
EFFECT OF POLYMORPHISM ON EXPRESSION OF THE 
NEUROPEPTIDE Y GENE IN INBRED ALCOHOL-PREFERRING 
AND -NONPREFERRING RATS

J. P. SPENCE, T. LIANG, K. HABEGGER, and L. G. CARR*

Departments of Medicine, Indiana University School of Medicine, Medical Research and Library 
Building, Room 407, 975 West Walnut Street, Indianapolis, IN 46202, USA

Abstract

Using animal models of alcoholism, previous studies suggest that neuropeptide Y (NPY) may be 

implicated in alcohol preference and consumption due to its role in the modulation of feeding and 

anxiety. Quantitative trait loci (QTL) analysis previously identified an interval on rat chromosome 

4 that is highly associated with alcohol preference and consumption using an F2 population 

derived from inbred alcohol-preferring (iP) and -nonpreferring (iNP) rats. NPY mapped to the 

peak of this QTL region and was prioritized as a candidate gene for alcohol-seeking behavior in 

the iP and iNP rats. In order to identify a potential mechanism for reduced NPY protein levels 

documented in the iP rat, genetic and molecular components that influence NPY expression were 

analyzed between iP and iNP rats. Comparing the iP rat to the iNP rat, quantitative real-time 

polymerase chain reaction detected significantly decreased levels of NPY mRNA expression in 

the iP rat in the six brain regions tested: nucleus accumbens, frontal cortex, amygdala, 

hippocampus, caudate-putamen, and hypothalamus. In addition, the functional significance of 

three previously identified polymorphisms was assessed using in vitro expression analysis. The 

polymorphism defined by microsatellite marker D4Mit7 in iP rats reduced luciferase reporter gene 

expression in SK-N-SH neuroblastoma cells. These results suggest that differential expression of 

the NPY gene resulting from the D4mit7 marker polymorphism may contribute to reduced levels 

of NPY in discrete brain regions in the iP rats.
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Alcoholism is a complex disorder influenced by the interaction between multiple genes and 

the environment, exhibiting a heritability that ranges from 50 to 60% in both men and 

women (Heath et al., 1997). Thus far, however, only the protective effects of the alcohol 

metabolizing enzymes have been consistently replicated (Foroud and Li, 1999; Thomasson 

et al., 1993). To identify genetic factors that influence alcoholism, the alcohol-preferring (P) 

and -nonpreferring (NP) lines were developed from a randomly bred closed colony of Wistar 
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rats through bidirectional selective breeding on the basis of alcohol consumption and 

preference (Li et al., 1991). In this model, P rats display the characteristics that are 

considered necessary for an animal model of alcoholism (Cicero, 1979). Subsequently, 

inbred P (iP) and NP (iNP) strains have been established that maintain highly discordant 

alcohol consumption scores.

Previous studies suggest that neuropeptide Y (NPY) is implicated in the modulation of 

alcohol consumption in P and NP rats (Cowen et al., 2004; Thiele and Badia-Elder, 2003; 

Pandey et al., 2003). P rats display lower levels of NPY immunoreactivity in various regions 

of the brain, including the central nucleus of the amygdala, hippocampus and the frontal 

cortex and higher levels in the paraventricular hypothalamic nucleus and arcuate nucleus of 

the hypothalamus (Ehlers et al., 1998; Hwang et al., 1999). Furthermore, decreased levels of 

NPY are associated with increased anxiety in P rats (Colombo, 1997; Stewart et al., 1993), 

and i.c.v. infusion of NPY has been shown to reduce ethanol intake in the P rat (Gilpin et al., 

2003). NPY is localized to an interval that is highly associated with alcohol preference and 

consumption, mapping to a quantitative trait locus with a lod score of 9.2 on rat 

chromosome 4, using an F2 population bred from iP and iNP rats (Carr et al., 1998; Bice et 

al., 1998).

In addition, mice deficient in NPY exhibit increased alcohol consumption compared with 

wild-type mice, and an over-expression of NPY decreases ethanol consumption in 

transgenic mice (Thiele et al., 1998). In humans, a polymorphism in NPY (Leu7Pro) was 

significantly associated with dependence in European American and Finnish alcoholics, both 

exhibiting an increased frequency of the Pro7 allele compared with controls (Lappalainen et 

al., 2002; Zhu et al., 2003). Therefore, these studies have established NPY as an excellent 

candidate gene for alcoholism and alcohol preference, documenting an inverse relationship 

between NPY levels and alcohol consumption.

