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Hearing conspecific vocal signals alters
peripheral auditory sensitivity
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We investigated whether hearing advertisement calls over several nights, as

happens in natural frog choruses, modified the responses of the peripheral

auditory system in the green treefrog, Hyla cinerea. Using auditory evoked

potentials (AEP), we found that exposure to 10 nights of a simulated male

chorus lowered auditory thresholds in males and females, while exposure to

random tones had no effect in males, but did result in lower thresholds in

females. The threshold change was larger at the lower frequencies stimulating

the amphibian papilla than at higher frequencies stimulating the basilar papilla.

Suprathreshold responses to tonal stimuli were assessed for two peaks in

the AEP recordings. For the peak P1 (assessed for 0.8–1.25 kHz), peak ampli-

tude increased following chorus exposure. For peak P2 (assessed for

2–4 kHz), peak amplitude decreased at frequencies between 2.5 and 4.0 kHz,

but remained unaltered at 2.0 kHz. Our results show for the first time, to our

knowledge, that hearing dynamic social stimuli, like frog choruses, can alter

the responses of the auditory periphery in a way that could enhance the

detection of and response to conspecific acoustic communication signals.
1. Introduction
Acoustic communication is an integral part of social behaviour in a wide variety

of vertebrates [1]. Individuals are often exposed to a complex, variable mixture of

conspecific calls over a long period of time during a breeding season, especially

when males congregate in leks or other types of communal display, breeding

or nesting assemblies [2]. Anuran amphibians (frogs and toads) are prime

examples of this. Many anuran species form a breeding chorus during their repro-

ductive season in which many males produce their advertisement calls nightly

[3]. Such calls attract females to the chorus and serve as mate choice criteria

while also regulating spacing and protecting call sites from other males [3–5].

Much of the research on the sensory effects of hearing repeated acoustic

communication signals has focused on habituation to a regularly repeated or

otherwise familiar and predictable signal [6–8]. The neural, perceptual and

behavioural diminution of responses in such circumstances has important conse-

quences for natural animal behaviour, from reducing costly behaviours, such as

predator avoidance, to non-threatening stimuli [9,10], to maintaining established

territorial boundaries with familiar neighbours without overt aggression [6,11].

The effects of participating in a social group and hearing a dynamic, unpredict-

able assembly of varying acoustic signals are less well understood. However,

there is evidence that regular experience with acoustic social signals can enhance,

rather than diminish, responses to new acoustic signals at midbrain or telen-

cephalic levels of the central auditory system. Exposure to a particular song

type for one week enhanced telencephalic responses to novel exemplars of that

type in European starlings (Sturnus vulgaris) [12,13]. Similarly, we recently

found that green treefrogs (Hyla cinerea) that heard a simulated chorus nightly

for 10 days had significantly increased immediate early gene responses to novel

conspecific advertisement calls in the auditory midbrain [14].

Although often considered a relatively stable component of the auditory

system, there is evidence that the peripheral auditory (ear and auditory nerve)

responses can change in threshold or other neural response measures across

reproductive state or following experimental manipulation of hormonal levels
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Figure 1. Examples of stimuli used for the nightly sound exposure during a 10 day period. (a) The waveforms of the stimuli and (b) the spectrograms of the stimuli.
The tones had the same repetition rate, duration and amplitude envelope as the frog chorus.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20150749

2

[15–17]. In the current study, we ask whether social experience

in the form of exposure to conspecific vocal signals over several

days could modify the auditory periphery’s response to novel

calls or other acoustic stimuli. We examined this by measuring

auditory evoked potentials (AEPs) in the green treefrog

(H. cinerea), a species with a well-described auditory system

[18–21]. The H. cinerea advertisement call is a short, pulsatile,

broad band signal with spectral peaks around 900 and

3000 Hz [22–25]. As in other amphibians, treefrogs have two

main auditory organs in the inner ear, the amphibian papilla

(AP) and basilar papilla (BP). They are considered matched

filters which are tuned to the low- and high-frequency peaks

in the advertisement calls, respectively, and their response

and filtering properties are important in guiding male and

female behavioural responses to the advertisement call.

