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Abstract

Two stage instrumental variable methods are commonly used to estimate the causal effects of 

treatments on survival in the presence of measured and unmeasured confounding. Two stage 

residual inclusion (2SRI) has been the method of choice over two stage predictor substitution 

(2SPS) in clinical studies. We directly compare the bias in the causal hazard ratio estimated by 

these two methods. Under a principal stratification framework, we derive a closed form solution 

for asymptotic bias of the causal hazard ratio among compliers for both the 2SPS and 2SRI 

methods when survival time follows the Weibull distribution with random censoring. When there 

is no unmeasured confounding and no always takers, our analytic results show that 2SRI is 

generally asymptotically unbiased but 2SPS is not. However, when there is substantial 

unmeasured confounding, 2SPS performs better than 2SRI with respect to bias under certain 

scenarios. We use extensive simulation studies to confirm the analytic results from our closed-

form solutions. We apply these two methods to prostate cancer treatment data from SEER-

Medicare and compare these 2SRI and 2SPS estimates to results from two published randomized 

trials
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1. Introduction

Evaluating the effectiveness of treatment and identifying the causal relationship between 

exposure and disease are critical objectives for clinical and health services researchers. 

Confounding is often a concern when analyzing nonrandomized observational studies and 

even randomized studies with non-compliance [1]. Instrumental variable (IV) methods are 

increasingly being used in clinical comparative effectiveness studies to potentially control 

for both measured and unmeasured confounding. Angrist et al.[2] defined the IV for causal 
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effects of treatment on outcome to be a variable satisfying the following five assumptions: i) 

The potential outcomes on one subject are unrelated with the particular assignment of 

treatment to the other subjects; ii) IV is randomly (or ignorably) assigned; iii) Any effect of 

IV on the outcome must be mediated by treatment received (the exclusion restriction);iv) IV 

has nonzero effect on treatment received; v) There are no defiers. (for details see section 2)

In a recent clinical study, we were interested in comparing the effectiveness of two 

treatments for prostate cancer in elderly men using SEER-Medicare, a large national 

observational database. Specifically, we planned to use IV methods to estimate the effect of 

the addition of external beam radiation therapy (EBRT) to androgen suppression therapy 

(ADT) in improving overall survival in men with locally advanced prostate cancer. We 

considered a commonly used IV in health services research: local area treatment patterns 

defined by the percentage of active treatment in hospital referral regions (HRR). This IV has 

been shown to capture regionally distinct structural variation in care [3]. Such variation is 

not fully explained by patient characteristics. Further, this IV varies across HRRs and is 

strongly associated with treatment assignment. Finally, it is balanced across important 

observed prognostic factors. Although there is an extensive literature on the importance of 

choosing an appropriate instrument, less attention has been paid to using the appropriate 

modeling approach once an IV is selected.

Recently, there has been rapid uptake and widespread use of two IV based analytic 

approaches called two-stage residual inclusion (2SRI) and two-stage predictor substitution 

(2SPS)[4, 5]. These methods have been used to correct for bias due to endogeneity in non-

linear models for both binary and time-to-event outcomes. Among these two IV approaches, 

2SRI was shown to consistently estimate a conditional causal parameter under certain 

assumptions [4] and has been adopted as the method of choice in clinical research studies 

involving survival outcomes[6, 7, 8]. The conditional causal parameter that Terza et al.[4] 

consider is only identified by making homogeneity assumptions that go beyond the five 

assumptions for a valid IV defined in the first paragraph. Angrist et al. [2] showed that under 

these five assumptions for a valid IV, the only treatment effect that is identified is the 

average treatment effect for the compliers, where the the compliers are the subjects who 

would take the treatment if encouraged to do so by the IV but would not take the treatment if 

not encouraged by the IV; this is called the local average treatment effect (LATE). In the 

context of a binary outcome, Cai et al.[5] demonstrated that both the 2SRI and 2SPS 

methods generated biased estimates of LATE among compliers for binary outcome. In this 

paper, we focus on the properties of 2SPS and 2SRI as estimators of the LATE for time-to-

event data.

Despite the fact that there is growing interest in applying two stage IV methods to time-to-

event data, little is known about the potential bias of using such methods to estimate LATE 

among compliers. We derive closed form expressions of the bias and conduct extensive 

simulations to quantify this bias. We then apply both of the two-stage IV methods to our 

prostate cancer treatment data and compare them to the results from two published 

randomized clinical trials [9, 10]
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2. Notation, Assumptions, Compliance Categories, and Model

2.1. Notation

Following the notation of Cai et al.[5] and Nie et al.[11], an N-dimensional vector of binary 

IV is represented by Ṟ. An IV value of 1 represents encouragement to receive the active 

treatment and 0 represents no encouragement to receive the active treatment. In a RCT 

setting, where the IV is the randomized assignment, then an IV value of 1 represents random 

assignment to treatment and 0 represents random assignment to control; in the prostate 

cancer observational study described in the introduction, an IV value of 1 represents a high 

local area rate (above median) of adding EBRT to ADT and 0 represents a low local area 

rate (below the median) of adding EBRT to ADT. The ith element Ri = 1 implies that subject 

i is encouraged to receive the active treatment, whereas Ri = 0 indicates that subject i is not 

encouraged to receive the active treatment. Let ẔṞ be an N-dimensional vector of potential 

treatment received given Ṟ, and ith element  indicates that subject i receives the active 

treatment and  means that subject i receives the control under Ṟ.

