
ulation, our model predicts that the power of BSA-seq to detect
a mutation changing the phenotype by 5% relative to wild type is
greater than 0.9 for a total population size of 104, a 5% cutoff for
phenotypic selection, and an average sequencing coverage of 25·.
Although this is not a simple task, these parameter values can be
achieved in Drosophila melanogaster and Caenorhabditis elegans,
respectively, using tools such as fly cages to raise large populations of
flies or worm sorters to automate phenotypic scoring and selection.

Mapping phenotypic variation in natural populations
BSA-seq has been shown to be a powerful approach for mapping
small effect QTL underlying natural variation in S. cerevisiae (Albert
et al. 2014). Compared with the mutants characterized in our study,
strains used for QTL mapping typically have more segregating sites
and more causative loci. The large number of sites segregating in these
strains leads to many linked polymorphisms, which reduces mapping
resolution, but can improve the power to detect small effect QTL
(Magwene et al. 2011; Edwards and Gifford 2012). However, the
presence of multiple QTL acting in the same direction can decrease
the power to detect a polymorphism of small effect compared with the
case in which it segregates alone (Yang et al. 2013). Our work suggests
that the effects of QTL on phenotypic noise and/or fitness should also
be considered in future statistical models of QTL mapping via BSA-
seq to avoid discovery biases.

n Table 3 Properties of the three causative sites identified by BSA-seq and confirmed by single site mutagenesis

Mutant
Mutation Position Mutation Type Phenotypic Effect Sequencing Depthd Mutation Frequency

Chr. Position Gene DNA Protein Meana Std Devb Sel Coefc Low Bulk High Bulk Low Bulk High Bulk

YPW89 IV 1347028 SSN2 C/T Q971Stop +10.16% 26.66% 0.140 121 83 0 0.22
YPW94 III 260366 TUP1 G/A G696D +6.93% 214.39% 0.045 152 73 0 0.55
YPW102 XVI 679727 ROX1 G/A R12K 24.05% 28.89% 0.015 102 77 0.96 0.30

BSA-seq, bulk segregant analysis coupled with high-throughput sequencing; Chr., chromosome.
a

Mean expression of single site mutant relative to wild type expressed as a percentage of change in fluorescence phenotype relative to wild type.
b

Standard deviation of expression phenotype of the single site mutant strain relative to the reference strain.
c

Selection coefficient was measured by using competitive growth of each single site mutant against the control population, as described in the Materials and
Methods.

d
Number of sequencing reads overlapping the variable site in each bulk.
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The three genetic tools we used to increase the sensitivity of BSA-
seq for finding novel mutations can also be used to study natural
variation in yeast. Specifically, the dominant RME1(ins-308A) allele
that we inserted into our mapping strain to increase meiosis rate
(Deutschbauer and Davis 2005) can also be incorporated into other
strains, allowing for the efficient recovery of large numbers of segre-
gants. This is important because many strains of S. cerevisiae, includ-
ing the commonly used S288c lab strain and its derivatives as well as
some wild isolates, have low sporulation rates that limit the efficiency
of BSA-seq (Gerke et al. 2009). The FASTER MT cassette (Chin et al.
2012) can also be inserted into other genotypes to allow for robust and
efficient recovery of MATa spores, preventing mating among F1 seg-
regants. Compared with the Yeast Magic Marker (Tong et al. 2001; Pan
et al. 2004) used for a similar purpose in previous BSA studies (Albert
et al. 2014; Wilkening et al. 2013; Ehrenreich et al. 2010), FASTER MT
requires less genetic manipulation of the mapping strain(s), reduces
biases caused by diploids in the sorted haploid cultures (Gerstein and
Otto 2011; Wilkening et al. 2013), and limits the impact of competitive
growth on mapping power by allowing MATa cells to be sorted im-
mediately after spore isolation. Finally, if the phenotype of interest can
be coupled to a fluorescent reporter gene, FACS can be used for high-
throughput phenotyping and selection. Other easy-to-score phenotypes
should also be well suited for genetic mapping using BSA-seq.

In conclusion, this study provides a methodological framework for
efficiently mapping genetic variants with small effects, illustrates the
importance of considering the fitness effects of causative variants
when using BSA-seq in microorganisms such as yeast, and describes
the use of experimental tools that can reduce the bias against detection

of variants with small effects by allowing very large populations of
phenotypically divergent individuals to be collected and analyzed.
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