Green treefrogs have a prolonged summer breeding season

[3,26,27]. Males form choruses in which they produce adver-

tisement calls for many hours each night during the summer

breeding season. An individual in or near a breeding chorus

may therefore be exposed to many consecutive nights of acous-

tic social stimulation in a complex acoustic environment where

the number and identity of calling males varies, and individ-

uals produce calls that differ spectrally and temporally, vary

in number and repetition rate, and change in their degree of

overlap with other calling males. We previously found that

hearing conspecific calls for 10 consecutive nights resulted in

enhanced immediately early gene expression to novel calls

in the auditory midbrain [14]. Our results here show that

social stimulation is sufficient to alter the electrophysiological

response properties of the peripheral auditory system in a

way that could enhance reproduction through increased

detection of and response to conspecific advertisement calls.

Although previous work in other vertebrates shows that

peripheral auditory system responses can vary seasonally

[15,16], our results show for the first time to our knowledge,

that social experience can also have this effect.
2. Material and methods
(a) Housing
The animals used in this experiment were acquired through a

commercial vendor (Charles D. Sullivan Co. Inc.). We tested a
total of 23 (seven males; 16 females) green treefrogs in late May

through to July, 2014. Prior to our experiments animals were

housed in single-sex 10 gallon aquariums, with four individuals

per aquarium. During the experiment, animals were housed

singly in custom-built acoustically isolated chambers equipped

with a speaker. Both the aquarium and the experimental chambers

contained a water dish, rock and artificial vegetation. Animals

were fed gut-loaded crickets twice weekly and maintained on a

14 L : 10 D light cycle.

(b) General experimental procedure
We used a repeated measures design to assess the effects of social

stimulus exposure on the frequency sensitivity of the green treefrog

auditory periphery. On day 1, we used AEPs to determine the base-

line frequency sensitivity of the auditory periphery. Animals were

then transferred to an acoustic chamber, where they remained in

silence for the remainder of day 1. On day 2, we began 10 consecu-

tive nights of social stimulus or control exposure, in which the

animals were exposed to 6 h of either green treefrog chorus record-

ings (four males, seven females) or random tone recordings (three

males, nine females) presented during the dark-phase of the light

cycle, as would occur in a natural chorus. The loudest portion of

the recording was set to 80 dB in each chamber using a Larson

Davis LxT sound level meter (C weighting, slow integration). The

recordings we used were 30 min in duration, and variable in the

number of animals vocalizing at a single time and included natural

breakpoints that would be found in a natural chorus. The random

tones were matched in duration, timing and overall amplitude

envelope (figure 1). Additionally, the tones had a frequency distri-

bution that was within the hearing range of the frogs and had an

overall power spectrum that was very similar to that of the

chorus stimulus. On day 12, the animals remained in the chambers

but we discontinued the playbacks to minimize habituation effects.

On day 13, we repeated our AEP measurements on the animals.

(c) Auditory evoked potential experiments
All experiments were conducted in an IAC audiology booth

using a Tucker Davis Technologies System 3 (Tucker Davis

Technologies, Alachua, FL, USA). Stimuli were generated in

SigGenRZ and consisted of 5 ms tone bursts that ranged in fre-

quency from 0.4 to 5 kHz in third octave steps and ranged in

intensity from 25 to 90 dB in 5 dB steps. AEPs were recorded

from frogs that had been immobilized with an average (+s.d.)

of 6.4+ 1.3 mg g21 tubocurarine hydrochloride pentahydrate

(Sigma Aldrich). Responses were conducted from the subject to
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the System 3 with needle electrodes that were placed at apex of

the subject’s head and in either auditory meatus directly below

the tympanum. Additional experimental detail can be found

in the electronic supplementary material.

AEPs were analysed offline in PRAAT v. 5.3.55 [28]. First, we

determined the auditory thresholds using the visual detection

method. In this method, a trained observer determines the

lowest stimulus intensity at which a response can be observed at

a given frequency, using the gross morphology of the AEP wave-

form. The threshold is then estimated as lying halfway between

this stimulus intensity and the next lowest intensity (in our case,

2.5 dB below the stimulus intensity of the last detectable response).