Similarly, we define ṮṞ,Ẕ to be an N-dimensional vector of potential survival time under Ṟ 

and Ẕ, and ith element  is the potential survival time for subject i under Ṟ and Ẕ. Let 

ḺṞ, Ẕ to be an N-dimensional vector of potential censoring time under Ṟ and Ẕ, and ith 

element  is the potential censoring time for subject i under Ṟ and Ẕ.

We define Y̱Ṟ, Ẕ=min{ṮṞ,Ẕ, ḺṞ,Ẕ}, the elementwise minimum of potential censoring and 

survival times, to be an N-dimensional vector of potential observed follow up time under Ṟ 

and Ẕ, and ith element  represents the potential follow up time for subject i under Ṟ 

and Ẕ. Let  indicates whether subject i is observed to terminate by 

failure ( ) or by censoring ( ) given Ṟ and Ẕ. The vector Xi̱ represents 

measured confounding variables for subject i.

2.2. Assumptions

The main assumptions we will make for causal modeling are the five assumptions made by 

Angrist et al. [2], and a random censoring assumption for the survival setting.

1. Stable Unit Treatment Value Assumption (SUTVA)[12, 13]

a. if , then 

b.
if  and , then 

The SUTVA assumption says that the potential outcomes for subject i are 

not related with the treatment status of other subjects such that we can write 

, , , ,  as , , , , 

respectively. The SUTVA assumption also implies the assumption of 

consistency, such that the value of the potential outcome given a treatment 
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remains unchanged no matter what the treatment assignment mechanism is 

[12]

2. Independence of the instrument Ṟ [14]:

Conditional on a vector of confounders X̱, the random vector (Y̱Ṟ,Ẕ, ṮṞ,Ẕ,ḺṞ,Ẕ,ẔṞ) 

is independent of Ṟ. In a randomized trial where R is the IV, the independence 

assumption holds without conditioning on X̱.

3. Exclusion Restriction

∀Ẕ,Ṟ, and Ṟ′, we have:

ṮṞ,Ẕ=ṮṞ′,Ẕ,ḺṞ,Ẕ = ḺṞ′,Ẕ, Y̱Ṟ′,Ẕ = Y̱Ṟ′,Ẕ, This assumption implies that any effect of 

IV on potential outcomes must be through its effect on treatment actually received. 

Thus, we can write , ,  as , ,  by combining the exclusion 

restriction and SUTVA assumptions.

4. Non-zero Average Causal Effect of Ṟ on Ẕ

This assumption means the IV is correlated with treatment received.

5. Monotonicity [15]

This assumption rules out the existence of defiers. No subject always does the 

opposite of the treatment assigned.

6. Independent censoring

The distribution of potential survival time ṮṞ,Ẕ is independent of the distribution of 

potential censoring time ḺṞ,Ẕ.

2.3. Compliance Categories

Under the framework of principal stratification and potential outcomes [2, 16], subjects in a 

two-arm randomized trial can be categorized into 4 principal strata: Always takers (AT) are 

subjects who always take the treatment regardless of assignments (Z1 = 1, Z0 = 1); 

Compliers (C) are subjects who comply with their assignments (Z1 = 1, Z0 = 0); Never 

takers (NT) are the subjects who never take the treatment no matter which group they are 

assigned to (Z1 = 0, Z0 = 0); Defiers (D) are the subjects who take the treatment opposite of 

their assignments (Z1 = 0, Z0 = 1).

2.4. Model

We first define the probability of receiving the treatment Pr(R = 1) = r, the probability of 

being a always taker Pr(AT) = ρa, and the probability of being a complier Pr(C) = ρc. We 
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also define the probability of being a defier Pr(D) = ρd, but under the monotonicity 

assumption, there are no defiers so that ρd = 0. Hence, the probability of being a never taker 

Pr(NT) is equal to 1 − ρa − ρc.

We assume both potential censoring time and potential survival time follow the Weibull 

distribution with the same shape parameter α. The potential censoring time for the subjects 

in each principal strata follows Weibull(α, λ), and we define the parameters of the 

probability distribution of potential survival time for each principal strata as follows:

We also examined scenarios in which different shape parameters α’s are assumed for the 

potential censoring time and the potential survival time. These details are given in Appendix 

E. The density of Weibull distribution is f(t) = (α/K)(t/K)K−1exp(−(t/K)α) and the hazard rate 

is h(t) = αK−αtα−1. In the case of Weibull regression with covariates X, K−α can be 

reparameterized as exp(βX). The hazard rate for the compliers if treated is 

. The hazard rate for the compliers if not treated is 

. Hence, the log causal hazard ratio ϕ for the compliers is the 

difference between two log hazard rates:

3. Two Stage Predictor Substitution (2SPS) Method

The 2SPS method is frequently used and simple to implement [4]. In the first stage, the 

treatment received Z is regressed on the IV-treatment assignment R, and let P = E (Z∣R). In 

the second stage, a log linear model including P, defined as:

is fitted to estimate the coefficient ξ. This is 2SPS estimator of the log causal hazard ratio. 

We first derive a closed form expression to the probability limit of the maximal likelihood 

estimator (M.L.E) of ξ, then take the difference between this probability limit and true log 

causal parameter ϕ for the expression of the asymptotic bias of the 2SPS estimator as an 

estimator of the log causal hazard ratio for compliers.

