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Abstract

Elevated dopamine function and alterations in the medial temporal lobe structure and function 

(MTL) are two of the most robust findings in schizophrenia, but how interactions between these 

abnormalities underlie the onset of psychosis is unclear. Although several preclinical models of 

psychosis have been proposed, the methylazoxymethanol acetate (MAM) rodent model provides a 

mechanistic account linking these two clinical observations. The model proposes that psychosis 

develops as a result of a perturbation of MTL function, leading to elevated striatal dopamine 

dysfunction. We review a number of recent neuroimaging studies that examine components of the 

putative model in people with an ultra high risk (UHR) of psychosis. Whilst data from these 

studies are broadly consistent with the MAM model, that the potential for comparing various kinds 

of neurobiological data across animal and human studies imposes some limitations on what can be 

inferred from these data. Going forward, longitudinal studies are needed to explicitly test the 

model’s predictions in UHR populations.
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The Neurobiology of Psychosis Onset

In recent years several animal models have been developed to advance research into the 

neurobiological mechanisms involved in the development of psychosis and emergence of 

symptoms associated with the disorder (see Box 1). The development of these preclinical 

models has been informed by clinical observations in patients with schizophrenia and 

psychosis. Two of the most robust and replicated clinical findings are elevated presynaptic 

dopamine function in the midbrain and striatum [1–3], and neuroanatomical and 

physiological alterations in the hippocampus and adjacent medial temporal lobe (MTL) 

structures [4–6]. However, these neurobiological changes have largely been identified 

through independent bodies of work, so how they interact during the development of 

psychosis is still unclear. Whilst dopamine dysfunction has historically been regarded as the 

primary factor underlying psychosis [7], recent work in experimental animals, using the 
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methylating agent methylazoxymethanol acetate (MAM) has highlighted the role of a 

hippocampal-midbrain-striatal circuit, and introduced the concept that subcortical dopamine 

function is elevated as a consequence of changes in descending outputs from the MTL [8, 9]. 

The MAM animal model is appealing as it incorporates a disruption of brain development, 

which is thought to be fundamental to psychotic disorders [10–12]. Brain development is 

experimentally perturbed by the administration of methylazoxymethanol acetate to pregnant 

rats on gestational day 17 [12] (see Box 2 for details). An elaboration of this model can be 

extended to the psychopathology of psychosis, with the suggestion that the elevation in 

dopamine function leads to the formation of abnormal associations and that this underlies 

the generation of symptoms such as delusions [13, 14]. Ultimately, useful animal models of 

disease need to provide a framework in which to generate testable predictions for clinical 

research. Although just one of several animal models from which hypotheses can be derived, 

the MAM model provides a particularly promising framework for clinical research in 

psychosis (see Box 4).

Box 1

Rodent Developmental Models of Psychosis

Prenatal immune activation

Based on the premise that prenatal infection acts as a “neurodevelopmental disease 

primer” for a number of chronic mental illnesses, including schizophrenia, these models 

use maternal gestational exposure to: human influenza virus, the viral mimic 

polyriboinosinic-polyribocytidilic acid (Poly I:C), the bacterial endotoxin 

lipopolysaccharide, the locally acting inflammatory agent turpentine, or selected 

inflammatory cytokines [18, 19].

• Anatomy: Reduced thickness of the neocortex and hippocampus, Decreased 

myelination and axonal diameters in the hippocampus, No loss of 

oligodendrocytes

• Pharmacology: Reductions of cortical Reelin immunoreactivity in the offspring

While this model may invite further research into the mechanisms involved in 

schizophrenia pathology, more conclusive data on the involvement of Reelin in 

schizophrenia and on the behavioral phenotype of the animal model are required before 

conclusions about the relevance of this model for schizophrenia can be made.

Neonatal hippocampal lesion

A neurodevelopmental model is generated by using adult rats with neonatal and adult 

ibotenic acid lesions of the ventral hippocampus, involving regions that directly project 

to the prefrontal cortex, i.e., ventral hippocampus and ventral subiculum and that 

correspond to the anterior hippocampus in humans [20].

• Anatomy: Frontal lobe abnormalities, dopamine system dysregulation. 

Molecular changes in the PFC (decreased NAA levels, GAD67 mRNA, BDNF 

mRNA), Shorter and less branched basilar dendrites and reduced spine density 

at the mPFC
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• Neurophysiology: Increased mesolimbic/nigrostriatal dopamine transmission

• Pharmacology: Amphetamine-induced hyperactivity, Apomorphine-induced 

stereotypies, Reduced catalepsy to haloperidol MK-801, PCP-induced 

hyperactivity

• Behavior: Sensorimotor gating deficits, deficits in PPI and latent inhibition, 

impaired social behaviors and working memory problems

These models show the plausibility of neurodevelopmental damage having selected 

deleterious effects after a prolonged period of relative normalcy. However, lesion models 

have limited construct validity, as the schizophrenic brain does not manifest a “lesion” 

analogous to any of these models.