This method consistently produces evoked potential thresholds

that provide the greatest agreement with thresholds estimated

with single unit or behavioural estimates [17,21,29].

We also measured the amplitude of the AEP. Specifically, we

measured the auditory brainstem response, a type of AEP which

is generated by the auditory periphery, occurs in response to the

onset of sound and is seen within 10 ms of the arrival of the stimu-

lus at the ear. The green treefrog response consists of two peaks, P1

and P2 [21]. We found that P1 was only consistently measurable

from frequencies of 0.8 to 1.6 kHz (figure 2). At low frequencies

(0.4–0.63 kHz) and higher frequencies (2–5 kHz), we could

reliably identify P2 but could not reliably identify P1 (figure 2).

It has recently been suggested that these differences in the appear-

ance of the evoked potential may be related to the three

populations of afferent fibres [21,29]. Two populations of fibres,

one at low and one at middle frequencies originate from the
amphibian papilla, while a third population tuned to higher

frequencies originates from the basilar papilla [18,19,21]. There-

fore, we chose to analyse amplitude for P1 when the stimulus

frequency was between 0.8 and 1.25 kHz, which are also the

lower frequencies found in green treefrog calls [22–24]. For fre-

quencies between 2 and 4 kHz, a range which includes the

higher frequencies found in green treefrog calls, we choose to

analyse P2. To determine amplitude, we measured the voltage

difference between the positive peak and the subsequent negative

peak of either P1 or P2.

(d) Statistical analyses
We analysed our data with repeated measures mixed models in

SAS v. 9.3, with the identity of each frog as the subject. We had

three models, one for the dependent variable auditory thresholds

and one model each for the amplitude of P1 and P2. Indepen-

dent variables in the auditory threshold model included the

within-subject factors of frequency and time (before and after

exposure), the between subject factor stimulus type (chorus or

tones) and their interactions. Independent variables in the AEP

amplitude models included the within-subject independent vari-

ables frequency, intensity and time (before or after exposure),

and the between subject factor stimulus type (chorus or tones)

and their interactions. We removed non-significant higher

order interactions from the model according to p-value and the

resulting Akaike information criteria value for the new model.

We also included sex as a between subject factor in each
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model, to account for any variation that might be due to the sex

of our subjects.

We modelled covariance with an autoregressive structure

(AR(1)) and used the Kenward–Rogers algorithm to calculate

degrees of freedom. Significant main effects and interaction

terms were explored post-hoc with tests of simple effects or

pairwise comparisons. Statistics were Bonferoni corrected for

multiple comparisons as appropriate. AEP amplitude data were

log transformed to achieve normality and homogeneity of var-

iance. We therefore report back-transformed marginal means

(+s.e.) throughout.
3. Results
(a) Auditory thresholds
We found significant main effects of frequency (F11,323¼ 99.3,

p , 0.001) and time (before versus after: F1,216 ¼ 10.4, p ¼
0.0015), but not sex (F1,132 ¼ 0.1, p ¼ 0.75) or stimulus (chorus

versus tones: F1,131 ¼ 0.09, p ¼ 0.76) on auditory thresholds.

As predicted, we found that auditory thresholds were signifi-

cantly influenced by the stimulus � time interaction (figure 3;

F1,215 ¼ 4.8, p ¼ 0.03). We also found a significant effect of the

stimulus � sex (F1,132 ¼ 4.9, p ¼ 0.03), time � sex (F1,214 ¼ 6.2,

p ¼ 0.01) and frequency� time (figure 3; F11,356¼ 2.6, p ¼
0.003) interaction on auditory thresholds. Finally, we found a

significant effect of the three-way interaction stimulus �
time� sex (F1,209 ¼ 4.1, p ¼ 0.045) on auditory thresholds.