3.1. Probability limit of M.L.E of causal parameter

Let P̂ denote the predicted value from the estimated binary regression model. i.e., P̂ = 

Ê(Z∣R). When P̂ is substituted for P, the second stage Weibull model becomes:
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Let ξ̂* and ξ̂ denote the estimators (M.L.E) of ξ* and ξ respectively. As sample size n → ∞, 

P̂ → P, , and . Therefore, . To derive closed form expression for the 

asymptotic bias, we need to re-express ξ in terms of parameters specified in Section 2 under 

the principal stratification framework.

Only always takers receive the treatment when assigned to control (R = 0). Both always 

takers and compliers take the treatment when assigned to treatment (R = 1). Thus, it can be 

shown that [5]:

Since P = {p0, p1} is an one-to-one transformation of R = {0, 1}, we have the following for 

the second stage Weibull regression:

(1)

and,

(2)

Instead of working with a second stage model involving P, we can work with a model 

involving R instead. Solving (1) and (2), we have:

(3)

The log linear model including R assumes two underlying Weibull distributions of the same 

shape parameter α*, Weibull(α*, K0) and Weibull(α*, K1), for subjects assigned to control 

(R = 0) and treatment (R = 1) respectively. Thus, (3) can be expressed as:

(4)

It is worth noting that both follow up times of subjects assigned to control, denoted as Y∣R = 

0, and follow up times of subjects assigned to treatment, denoted as Y∣R = 1, actually follow 

mixture distributions consisting of three different Weibull distributions. Details are given in 

Appendix A. However, the second stage Weibull model of 2SPS method imposes the two 

Weibull distributions, with the same shape parameter α* but different scale parameters K0, 

K1, upon subjects assigned to treatment (R = 1) or assigned to control (R = 0) respectively. 
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Thus, the M.L.E of α*, K0, K1 are derived by maximizing the likelihood function Ln (α*, 

K0, K1) that consists of products of two Weibull densities: Weibull(α*, K0) and Weibull(α*, 

K1).

Let α̂* denote the M.L.E of α* and We set , the 

expectation of score equation derived from profile likelihood of α*, equal to 0 and let  be 

the solution. Under the assumptions stated in Section 2 and consistency of M.L.E, the 

probability limit of the estimator α̂* is . Details are given in Appendix C. Once the 

parameters of the principal strata are defined,  can be solved numerically using a root-

finding algorithm such as the “bisection” method. Let K̂
0, K̂

1 be the M.L.Es of the two scale 

parameters K0, K1 respectively. After the value of  is determined, the probability limits of 

the estimators K̂
0, K̂

1 can be derived as follows:

(5)

and,

(6)

The detailed steps of the derivation of (5) and (6) are given in Appendix C. By substituting 

(5) and (6) into (4), we derive the expression of log causal hazard ratio ξ as the following:

(7)

Thus, (7) is the closed-form expression of the probability limit of the log causal hazard ratio 

estimator ξ̂* from the 2SPS Weibull model.
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3.2. Bias analysis

The asymptotic bias of the causal parameter ξ of the 2SPS Weibull regression model is 

simply the difference between the true log causal hazard ratio ϕ and the derived closed form 

expression of ξ, such that

(8)

We can re-paramterize  in (8) with one additional parameter 

 as the following:

(9)

Δ in (9) is the log hazard ratio between never takers and compliers given no treatment. It can 

be interpreted as the magnitude of the unmeasured confounding because the differences 

between principal strata are attributable to the unmeasured confounding [5]. When Δ = 0 or 

, there is no unmeasured confounding.

We make the following observations about the bias of 2SPS method from (3.11): 1) When α 

= 1 and we treat α* as a known parameter and fix it at 1, that is the scenario when the 

survival outcomes of all principal strata follow exponential distributions and we also fit an 

exponential model in the second stage instead of estimating the shape parameter for a more 

general form of Weibull distribution; 2) When ρc = 1, every subject is a complier and (8) can 

be simplified as . Then we have . Setting ρc = 1, ρa = 0, 

and ρn = 0, (8) becomes 0 so that bias B2sps = 0 when a randomized controlled trial has 

perfect compliance; 3) When there is no causal effect ( ), all terms in (8) cancel out 

and we have B2sps = 0; 4) When ρa = 0 and , there is no confounding because there are 

no always takers and never takers can’t get treatment so that the confounding can only be 

attributable to the difference between never takers and compliers given no treatment[5]. 

However, (8) can not be reduced to 0 under this setting so that the bias of 2SPS method 

B2sps is generally not 0 even when there is no confounding. 5) λ, the scale parameter of the 

censoring distribution is involved in bias equation (9), which coincides with the results in 

Struthers and Kalbfleisch[17].

We can analyze how parameters influence the relationship between the magnitude of 

confounding and bias using derived closed form expression (9). For the purpose of 

demonstration only, here we create four scenarios in which there are no always takers. The 

results are revealed in Figure 1 (a)-(d).

In Figure 1, we can clearly see that the bias of the 2SPS method is not 0 when there is no 

confounding. The bias increases with the larger shape parameter α of the survival function 

(within each principal stratum). The bias is the smallest when we have an decreasing hazard 

rate (α < 1) and the highest when we have an increasing hazard rate (α > 1). By comparing 
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Figure 1 (a) and (b), we also observe that the bias decreases as the compliance rate increases 

from 0.5 to 0.8. When the scale parameter (θc) is smaller, the bias is also smaller (Figure 1 

(a) vs. (c)). Although the probability of being randomly assigned to the treatment group is 

involved in computing the shape parameter of the second stage Weibull regression model, 

its effects on the bias are very small (compare Figure 1 (b) to (d)).