Chronic phencycidine (PCP)

These models involve the pharmacological blockade of NMDA receptors in adult 

animals, based on observations that noncompetitive NMDA antagonists, such as 

phencyclidine (PCP) and ketamine, exacerbate some psychotic symptoms in 

schizophrenic patients and have psychotomimetic effects in normal humans [21, 22].

• Anatomy: Fewer PFC synapses, decreased parvalbumin (PV+) in hippocampus, 

Increased astroglia process density w/o change in glia number

• Neurophysiology: Dysregulation of the firing patterns of mesolimbic and 

mesocortical dopaminergic neurons

• Behavior: Sensorimotor gating deficits, reversal learning and extra-dimensional 

set-shifting, impaired social interactions, No perseverative responding

Unlike the etiological or neonatal lesion models, the PCP approach does not, however, 

address the developmental component of schizophrenia.

Methylazoxymethanol (MAM)

MAM administration to pregnant rats to disrupt embryonic brain development [8, 9, 12, 

23].

• Histology/Anatomy: Decreases in cortical thickness and increases in neuronal 

density (hippocampus, parahippocampal cortex, medial prefrontal cortex) and 

no differences in neocortical neuron number; Decreased parvalbumin expression 

in ventral hippocampus, medial and orbital prefrontal cortex.

• Neurophysiology: Abnormalities in corticocortical synaptic transmission, 

Striatal hyperdopaminergia, Altered glutamatergic neurotransmission in the 

hippocampus, Disruption of evoked gamma rhythms

• Pharmacology: Increased responsivity to psychostimulants (amphetamine, 

phencyclidine), rapid onset of antipsychotic drug effects on DA neurons

• Behavior: Cognitive dysfunction, sensorimotor gating deficits, latent inhibition 

reversal learning, extradimensional set-shifting, prepulse inhibition, reduced 

social interaction, perseverative responding
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Box 2

The MAM-treated Rat as a Pathophysiological Model of Schizophrenia

Adult rats exposed to MAM (mg/kg) in utero at gestational day 17 show selective 

histopathology in mediodorsal thalamus, hippocampus, parahippocampal and prefrontal 

cortices [12] which may in part be due to decreased density of parvalbumin positive 

GABAergic interneurons throughout these regions [24]. In particular, reduced 

parvalbumin expression is seen in MAM treated rats in several regions associated with 

schizophrenia pathology such as the orbitofrontal and medial prefrontal cortex and 

hippocampus [25]. Reduced parvalbumin expression may impact on certain classes of 

cortical GABAaergic interneurons known to be decreased in schizophrenia [26].

Crucially, MAM-treated rats display elevated striatal dopaminergic activity, which is 

normalized by inactivating the subiculum, an output region of the MTL that projects to 

the nucleus accumbens via a polysynaptic pathway involving glutamatergic pyramidal 

neurons [8]. In healthy rats, activation of the subiculum increases subcortical dopamine 

activity [27]. In MAM-treated rats, over-activity in reciprocal signaling pathways 

between the MTL and striatum [8] due to a loss of γ-aminobutyric acid (GABA)ergic 

inhibition of pyramidal neurons in the MTL, leads to increased glutamate release in the 

striatum [28]. Increased activity in glutamate pyramidal neurons in the hippocampus 

leads to an increase in glutamate release in the striatum. This stimulates GABAergic 

neurons that project from the striatum to the ventral pallidum, thereby increasing 

inhibition of ventral pallidum GABAergic neurons, leading to the disinhibition of 

midbrain dopaminergic neurons and the increase in the release of dopamine from their 

terminals in the striatum. Dopaminergic neurons in the midbrain project back to the 

striatum and hippocampus, producing further disinhibition and forming a positive 

feedback loop [27]. The projections from the MTL to the striatum mainly terminate in its 

ventral (limbic) portion [29], which can, in turn, influence activity of dopamine neurons 

projecting to more dorsal (associative) striatal areas by a series of ‘spiralling loop’ 

connections with the midbrain [30, 31], and through MTL projections that overlap with 

those from prefrontal cortex in the striatum [32].

Box 4

MAM-model Based Predictions for Human Studies and Methodological 
Limitations

The MAM model provides a framework for making testable predictions for clinical 

research studies in psychosis. For example, according to this model, people at high risk 

of psychosis, or in the early stages of a psychotic disorder, would be expected to show, 

relative to healthy controls:

i. Increased resting state perfusion and activation in the MTL

Limitation: Whilst MR and PET perfusion imaging provide an absolute measure 

of resting cerebral blood flow (rCBF), functional MRI, provides only a proximal 
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and relative measure of neuronal activation. Thus predicting the polarity of a 

given effect is more difficult.

ii. Increased glutamate levels in the MTL and striatum

Limitation: The MAM model predicts increased glutamate release in the 

pathways projecting from the ventral hippocampus (subiculum) to the ventral 

striatum. Measurement of glutamate concentrations in humans using MRS are 

difficult at such an anatomically localized level.

iii. Reduced cortical and MTL GABA levels.