While a relationship between NPY and alcohol consumption has been established, the 

molecular and physiological mechanism responsible for this relationship remains to be 

elucidated. Because NPY is likely to function in memory, stress, hypertension, feeding and 

emotion (Heilig and Thorsell, 2002), this study was conducted to better understand the 

genetic and molecular components that influence NPY expression in iP and iNP rats. Thus, 

to further characterize the relationship between NPY and alcohol preference in P and NP 

rats, mRNA expression was evaluated in several brain regions between alcohol-naive iP and 

iNP rats, and transient transfection assays were performed on three previously identified 

polymorphisms (Bice et al., 1998) to determine their functional significance.

EXPERIMENTAL PROCEDURES

Dissection of brain regions

Five iP and four iNP alcohol-naive adult male rats were killed, and the entire brain was 

removed and dissected using the coordinates of Paxinos and Watson (Paxinos and Watson, 

1998) to produce six subregional tissue samples: 1) nucleus accumbens, 2) frontal cortex, 3) 

amygdala, 4) hippocampus, 5) caudate-putamen, and 6) hypothalamus. These subregions 

were selected because they have been implicated in the mesocorticolimbic dopamine 
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system, reciprocally interacting with the VTA to regulate alcohol-drinking behavior 

(McBride and Li, 1998). The nucleus accumbens and caudate putamen are dissected from a 

2 mm section generated by a coronal cut at 2 mm anterior to the optic chiasm (Bregma 1.70 

mm) and a coronal cut at the optic chiasm (Bregma −0.26 mm). The nucleus accumbens is 

dissected bilaterally by cutting below the rhinal fissure and trimming off the olfactory 

tubercles and cortical tissue at the ventral and ventrolateral borders of the slice. From the 

remaining tissue the caudate putamen (bilateral) is dissected below the corpus callosum 

leaving the septum hanging in the center. The hypothalamus is dissected from the tissue 

posterior to the optic chiasm by making an incision 2 mm to both the right and the left of the 

midline and a cut in front of the mammillary bodies as the caudal limit. The amygdala is 

dissected by a cut at the lateral borders of the lateral hypothalamus (Bregma −2.12 mm) and 

ventral of the rhinal fissure, with cortical tissue then removed at the lateral edges of the 

dissected slice. The caudal border of the amygdalar dissection is the rostroventral border of 

the CA3 subfield of Ammon’s horn (−4.16 mm). The entire hippocampus is dissected from 

the remaining brain by a midline incision between the hemispheres and rolling the 

hippocampus out of the cerebral cortex. All of the experiments utilized in this study 

conformed to local and international guidelines on the ethical use of animals in order to 

minimize the number of animals used and their suffering.

Isolation of RNA

The microdissected tissues were snap frozen on dry ice and stored at −80 °C until RNA 

isolation. RNA was isolated according to the RNeasy Midi manufacturer’s protocol (Qiagen, 

Valencia, CA, USA), and the isolated RNA was resuspended in diethyl-pyrocarbonate-

treated water, treated with DNase I, and stored at −80 °C.

Quantitative real-time RT-PCR (polymerase chain reaction)

Using the ABI PRISM 7700 Sequence Detection System (PE Biosystems, Wellesley, MA, 

USA), the relative mRNA expression levels of NPY in the iP and iNP rats were determined 

in the nucleus accumbens, frontal cortex, amygdala, hippocampus, caudate-putamen, and 

hypothalamus by quantitative real-time RT-PCR (qRT-PCR). cDNA was generated from the 

six selected brain regions of each of the five iP and four iNP rats. cDNA template, generated 

from 50 ng total RNA, was added to each PCR reaction that contained 0.1 μM forward and 

reverse primers and SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA, 

USA). Each reaction was performed in triplicate. The integrated software package 

accompanying the ABI PRISM 7700 was utilized to select the NPY-1F and NPY-1R 

primers for qRT-PCR (Table 1). The specificity of these primers was confirmed using 

agarose gel analysis. Each sample was amplified for 40 cycles, and the cycle threshold (Ct) 

was determined for each cDNA template. The Ct refers to the cycle number at which the 

fluorescence of the amplified product reached an arbitrary threshold that was within the 

exponential phase of amplification. Relative values of expression were determined for each 

sample using the standard curve method, and these values were normalized to the Ct values 

of GAPDH, a standard “housekeeping” control gene, using glyceraldehyde phosphate 

dehydrogenase (GAPDH)-F and GAPDH-R primers (Table 1) for PCR amplification. t-

Tests were performed to detect significant differences in expression between the iP and iNP 

samples.
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Luciferase reporter constructs

Reporter constructs were created to analyze the effects of three previously identified 

polymorphisms located in the 2nd intron, 3rd intron, and the 3′UTR (Bice et al., 1998; 

Larhammar et al., 1987) (Fig. 2). First, to amplify the regions encompassing these 

polymorphisms, three primer pairs were designed: Luc-1F and Luc-1R for the second intron, 

Luc-2F and Luc-2R for the third intron, and Luc-3F and Luc-3R for the 3′UTR (Table 1). 