When the sexes were combined we found that individuals

in the chorus group (figure 3; t212 ¼ 4.4, p , 0.0001), but

not the tone group (t217 ¼ 0.52, p ¼ 0.91) had a significant

decrease in their auditory thresholds. The average thresholds

of the chorus group and tones group did not differ prior to

exposure (t326 ¼ 1.02, p ¼ 0.74). The three-way interaction

stimulus � time � sex was driven by differences between

male and female animals in their response to chorus and

tone exposure. Female thresholds decreased in both the

chorus (F1,209 ¼ 15.8, p , 0.0001), and the tone playbacks

conditions (F1,213 ¼ 19.3, p , 0.0001), while male thresholds
were reduced in response to chorus exposure (F1,211 ¼ 6.2,

p ¼ 0.014), but not tone exposure (F1,216 ¼ 1.5, p ¼ 0.23).

(b) P1 amplitude (0.8 – 1.25 kHz)
We found significant main effects of frequency (F2,252 ¼ 52.8,

p , 0.001), intensity (F5,923 ¼ 95.6, p , 0.001), stimulus

(F1,204 ¼ 12.14, p , 0.001) and time (F1,1394 ¼ 49.5, p , 0.001),

but not sex (F1,255 ¼ 0.73, p ¼ 0.39) on the amplitude of P1.

As predicted there was a significant stimulus � time inter-

action (figure 4a; F1,1375 ¼ 66.5, p , 0.001); however, there

were no other significant interactions (F , 1.24, p . 0.3).

Prior to 10 days of nightly sound exposure, there was no

difference between the chorus and tones group (t264 ¼ 0.47,

p ¼ 0.6377); but a significant difference emerged after 10 days

of nightly sound exposure (t260 ¼ 6.07, p , 0.001). This appears

to be due to plasticity in the chorus group, as their AEP

amplitude increased significantly after 10 days (t1399 ¼ 10.6,

p , 0.001), while there was no change in the group exposed

to tones (t1369 ¼ 0.78, p ¼ 0.87).

(c) P2 amplitude (2 – 4 kHz)
We found significant main effects of sex (F1,300 ¼ 80.7, p ,

0.001), frequency (F3,364 ¼ 28.1, p , 0.001), intensity (F5,1151 ¼

41.4, p , 0.001), stimulus (F1,300 ¼ 33.1, p , 0.001) and time

(F1,1842 ¼ 16.4, p , 0.001) on the P2 amplitude. We also found

significant effects of the interaction terms stimulus � time

(F1,1818 ¼ 24.9, p , 0.001) and frequency � stimulus � time

(figure 4; F3,1837 ¼ 3.1, p ¼ 0.026) on the P2 amplitude.

Prior to exposure the two groups differed in average P2

amplitude, with the chorus exposure group having a higher

overall amplitude than the tones group (t418 ¼ 7.24, p ,

0.001). The groups remained different after 10 days of

exposure (t417 ¼ 3.35, p ¼ 0.005). There was plasticity in the

chorus group (t1803 ¼ 6.52, p , 0.001), but not in the tones

group (t1803 ¼ 0.6, p ¼ 0.82). Counter to our expectations,

this plasticity in the chorus group led to decreases in the P2

amplitude after 10 days of nightly sound exposure. The
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plasticity in the chorus group was frequency-specific. We

found plasticity in the chorus group at 2.5 (F1,1865 ¼ 7.36,

p ¼ 0.006), 3.15 (F1,1867 ¼ 21.12, p , 0.001) and 4 kHz

(F1,1909 ¼ 17.34, p , 0.001), but not at 2 kHz (F1,1893 ¼ 1.74,

p ¼ 0.18), while the tones group did not differ at any

frequency (F , 2.55, p . 0.11).

Females had significantly greater P2 amplitudes than

males (mean+ s.e. males ¼ 0.65+ 0.012 mV; females ¼

0.80+ 0.01 mV). This is likely the reasons that the two

groups differed in AEP amplitude prior to sound exposure,

as females were represented in the chorus group to a greater

extent than they were in the tones group.
4. Discussion
We found that nightly exposure to a dynamic conspecific

stimulus resulted in sensitization of the auditory peri-

phery in the green treefrog. Hearing a chorus playback for

10 nights led to lower peripheral auditory thresholds and

enhanced P1 suprathreshold responses (measured in

response to low frequencies), while exposure to 10 nights of

random tones did not affect these responses. Surprisingly,

we found that exposure to the chorus led to decreased P2

suprathrehold responses (measured in response to higher fre-

quencies); while again, exposures to tones did not induce

plasticity in the P2 response. The magnitude of change in

P1 amplitude was much greater than the magnitude of the

change in P2 amplitude, suggesting greater plasticity in P1.