4. Two Stage Residual Inclusion (2SRI) Method

Similar to the 2SPS method, the 2SRI method involves two stage modeling [4]. In the first 

stage, we regress the treatment received Z on the IV-treatment assignment R and calculate 

the residual term E = Z − E (Z∣R). In the second stage, we fit a log linear model on both 

treatment received variable Z and residual E as,

(10)

, to estimate the regression coefficient λ1. This is 2SRI estimaor of the log causal hazard 

ratio. We derive the probability limit of the M.L.E of λ1 first and then calculate the 

asymptotic bias by taking the difference between this probability limit of the estimator and 

true log causal hazard ratio among compliers.

4.1. Probability limit of M.L.E of causal parameter

As discussed in a previous study[5], (10) is not the true model for the hazard function h(Y∣Z, 

E). In fact the true model includes the interaction term between Z and E. However, deriving 

the closed-form expression for the probability limit of the estimator from (10) is very 

difficult when (10) is not the true model. With one additional assumption that there are no 

always takers, (10) becomes the true model. We derive a closed-form expression of the 

probability limit of the estimator of causal parameter λ1 assuming that there are no always 

takers and thus (10) is the true model. Let Ê denote the residuals from the estimated binary 

regression model in the first stage. i.e., Ê = Z − Ê(Z∣R). When Ê is substituted for E, (10) 

becomes:

Let  and λ̂
1 be the estimators (M.L.E) of  and λ1. As sample size n → ∞, Ê → E, 

, and . Thus, . To derive a closed form expression for the 

asymptotic bias, we need to first re-express λ1 in terms of the parameters specified in section 

2.3 under the principal stratification framework.

As shown in a previous study[5], under the no always taker assumption, the first stage 

binary regression is E(Z∣R) = ρa + ρcR and residual term E = Z − E (Z∣R), thus the residual 

term can be re-expressed as E = Z − ρa − ρcR. Since {Z, E} has an one to one relationship 

with {Z, R}, we can establish the following equivalence between the model involving {Z, E} 

and the model involving {Z, R} for the second stage Weibull model:
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(11)

Under the no always taker assumption, the second stage Weibull regression model defined 

by (10) assumes the three underlying Weibull distributions with the same shape parameter 

but different scale parameters for subjects in the three different subgroups: 1) ~ Weibull(α*, 

K0) for those who are assigned to treatment and receive the treatment actually (Z = 1, R = 1). 

Only compliers are in this group; 2) ~ Weibull(α*, K1) for those who are assigned to 

treatment but do not receive the treatment actually (Z = 0, R = 1), This group has only never 

takers; 3) ~ Weibull(α*, K2) for those who are assigned to control and do not receive the 

treatment (Z = 0, R = 0), both never takers and compliers are in this group. There are no 

subjects that are assigned to control but still take the active treatment (Z = 1, R = 0) under 

the assumption of no always takers. Thus, the M.L.E of α*, K0, K1, K2 are derived by 

maximizing the likelihood function Ln(α*, K0, K1, K2) that consists of products of three 

Weibull densities: Weibull(α*, K0), Weibull(α*, K1), and Weibull(α*, K2).

Let α̂* denote the M.L.E of α* and set , 

the expectation of score equation derived from profile likelihood of α*, to 0 and let  be the 

solution. Under the assumptions stated in section 2 and consistency of the M.L.E, the 

probability limit of the estimator α̂* is . Details are given in Appendix D. With the 

parameters of principal strata defined,  can be solved numerically using a root-finding 

algorithm. Let K̂
0, K̂

1, K̂
2 be the M.L.Es of two scale parameters K0, K1, K2. Once the value 

of  is determined, we compute the probability limits of the estimators K̂
0, K̂

1, K̂
2 as 

follows:

(12)

and

(13)

and
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(14)

The derivation of (12),(13) and (14) is detailed in Appendix D. Based on (11), we can 

establish the following three equations with all possible combination of values of Z and R 

excluding the always takers scenario (Z=1, R=0).

1. When Z=1 and R=1, there are only compliers in this subgroup.

(15)

2. When Z=0 and R=1, there are only never takers in this subgroup.

(16)

3. When Z=0 and R=0, there are mixture of both never takers and compliers in this 

subgroup.

(17)

We then derive the closed form expression for the causal parameter λ1 by solving (15),(16), 

and (17) for λ1 as follows:
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4.2. Bias analysis

To compute asymptotic bias of the 2SRI method, we subtract the true log hazard ratio ϕ 

from the closed-form expression of λ1.

(18)

We can re-parameterize  in (18) in the way as in Section 3 and let . From the 

derived expression of asymptotic bias of 2SRI estimator, we can make the following 

observations: 1) When α = 1, the survival outcome within a principal stratum follows an 

exponential distribution. If we treat α* as known and set α* = 1, it means we fit an 

exponential regression model in the second stage; 2) When there is perfect compliance (ρc = 

1), we have B2SRI = 0. In this scenario, . By plugging ρc = 1 into (18), we can easily 

verify the results; 3) When there is no confounding ( ), B2SRI = 0; 4) When there is no 

causal effect ( ), B2 SRI is not 0; 5) λ, the scale parameter of the censoring distribution 

is involved in bias equation (18), similar to the findings for 2SPS method.