Using iP and iNP genomic DNA, six fragments were amplified and ligated into the pCR2.1-

TOPO vector. Sequence analysis was then performed to confirm that there were no errors. 

The resulting TOPO constructs were digested with either BamHI or XbaI, depending on the 

desired site of insertion of each fragment into the pGL-3 Promoter vector (Promega, 

Madison, WI, USA). These sites were determined based on the location of each fragment in 

the NPY gene. The resulting fragments were gel-isolated and ligated into a pGL-3 Promoter 

vector that was either digested with BamHI or XbaI. Thus, the fragments encompassing the 

polymorphisms in the 2nd and 3rd introns were ligated into the pGL-3 Promoter vector in a 

site following the SV40 late poly(A) signal, while the 3′UTR fragments were ligated 

between the luciferase gene and the SV40 late poly(A) signal (Fig. 3). To determine 

fragment orientation, each fragment was amplified using either the fragment specific 

forward or reverse primer paired with Luc-4R, a primer specific to the pGL-3 Promoter 

vector. The constructs containing the correct orientation of each fragment were isolated 

using the EndoFree Plasmid Maxi Kit (Qiagen).

Transient transfection and luciferase assays

Human neuroblastoma SK-N-SH cells were cultured in Eagle’s Minimal Essential Medium 

containing 7.5% NaHCO3, 2 mM Glut-max, 0.1 mM non-essential amino acids, 1 mM 

pyruvate, 10% FBS (Invitrogen, Carlsbad, CA, USA) and were maintained at 37°C in a 

humidified 5% CO2 incubator. Twenty-four hours before transfection, 4.0×104 cells were 

plated into each well of a 24 well plate; 0.5 μg of each pGL-3 luciferase test plasmid was 

transfected per well using Tfx 50 reagent (Promega); 2.5 ng of CMV renilla vector (pRL-

CMV) was cotransfected with each pGL-3-luciferase test plasmid to serve as an internal 

control for transfection efficiency. Cells were incubated for 48 h, washed, and harvested 

using passive lysis buffer. Cell extracts were assayed for firefly and Renilla luciferase 

activities in a TD-20/20 Luminometer, using the Dual-Luciferase Reporter Assay System 

(Promega). Luciferase assays were performed three to six times in triplicate, using plasmids 

that were independently purified at least twice.

RESULTS

NPY exhibits reduced mRNA expression in alcohol-naive iP rats compared with iNP rats in 
multiple brain regions

To assess the endogenous difference in NPY mRNA expression between iP and iNP rats, 

discrete brain regions dissected from alcohol-naive iP and iNP rats were analyzed using 

qRT-PCR. NPY mRNA expression was observed at significantly decreased levels in the 

nucleus accumbens (P=0.006), the frontal cortex (P=0.04), the amygdala (P=0.0004), the 

hippocampus (P<0.00001), the caudate putamen (P=0.02), and the hypothalamus (P=0.02) 

in the iP rat (Fig. 1). The greatest difference in expression comparing iNP to iP was in the 
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hippocampus and caudate putamen (2.2-fold difference), and the smallest difference in 

expression was in the frontal cortex and hypothalamus (1.3-fold difference; Fig. 1).

Microsatellite marker D4Mit7 polymorphism reduced luciferase activity in vitro using SK-N-
SH cells

The microsatellite marker D4Mit7 is located in the 2nd intron of NPY. To determine the 

probable effects of the previously identified polymorphisms on NPY gene expression, PCR 

was employed to generate DNA fragments containing the polymorphisms in the 2nd intron 

(D4Mit7), 3rd intron and 3′UTR. The fragments containing the 2nd and 3rd intron 

polymorphisms were cloned into the pGL-3 Promoter luciferase vector downstream the 

SV40 late poly(A) signal, while the 3′UTR fragments were ligated between the luciferase 

gene and the SV40 late poly(A) signal (Fig. 2). All constructs were transiently transfected 

into SK-N-SH cells, which constitutively express the endogenous NPY gene. Luciferase 

expression was expressed in fold-change compared with the pGL-3 Promoter-luciferase 

(luc) construct (Fig. 3). The iP-(2nd intron)-luc construct defined by the D4Mit7 

microsatellite marker exhibited a significant decrease in expression in SK-N-SH cells 

compared with the iNP-(2nd intron)-luc construct (P<0.05). The 3rd intron-luc and the 

3′UTR-luc vectors did not significantly alter luciferase activity in SK-N-SH cells.