Additionally, in males, auditory thresholds were lower after

exposure to the chorus exposure, but not the tones exposure.

However, in females, auditory thresholds were lower after

exposure to both the tones and the chorus exposure.

Although socially induced plasticity has been shown in

other areas of the auditory system, we believe this to be

the first report of a social stimulus inducing plasticity in

peripheral auditory responses.
(a) Implications for acoustic communication
Changes in peripheral auditory properties are especially

important in shaping an individual’s response to social signals.

Peripheral sense organs are gatekeepers, determining to a

large extent what information is passed on to the central

nervous system, and at what level relative to other stimuli,

and thus greatly impact the responses of neurons throughout

the central auditory system and beyond. A change in threshold

can potentially increase the salience of a perceived signal or the

distance over which it can be detected. Detection should be pri-

marily a function of the threshold level of the auditory system,

with detection ability increasing as threshold is lowered.

However, the salience of a stimulus may be more influen-

ced by the perceived amplitude of the component parts of

the stimulus. For example, Gerhardt [23,24] found that

the relative amplitude of high- and low-frequency peaks

in the male advertisement call affected female treefrog

responses to the call. Thus, differentially up- and downregulat-

ing the suprathreshold response of the ear to different parts of

the advertisement calls could result in different populations of

neurons downstream of the periphery being activated in

response to call reception, thereby modulating the salience of

a conspecific stimulus by changing the gating of these signals

to downstream processing areas. Depending on the exact con-

tour of the resultant frequency-dependent response, it could

also change the signal-to-noise ratio of the stimuli of interest.

Our results show that both phenomena occur when treefrogs

listen to an assembly of species typical advertisement calls

over several nights, similar to their experience in a natural

mating chorus. They become more sensitive to advertisement

calls, and their suprathreshold responses are changed to

accentuate the lower frequencies of the call.
(b) The anuran auditory periphery
Our results show that response changes following exposure

to conspecific vocal signals occur in both of the two primary
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inner ear auditory end organs found in amphibians, the

AP and BP [30–33]. The sensitivity range of the larger

AP is relatively conserved across species. Its hair cells are

tuned collectively to a range of low- and mid-frequencies

with individual AP eighth nerve fibres showing characteristic

frequencies ranging from about 100 to 1200 Hz. The P1 peak

in our recordings most probably reflects AP responses [21].

Tuning of the smaller BP varies greatly across anuran species

ranging from a best frequency of 1500 Hz in large frogs

to a best frequency of over 6000 Hz in small frogs. The

H. cinerea BP is centred on average around 3000 Hz [18,25].

The P2 peak in our recordings probably arose from BP

responses [21]. When sex differences have been found in

anuran auditory tunings, they have been found in the BP

rather than the AP [34–37]. We found one here as well in

that the P2 peak amplitude was significantly greater in

females than in males.

The AP and BP are thought to differ in the mechanism of

hair cell tuning. AP tuning is based on a travelling wave in

the tectorial membrane sharpened through electrical tuning

in the hair cells [31,33,38,39]. AP tuning may be more malle-

able, in general, owing to the physiological component of its

tuning. For example, AP thresholds, but not BP thresholds,

are susceptible to degradation by anoxia and antibiotics,

and manifest tuning shifts with temperature changes [31,40].

Our results in fact indicate greater plasticity at frequencies

associated with the AP (P1 response) than at frequencies associ-

ated with the BP (P2 response). Lower thresholds were more

prominent in the AP frequency range as indicated by a

frequency � time interaction based on a greater difference

(lower after chorus exposure) in threshold values below

2 kHz, and a concomitant increase in P1 amplitude to supra-

threshold stimuli between 0.8 and 1.25 kHz. It is important to

note, however, that changes also occurred at BP frequencies,

as shown by the chorus-induced changes in P2 amplitude at

higher frequencies.
(c) Mechanisms of auditory plasticity
Modulation of the electrical tuning properties of the hair cells