We can analyze how parameters influence the relationship between the magnitude of 

confounding and bias from the 2SRI method using (18). Similar to the previous section, four 

scenarios were created assuming there are no always takers. The results are shown in Figure 

2 (a)-(d). In Figure 2, it is apparent that the bias of the 2SRI method is 0 when there is no 

confounding. Intuitively, under the condition of no confounding, substituting the term of the 

estimated residuals in the second stage survival model has no effect on the estimate of the 

causal parameter. By comparing Figure 2 (a) and (b), we also observe that the bias decreases 

as the compliance rate increases from 0.5 to 0.8. When the scale parameter (θc) is smaller, 

the bias tends to be smaller (Figure 2 (a) vs. (c)). The probability of being randomly 
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assigned to the treatment group has very small impact on the bias (compare Figure 2 (b) to 

(d)).

5. Simulation

5.1. Simulation algorithm

We follow the five step algorithm used by Cai et al.[5] to generate data for a simulation 

study. In the first step, a data set of N subjects is generated. Always takers, compliers, and 

never takers among these subjects are generated from a multinomial distribution with 

probabilities {ρa, ρc, ρn}. At the second step, treatment assignment status R is generated for 

each subject with probability P(R = 1) = ρr. Because outcome in the present study is time to 

event, we modified step 3 to generate potential survival time {T0, T1} and censoring time 

{L0, L1} for each principal stratum based on the parameters , , , , , , λ. For 

instance, if a subject is a complier, the potential time to death under control  is generated 

from weibull (α, ) and the potential time to death under treatment  is generated from 

weibull (α, ). The potential censoring time { , } are generated from weibull(α, λ). At 

step 4, we use compliance status (always taker, complier, or never taker) and treatment 

assignment status R to determine the treatment received status Z. For instance, if a subject is 

a complier and assigned to treatment group (R = 1), then Z = 1. If a subject is an always 

taker but assigned to the control group, then Z = 0. At step 5, the observed survival time and 

censoring time are generated as follows:

and finally observed follow up time and censoring indicator are given as:

5.2. Simulation results

To demonstrate the consistency between the derived closed form expressions and the 

asymptotic biases from the 2SPS and 2SRI approaches under the assumption of no always 

takers (ρa = 0), we ran the simulation 2000 times, with the sample size n=10000, according 

to the same parameter settings presented in Figure 1 d) and Figure 2 d). Table 1 shows 

simulation results from 4 scenarios (α = 0.5, 1, 1.5, 2). As shown in this table, the biases 

from simulated results are consistent with the values computed with the derived analytic 

formula for both the 2SPS and 2SRI Weibull models. We also considered 2SPS and 2SRI 

Cox models (the second stage regression is a Cox model instead of a Weibull model). The 

pattern of the biases from 2SPS and 2SRI Cox models remains the same as for the 2SPS and 

2SRI Weibull models respectively. With decreasing hazard (α = 0.5), the bias from using the 

2SPS approach is smaller than the bias from the 2SRI approach. When the hazard is constant 

or increasing (α ≥ 1), the results are mixed. With stronger negative confounding, the 2SPS 

method produces smaller bias than the 2SRI method. However, with no confounding or 

stronger positive confounding, the 2SPS method produces larger bias than the 2SRI method.
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To evaluate the performance of both 2SPS and 2SRI methods in the setting where there are 

always takers, we simulated the data with various combination of parameters based on the 

following settings: i) Shape parameter α varies among {0.5, 1, 2}, which represent 

decreasing, constant, and increasing hazard scenarios; ii) Probabilities of being always 

takers ρa and compliers ρc were set to 3 combinations: {0.2, 0.7}, {0.7, 0.2}, and {0, 0.5}. In 

this way, low, medium, and high levels of compliance were represented; iii) probability of 

being assigned to treatment ρr were set to {0.1, 0.5} to reflect both new and relatively 

established treatments; iv) Scale parameter of censoring distribution were set to {0.5, 1, 2}; 

v) Each of the parameters , ,  was set to {0.5, 1, 3} separately. Thus, 1458 possible 

combinations were created. For each setting, we generated 10,000 observations and fit the 

2SPS and 2SRI models to the data. This process was repeated 2000 times.

The results are presented in Figure 3. The magnitude of bias increases with increasing 

magnitudes of unmeasured confounding. As the value of shape parameter α increases, the 

magnitude of bias increases. In the scenarios with decreasing hazard, the 2SPS method 

outperforms the 2SRI method. The 2SRI method tends to have larger asymptotic bias when 

the magnitude of unmeasured confounding is large. In the scenarios with constant hazard, 

the 2SPS method slightly outperforms the 2SRI method when the magnitude of unmeasured 

confounding is large. In the scenarios with increasing hazard, both approaches produce 

larger biases. The 2SRI method performs better when the magnitude of unmeasured 

confounding is small. When there are always takers, the 2SRI method could be biased even 

when there is no measured confounding. We also compared the two methods using mean 

square error and the conclusions remain the same (4).

6. Seer-Medicare Prostate Cancer Study

Prostate cancer is the highest prevalence non-skin malignancy among American men (In 

2011, there were an estimated 2,707,821 men living with prostate cancer in the United 

States. The number of deaths was 23.0 per 100,000 men per year). Unlike prostate cancers 

that are diagnosed at an early stage, locally advanced prostate cancer is associated with 

substantial morbidity and mortality. Radiation therapy is a common treatment for locally 

advanced prostate cancer. Two randomized trials recently demonstrated that radiation 

therapy reduces mortality for men with locally advanced tumors who also receive systemic 

androgen deprivation[9, 10]. However, both trials excluded elderly patients and those with 

early stage, PSA-screen detected cancer and therefore had less generalizability, a common 

criticism of randomized evidence. Therefore, we applied two-stage IV methods to evaluate 

survival outcomes in locally advanced prostate cancer, assessing survival outcomes of 

androgen deprivation therapy with or without radiation therapy in comparison to the 

randomized trials.