DISCUSSION

In this study, alcohol-naive iP rats exhibited a reduced level of NPY mRNA expression 

compared with iNP rats in the nucleus accumbens, frontal cortex, amygdala, hippocampus, 

caudate putamen, and hypothalamus. Three polymorphisms in the NPY gene were assessed 

for their functional significance in modulating NPY expression. In vitro expression analysis 

using neuroblastoma SK-N-SH cells yielded a significant decrease in expression of the iP-

(2nd intron)-luc construct compared with the iNP-(2nd intron)-luc construct (P<0.05). 

These results suggest that an endogenous decrease in NPY expression may be influencing 

the phenotypic decrease in NPY protein expression that has been previously observed in 

various brain regions when comparing P and NP rats.

The reduced level of NPY mRNA expression observed in alcohol-naive iP rats compared 

with iNP rats corroborated the previous evidence of a reduction in NPY protein levels in 

central nucleus of the amygdala, hippocampus, and the frontal cortex (Ehlers et al., 1998; 

Hwang et al., 1999). In contrast, iP animals exhibited significantly lower levels of NPY 

mRNA expression in the hypothalamus in the present study, whereas, in a previous study, 

higher levels of NPY immunoreactivity were detected in the paraventricular hypothalamic 

nucleus of P rats than NP rats (Hwang et al., 1999). Lack of correlation between mRNA and 

protein levels may have resulted from procedural differences between the two studies. In our 

study, the entire hypothalamus was dissected, whereas a very specific region of the 

hypothalamus was quantified in the immunohistochemistry studies. Lower levels of NPY 

mRNA have been documented in high alcohol drinking rats compared with the low alcohol 

drinking rats (Hwang et al., 1999). No difference in NPY mRNA expression was observed 

between NP rats compared with P rats (Caberlotto et al., 2001). Together, these data suggest 

that the NPY expression in the hypothalamus may not play a defining role in the modulation 
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of alcohol preference, whereas its expression in the amygdala, a region implicated in anxiety 

and the reinforcing properties of alcohol may be influential in the regulation of alcohol-

seeking behavior (Koob et al., 1998; Cowen et al., 2004).

In vitro expression analysis revealed a significant decrease in luciferase expression in iP-

(2nd intron)-luc construct compared with the iNP-(2nd intron)-luc, providing a potential 

mechanism for the reduced mRNA and protein expression. Furthermore, the functional 

insignificance of the 3′UTR polymorphism, a primary site for the regulation of mRNA 

stability (Nair and Menon, 2000; Wang and Kiledjian, 2000; Loflin and Lever, 2001), 

suggests that NPY expression is regulated at the transcriptional level. Although 

neuroblastoma cells do not fully reflect regulatory mechanisms underlying NPY expression 

in neuronal cells, they show that the D4Mit7 polymorphism is functional in a cell line that 

expresses NPY.

The reduced expression exhibited by one variant of the D4Mit7 polymorphism is consistent 

with the lower NPY mRNA and protein levels detected in discrete brain regions of the iP 

strain compared with the iNP strain. The polymorphism defined by the marker D4Mit7 is 

localized to a GC rich region, possibly involved in transcriptional regulation. Intronic 

polymorphisms have been associated with regulation of gene expression (Fiskerstrand et al., 

1999; Arnold et al., 2000; Bream et al., 2000; Agarwal et al., 2000). Thus, polymorphic 

regions, previously used as genetic markers, may function in regulating gene expression 

(Katsuki et al., 1996). It is postulated that these alternating purine-pyrimidine tracts form Z-

DNA (left-handed helices) or cruciform regions that influence gene expression, and some 

CA repeat sequences do exhibit moderate enhancer activities (Hamada et al., 1984). 

However, the difference in expression associated with the D4Mit7 polymorphism may not 

fully account for the observed expression difference in NPY detected between iP and iNP 

rats. Therefore, additional studies will be necessary to define the functional significance of 

additional polymorphisms discovered in the NPY gene. It is also possible that sequencing 

additional 5′region will identify other functional polymorphisms since regulatory elements 

can be located many kilobases upstream in the gene.

The inverse relationship between levels of NPY in various regions of the brain and alcohol 

consumption has been documented in previous literature (Badia-Elder et al., 2001; Thiele et 

al., 1998). However, the molecular mechanism of NPY remains to be elucidated even in the 

P and NP rats where the difference in NPY expression appears to be well defined (Ehlers et 

al., 1998; Hwang et al., 1999). This study has attempted to further characterize NPY 

expression in order to ultimately distinguish NPY expression as a primary source of the 

decrease in NPY protein expression observed in various brain regions between P and NP 

rats.