is an attractive mechanism for the changes we observed,

particularly for changes in P1 amplitude and low-frequency

thresholds which are generated by the amphibian papilla. Elec-

trical tuning of hair cells contributes (in varying degrees) to

the spectral sensitivity of hair cells across most vertebrate

taxa [41–44] including anurans [31,33,38]. These electrical

tuning properties are derived, in part, from the differential

expression of ion channel splice variants, particularly vol-

tage-gated calcium and calcium-sensitive big potassium (BK)

ion channels in the hair cells. The kinetic properties of different

splice variants produce frequency-specific resonances in differ-

ent hair cells [45,46]. Recent work in fishes suggests that

seasonal changes in auditory sensitivity may be due in part

to changes in BK channel expression [47,48]. In midshipman

fish, these seasonal changes correlate with seasonal changes

in sensitivity to frequencies found in mating vocalizations

[48]. In mammals, oestrogen responsive elements are involved

in the regulation of Slo transcription suggesting that differences

in circulating hormone levels may lead to differential

expression of BK channels [49,50]. This suggests that seasonally

or socially induced changes in auditory sensitivity could be

mediated by hormonally regulated expression of BK channels.

It is less clear what mechanisms could be responsible for
changes in P2 amplitude, as the basilar papilla is thought to

have tuning that is primarily mechanically derived.

(d) Hormones and auditory plasticity
Changes in auditory thresholds, response strengths or other

aspects of signal processing have been documented in many

species as a function of reproductive state, season or experimen-

tally manipulated steroid levels [16,51–62]. These have most

often been assessed by measuring activity in the central nervous

system. Studies in several species show, however, that gonadal

steroids (or reproductive state) can also change peripheral

responses to conspecific vocal signals [15,16,63–65]. Call stimu-

lation has a significant effect on the level of circulating gonadal

steroids of both male and female frogs, while stimulation by a

non-salient tone stimulus has no effect [66–70]. Therefore,

one model for the effects we observed is that hearing conspecific

calls elevates circulating gonadal steroid levels, which then

feedback on to both the central and peripheral auditory systems

to lower thresholds and increase response amplitude to that

same class of stimuli.

Although this is a simple and attractive hypothesis con-

sistent with previous findings, it is important to note that a

combination of events occurs during chronic stimulation by

conspecific calls. While gonadal steroids are elevated so may

be other hormones and brain neuromodulators sensitive to

salient signals [71,72]. Moreover, both peripheral and central

auditory neurons are repeatedly depolarized during the call

stimulation; that in itself may induce neural plasticity leading

to changes in excitation by call stimuli (for example of experi-

ence dependent changes in brainstem auditory processing,

see [73–75]).

An optimal stimulus (i.e. one with a frequency profile that

most closely matches the best frequencies of the periphery)

may result in a greater experience dependent change in per-

ipheral processing than a stimulus with a less optimal

frequency profile. In the case of our stimuli, the more varia-

ble frequency profile of the tone stimuli may be less optimal

than the more restricted frequency profile of the chorus stimulus.

Therefore, the chorus stimulus could have a larger influence on

peripheral sensitivity than the tone stimulus because of its opti-

mal match to the frequency characteristics of the ear, rather than

the behavioural salience of the stimulus. In fact, we did find that

the tone stimulus was capable of altering thresholds in females

(not in males), although it did not influence suprathreshold

responses in either sex. Carefully controlled experiments are

needed to dissect the mechanisms underlying the auditory

changes caused by chronic call stimulation.
5. Conclusion
In summary, we found that experience with a social communi-

cation signal can modulate the peripheral auditory sensitivity of

the green treefrog. We believe this is the first report of social

stimulus exposure influencing the sensitivity of the peripheral

auditory system in adult animals. The modulation of peri-

pheral sensitivity could alter the central processing of social

stimuli and thus change stimulus detectability and salience.

Investigating the relationship between peripheral sensitivity

and mate choice and/or aggressive behaviours would help

elucidate the influence of peripheral tuning modulation on

stimulus salience. The mechanisms underlying this phenom-

enon are currently unknown, however previous work in a
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variety of taxa suggest that gonadal steroid hormone regulation

of electrical tuning is a promising area for investigation.
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