We analyzed data from the Surveillance, Epidemiology and End Results (SEER)-Medicare 

database. The SEER-Medicare database links patient demographic and tumor-specific data 

collected by SEER cancer registries to Medicare claims for inpatient and outpatient care. We 

considered patients with prostate cancer diagnosed between January 1, 1995 and December 

31, 2007 in SEER with follow up through December 31, 2010 in Medicare. The following 

patients were excluded: 1) older than age 85; 2) with unknown urban category; 3) in hospital 
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referral regions (HRR) with less than 50 patients; 4) with unknown distance to the closest 

radiation facility; 5) patients who died within the first 9 months of the study. A total of 

31,541 patients were selected and categorized as receiving androgen deprivation with or 

without radiation therapy.

The cohort was divided into the following three groups: 1) patients with American Joint 

Commission on Cancer (AJCC) Tumor stage (T-stage) of T2 or T3 and aged 65-75 (called 

the RCT Cohort). The patients in the “RCT Cohort” are most comparable to the patients 

from the two randomized studies of androgen deprivation with or without radiation 

therapy[9, 10]; 2) elderly patients under-represented or excluded from the published 

randomized trials with T-stage T2 or T3, aged 76-85 (called the “Elderly Cohort”); and 3) 

patients with early stage, PSA-screen detected cancer with T-stage T1 disease who were 

excluded from the published randomized trials (called the “Screen-Detected Cohort”).

The study by Widmark et al.[9] included men from 47 centers in Europe diagnosed between 

February, 1996 and December, 2002. 875 patients with locally advanced prostate cancer 

(T3; 78%; prostate-specific antigen (PSA) ≤ 70 ng/mL; N0; M0) were enrolled. 439 patients 

were randomly assigned to androgen deprivation alone and the other 436 patients received 

androgen deprivation with radiation therapy. The study by Warde et. al. enrolled 1,205 

patients with locally advanced (T3 or T4) prostate cancer, organ-confined disease (T2) with 

either PSA >40 ng/mL or PSA >20 ng/mL and a Gleason score of 8 or higher between 1995 

and 2005. 1205 patients were randomly assigned to receive the androgen deprivation alone 

(n=602) or androgen deprivation with radiation therapy (n=603). The hazard ratios for 

overall mortality reported previously [9] and [10] were 0.68 (95% CI 0.52–0.89) and 0.77 

(95% CI 0.61–0.98). For ease of comparison, we combined the results of the randomized 

trials using weighted-average meta-analysis. The meta-analytic HR was 0.73 (0.61–0.87).

To assess the effectiveness of androgen deprivation with or without radiation therapy in 

reducing overall mortality (death from any cause), we performed two-stage IV Weibull 

regression analysis (2SPS and 2SRI) using a local area treatment rate instrument and 

controlling for the propensity score. The local area treatment rate instrument was defined as 

the proportion of patients who received definitive treatment (surgery or radiation therapy) 

among all patients with prostate cancer in the hospital referral region (HRR) and we 

categorized this instrument into a binary variable according to its median. This IV measures 

the aggressiveness of local area treatment and captures regionally distinct structural care 

variation not fully explained by patient characteristics. The IV was strongly associated with 

treatment assignment and balanced important prognostic factors [3]. The propensity score 

model included potential confounding variables including age, race, ethnicity, clinical T 

stage, N stage, and World Health Organization tumor grade, 17 categories of co-morbid 

disease, urban residence, and census track median income.

As shown in Table 2, there is variability in the estimated HRs obtained from the 2SPS and 

2SRI methods. We estimated the shape parameter α ≈ 1.6 from the data. Using Figure 3, we 

can see that the bias for both the 2SPS and 2SRI methods is the largest when we have an 

increasing hazard (α > 1), even when the magnitude of unmeasured confounding is 

relatively small. When the hazard function is a decreasing one (α < 1), the 2SPS method 
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produces more stable and less biased estimates than the 2SRI method. In this case, 2SPS 

may be a more appropriate approach to use. In the RCT Cohort, the estimated HRs 

(HR=0.96) from both IV methods are much larger than the meta-analytic HR from the two 

randomized studies. Note that the confidence intervals are also much larger in both IV 

analyses than in the original RCTs. In the published RCTs, the authors concluded that there 

was a statistically significant treatment effect (combined therapy is better) whereas from our 

IV analysis, we can’t draw this conclusion. In the total study sample and separately in the 

RCT Cohort and the Screen-Detected Cohort, the two IV estimates are quite similar. 

However, for the Elderly Cohort, the estimate from the 2SPS method is different from the 

estimate from the 2SRI method.

7. Discussion

Many clinical and health services studies are using health care databases to compare the 

treatment effectiveness for drug and surgical therapies, but are prone to unmeasured 

confounding. Two stage IV methods have been gaining popularity among clinical 

researchers because these methods provide a relatively simple approach to analyzing 

survival outcome studies in the presence of unmeasured confounding. However, current 

knowledge about potential bias in estimating the log causal hazard ratio is limited. As 

demonstrated in our prostate cancer study, the large treatment effects estimated from two 

stage IV methods could be attributable to potential bias. We have derived closed-form 

expressions for the asymptotic bias of the 2SRI and 2SPS approaches assuming the survival 

times follow a Weibull distribution with shape parameter α and scale parameter K. We have 

demonstrated that these analytic results are consistent with our simulation results.