In conclusion, the effects of NPY levels on alcohol preference in the P and NP rats have 

been established in previous studies (Badia-Elder et al., 2001). This study provided evidence 

of decreased mRNA expression in several brain regions, including the nucleus accumbens, 

frontal cortex, amygdala, hippocampus, caudate putamen, and hypothalamus. The 

previously identified D4Mit7 marker polymorphism appeared functional, while the 3rd 

intron and 3′UTR polymorphisms produced no change in luc expression. All in all, these 

SPENCE et al. Page 6

Neuroscience. Author manuscript; available in PMC 2015 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



results further implicated the regulation of NPY gene expression as a likely source for the 

difference in NPY levels detected between iP and iNP rats.
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Abbreviations

Ct cycle threshold

GAPDH glyceraldehyde phosphate dehydrogenase

iNP inbred alcohol-nonpreferring

iP inbred alcohol-preferring

NP alcohol-nonpreferring

NPY neuropeptide Y

P alcohol-preferring

PCR polymerase chain reaction

qRT-PCR quantitative real-time RT-PCR
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Fig. 1. 
NPY mRNA expression is decreased in alcohol-naive P rats compared with NP rats. qRT-

PCR analysis was utilized to compare the relative levels of NPY mRNA between alcohol-

naive iP and iNP rats in the nucleus accumbens, the frontal cortex, the amygdala, the 

hippocampus, the caudate putamen, and the hypothalamus. All values were determined 

using the standard curve method and compared with mRNA expression in the iP 

hypothalamus, which was arbitrarily designated 1. The graph depicts the mean±S.E.M. of 

the results from five independent iP and four independent iNP experiments performed in 

triplicate, using separate preparations of cDNA. Significant differences in regional NPY 

mRNA expression between iP and iNP rats was determined using the Student’s t-test. * 

P<0.05; ** P<0.0005.
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Fig. 2. 
Polymorphisms identified in the NPY gene. Sequence analysis was previously performed on 

the NPY gene and identified three polymorphisms in the 2nd intron, 3rd intron and 3′UTR 

(Bice et al., 1998). (A) The diagram depicts the NPY gene. NPY’s four exons are 

represented with white boxes, while a black line depicts the intronic regions. The 

microsatellite marker D4Mit7 is represented with a black box. The three polymorphisms that 

have been identified in the NPY gene are labeled with arrows and their position relative to 

the translational start point (Tsp) that was designated +1. (B) Three polymorphisms are 

defined by their regional location in the NPY gene, their position relative to the Tsp (+1), 

and the sequence difference detected between iP and iNP rats.
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Fig. 3. 
Functional importance of the NPY polymorphisms identified in the 2nd intron, 3rd intron, 

and 3′UTR. The Luc constructs were transiently transfected into SK-N-SH cells, and the 

resulting effect on luciferase expression was subsequently determined. SV40, luc+, and 

poly(A) denote the SV40 promoter, the luciferase gene, and the SV40 late poly(A) signal, 

respectively. The polymorphisms, located at +4666, +6871, and +7010, are noted in addition 

to the relative insertion site of each fragment into the pGL-3 Promoter vector. The activity 

of each construct was normalized to the internal control plasmid, pRL-CMV, and was 

expressed as fold change compared with the activity of the pGL-3 Promoter vector, which 

was designated as 1. The bars and fold change show the mean±S.E.M. of the results from 

seven independent transfection experiments performed in triplicate, using two different 

plasmid preparations. The significance of differences in the resulting mean values within 

and between multiple constructs was analyzed using ANOVA. An asterisk denotes a 

significant reduction in luc expression.
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Table 1

List of oligos

Real-time PCR

 NPY-1F 5′-agatactactccgctctgcga-3′

 NPY-1R 5′-ggcattttctgtgctttctct-3′

 GAPDH-F 5′-cagtcaaggctgagaatggga-3′

 GAPDH-R 5′-gggatctcgctcctggaag-3′

Vector construction

 Luc-1F 5′-cggatccaactttgacttccaacag-3′

 Luc-1R 5′-cggatccatcaactctggaaaaac-3′

 Luc-2F 5′-cggatccaagtactcccttagagactg-3′

 Luc-2R 5′-cggatcctaaaacacaagaggcaaa-3′

 Luc-3F 5′-ctctagaatgaaacttgctctcctgactt-3′

 Luc-3R 5′-atctagatagtcacaccaggtgttcagtc-3′

 Luc-4R 5′-gacgatagtcatgccccgcg-3′
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