For binary outcomes, two previous studies[5, 18] demonstrated that the bias in the treatment 

effect estimated using the 2SRI approach increases as the magnitude of confounding 

increases. In this current work, we have shown analytically and by simulation that the 2SRI 

and 2SPS approaches are both biased in estimating the causal hazard ratio among compliers. 

In some situations when the hazard is decreasing (e.g among patients who have recently 

received a kidney transplantation), the 2SPS method is less biased than the 2SRI method and 

could be a more appropriate method to use. When the hazard is an increasing function, both 

IV methods may produce very large bias even under a moderate amount of unmeasured 

confounding. In this case, we recommend exercising caution when interpreting results from 

two-stage IV survival models.

We have shown that even when all IV assumptions are met, both the 2SRI and the 2SPS 

methods could fail to consistently estimate the causal hazard ratio among compliers. Our 

analytic results for bias may help to guide researchers in deciding when the bias is likely to 

be reasonably small so that two stage IV methods may be reasonably applied. Furthermore, 

in a sensitivity analysis approach, one may estimate the shape parameter and the censoring 

proportion among patients assigned to treatment or control from the data. With the shape 

parameter and censoring proportions fixed based on our known data the level of the 

unmeasured confounding could be varied to examine how the estimates would change, as 

shown in Figures 1 and 2. Alternative methods include partial likelihood estimation [19].
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Appendix

Appendix A: Mixture of Weibull Distributions

Prove the distribution function of observed survival time T conditional on random 

assignment R can be expressed as the following equations:

(A.1)

and,

(A.2)

In the above equations, AT represents always takers, C represents compliers, and NT 

represents never takers. Other definitions of parameters and distributions that are used in the 

proof are given below:

no defiers under monotonicity assumption

Wan et al. Page 17

Stat Med. Author manuscript; available in PMC 2016 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proof

F(T∣R = 1) can be expressed as:
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F(T∣R = 0) can be expressed as:

Appendix B: Proofs related with Derivation of Closed Form Solution

1. Assume survival time T ~ Weibull(α, K) and censoring time L ~ Weibull(α, λ). Let 

Y = min(T, L) and δ = I(T ≤ L). Show that
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and,

(B.1)

Proof:

Thus, 

2. Assume survival time T is a mixture of three Weibull distributions with Density 

. T1 ~ Weibull(α, K1), T2 ~ Weibull(α, K2), and T3 ~ 

Weibull(α, K3). The weights are p1, p2, p3 and . The censoring time L ~ 

Weibull(α, λ). Let Y = min(T, L) and δ = I(T ≤ L). Show that

(B.2)

Proof:
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3. Given X follows a Weibull distribution (α*, K). Show that

(B.3)

Proof:

4. Given X follows a Weibull distribution (α*, K). Show that

(B.4)

Proof:

5. Given X follows a Weibull distribution (α*, K). Show that

(B.5)

Proof:
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6. Let Ti denote the survival time and Ci denote the censoring time for subject i. Ti 

and Ci are independent. Ti ~ weibull(α, K), and Ci ~ weibull(α, λ). Let Yi = min(Ti, 

Ci) denote observed follow-up time and δi be the indicator variable δi = (Ti ≤ Ci). 

Show that:

(B.6)

Proof:

Let  and use (B.1)

Both E(Yi δi) and E(Yi) E (δi) have the same integral functions. Thus,

Similarly, we can establish the following:

Appendix C: Derivation of probability limits of M.L.E of α, K0, K1 for 2SPS

Let Y = min(T, C) be observed follow-up time and δ = I(T ≤ C) be the censoring time. The 

subjects are assigned to either treatment group (R = 1) or control group (R = 0). The 

distribution of each subgroup has different scale parameter K but the same shape parameter 

α*. Thus, likelihood function of observed follow up time Y can be written as:
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For treatment assignment group and control assignment group, subjects are from compliers 

(c), never takers (nt), and always takers (at). Let nR1, nR0 denote number of subjects 

assigned to treatment (R = 1) and control (R = 0). Let nR1, at, nR1, nt, nR1, c denote number of 

always takers, never takers, and compliers that are assigned to treatment group. nR1, at + 

nR1, nt + nR1, c = nR1. Let nR0, at, nR0, nt, nR0, c denote number of always takers, never takers, 

and compliers, who are assigned to control group.nR0,at + nR0, nt + nR0, c = nR0. Therefore, 

the likelihood can be rewritten as:

Next, the log likelihood function is:

To derive the M.L.E of K0, K1, take the first derivative of l(y) with respect to K0, K1 and set 

score equation to 0, we have
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(C.1)

and,

(C.2)

To derive the M.L.E of α*, take the first derivative of l(y) with respect to α* and set score 

equation to 0 and replace K1, K0 with the expressions (C.1) and (C.2), we have

M.L.E α̂* is the solution to the above equation. Next, divide both sides by total number of 

subject n, we have
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As nR1, nR0, nR1, at, nR1, nt, nR1, c, nR0, at, nR0, nt, nR0, c → ∞, the score equation converges to 

the following:

(C.

3)

Use the results from Appendix B, we can derive the following:

and,
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Let  be the solution to the equation (C.3). By the consistency of M.L.E, Thus, we have 

 Next, substitute α̂* into equation (C.1)

Asymptotically, it converges to

Similarly, K̂
1 converges to
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Appendix D: Derivation of probability limits of M.L.E of α, K0, K1, K2 for 

2SRI

Under the no AT assumption, we can find an expression for λ1 as follows. The first stage 

regression can be re-expressed as following:

Note that Z, E and Z, R are one-to-one correspondence. Knowing Z, E will let us know Z, R 

and vice versa. Under no always taker assumption, we observe three subgroups 1) Z = 1, R = 

1. Only compliers in this group; 2) Z = 0, R = 1, Only never takers in this group; 3) Z = 0, R 

= 0, both never takers and compliers in this group. There are no patients that are assigned to 

control but still takes on active treatment (Z = 1, R = 0). For the 3 subgroups, essentially we 

are fitting 3 Weibull distributions with the same shape parameter α* and 3 different shape 

parameter K0, K1, K2 with Weibull regression model: logh(t) = λ0 + λ1 Z + λ2 E

The likelihood function is:

The log likelihood is:
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Take the first derivative of l(y) with respective to K0, K1, K2 respectively and set score 

equation to 0, then we have

(D.1)

(D.2)

(D.3)

Take the first derivative of l(y) with respective to α* and replace K0, K1, K2 with expression 

(D.1),(D.2),(D.3), then we have:
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M.L.E α̂* is the solution to the above score equation. Next, divide the equation by total 

sample size n,

As sample sizes in each principal strata → ∞, the score equation will converge to:
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(D.

4)

where,
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 is the solution to the equation (D.4). Thus, . Probability limits of M.L.E of K0 

can be derived as following:

Similarly, for K1, K2,
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Appendix E: Assumption of the same shape parameter for survival and 

censoring distributions

In section 2 of the manuscript, we made the assumption that both time to event and 

censoring time have the same shape parameter so that close form solution could be derived. 

To evaluate the potential impact on the bias when the time to event and censoring time have 

two different shape parameters and the assumption is violated, we re-evaluated the scenario 

in the table 1 with the shape parameter α = 0.5. We set the shape parameter of censoring 

distribution to be 1.2 and compared the differences. We found that the differences in bias of 

2SPS between two scenarios ranges from 0.01 to 0.018 (δ varies from -2 to 2). For 2SRI 

approach, the differences ranges from 0.001 to 0.13. These differences are attributable to the 

different censoring proportions between two scenarios. The shape of relationship between 

bias and δ remains approximately unchanged (data not shown). It should be noted that under 

the assumption of having the same shape parameters for both survival time and censoring 

time, the maximum likelihood estimator based on the survival likelihood that does not 

incorporate the assumption of the shape parameters being the same is not fully efficient.
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Figure 1. 
Plot of bias against magnitude of unmeasured confounding Δ using 2SPS method:(a) P (R = 

1) = 0.8, ρa = 0, ρc = 0.5, , . (b) P (R = 1) = 0.8, ρa = 0, ρc = 0.8, , 

. (c) P (R = 1) = 0.8, ρa = 0, ρc = 0.5, , . (d) P (R = 1) = 0.5, ρa = 0, 

ρc = 0.8, , . The different colour of solid line corresponds to different shape 

parameter: black (α = 0.5), red (α = 1), and green (α = 2).
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Figure 2. 
Plot of bias against magnitude of unmeasured confounding Δ using 2SRI method: (a) P (R = 

1) = 0.8, ρa = 0, ρc = 0.5, , . (b) P (R = 1) = 0.8, ρa = 0, ρc = 0.8, , 

.(c) P (R = 1) = 0.8, ρa = 0, ρc = 0.5, , . (d) P (R = 1) = 0.5, ρa = 0, 

ρc = 0.8, , . The different colour of solid line corresponds to different shape 

parameter: black (α = 0.5), red (α = 1), and green (α = 2).
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Figure 3. 
Absolute bias in estimating log causal hazard ratio using two stage IV methods (X-axis is 

the magnitude of confounding Δ, Y-axis is the absolute bias). For 2SRI method or 2SPS 

method, the biases computed for each of 1458 possible scenarios were grouped by the 

magnitude of shape parameter α (decreasing hazard for α = 0.5, constant hazard for α = 1, 

and increasing hazard for α = 2) and the magnitude of confounding Δ (larger values 

represent lager confounding effects and 0 represents no confounding).
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Figure 4. 
Mean square error in estimating log causal hazard ratio using two stage IV methods (X-axis 

is the magnitude of confounding Δ, Y-axis is the Mean Square Error). For 2SRI method or 

2SPS method, the mean square error computed for each of 1458 possible scenarios were 

grouped by the magnitude of shape parameter α (decreasing hazard for α = 0.5, constant 

hazard for α = 1, and increasing hazard for α = 2) and the magnitude of confounding Δ 

(larger values represent lager confounding effects and 0 represents no confounding).
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Table 2

Bias in estimating causal hazard ratio parameter for prostate cancer study

Outcome Group IV2sri IV2sps

All cause mortality Total (n=31541) 0.57(0.17-1.06) 0.59(0.19-1.09)

RCT Cohort (n=12924) 0.96(0.18-5.81) 0.97(0.18-5.94)

Elderly Cohort (n=14340) 0.74(0.20-1.83) 0.96(0.26-2.35)

Screen-Detected Cohort (n=4277) 0.34(0.02-2.99) 0.35(0.03-3.22)
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