Limitation: Whilst GABA levels can be measured in the cortical areas using 1H-

MRS, reliable measurement is more difficult in the MTL.

iv. Increased dopamine release and neuronal activity in the midbrain and 
ventral striatum

Limitation: 18-Fluorodopa PET measures presynaptic dopamine syntheses but is 

not a direct measure of DA release in the synapse.

v. Altered associations between glutamate levels in MTL and striatum and 
dopamine function in the striatum and midbrain.

Limitation: The MAM model demonstrates a causal relationship between 

increased activity in ventral hippocampal pyramidal neurons, increased 

glutamate release and increased DA release in the VTA and striatum. Currently 

non-invasive neuroimaging in humans can only establish correlational 

associations between different neurotransmitter function/levels.

vi. Altered functional relationships between the MTL, striatum and midbrain 
related to abnormal processing of novelty / motivational / emotional 
salience (i.e. attribution of salience to stimuli that would normally be non-

salient).

Limitation: Testing this prediction requires complex effective connectivity 

modeling. The roles of GABA, Glu and DA signaling in such a model could 

only be inferred.

Human neuroimaging studies allow the measurement of brain structure, function and 

neurochemistry, all important elements of the MAM model. Moreover, recent multi-modal 

neuroimaging work has attempted to integrate different neuroimaging modalities to examine 

how these neurobiological factors interact. It should be considered however, that the 

potential for comparing various kinds of neurobiological data across animal and human 

studies has some limitations. In the context of the MAM model, and its predictions for 

clinical studies, human neuroimaging methods can only provide proximal measures of 

neuronal and neurotransmitter activity. For example, the electrophysiology techniques 

employed in studies of experimental animals provide a direct measure of neuronal activity 

that cannot be achieved with functional Magnetic Resonance Imaging (fMRI). Furthermore, 

microdialysis in freely moving animals allows for a dynamic measurement of 
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neurochemistry that cannot be achieved with Positron Emission Tomography in humans. 

Similarly, Magnetic Resonance Spectroscopy (1H-MRS) can provide only a crude measure 

of neurotransmitter concentrations across large areas of tissue and cannot dissociate between 

metabolic and vesicular neurotransmitter concentrations, although glutamine levels are 

thought to be proportional to the vesicular glutamate fraction [15]. That said, the BOLD 

signal (measures with functional MRI) does reflect the neural response elicited by a stimulus 

[16] and is a ‘down-stream’ physiological measure of the neural activity directly measured 

by electrophysiological recordings. Furthermore, animal 1H-MRS allows the quantification 

of glutamate and GABA concentrations that can be verified with ex-vivo biochemical assays 

therefore providing a relevant measure of these neurotransmitters for preclinical research 

[17]. With these methodological caveats in mind, we review the human neuroimaging 

literature relevant to dysfunction in the putative hippocampal-midbrain-striatal circuit in 

schizophrenia and in individuals at ultra high risk (UHR) of developing the disorder, and 

discuss the extent to which the findings are consistent with the MAM model.

Are Data from Studies in Schizophrenia Consistent with the MAM Model?

Neuroimaging studies in patients who have already developed a psychotic disorder have 

examined several different elements of the putative model (Box 4 describes testable 

hypothesis for clinical studies derived from the MAM model).

Studies using positron emission tomography (PET) and single-photon emission computed 

tomography (SPECT) have shown that in schizophrenia subcortical dopamine synthesis and 

release are increased [7, 36–42]. Structural MRI studies have demonstrated reductions in 

MTL volume [4, 43–46], while fMRI studies have revealed altered MTL activity at rest [47–

51], and altered MTL activation during cognitive tasks involving the processing of salient 

information in the domains of emotion [52–54], novelty [55], and reward processing [56]. 

Schizophrenia has also been associated with increased hippocampal glutamate levels [57, 

58], although increased glutamate levels have also been identified in several regions other 

than the MTL [57, 59–61]. Moreover, both increased [62, 63] and decreased glutamate 

levels have been reported in cortical and striatal regions [64–66]. These inconsistencies may 

be related to between-study and within-study variation in the age, illness stage and the 

treatment history of the patients studied. One study has reported that GABA levels in the 

hippocampus are increased in schizophrenia [67], while a more recent study found no 

differences between patients with schizophrenia and healthy controls [66]. While these 

observations are broadly consistent with the MAM model, their interpretation is potentially 

confounded by the effects of illness and its treatment with antipsychotic medication [68–71].

The effects of antipsychotics may be particularly confounding, as these drugs act on central 

dopamine receptors [2] and even a small amount of treatment may have an effect: a single 

dose of antipsychotic medication can increase hippocampal perfusion in healthy volunteers 

[72]. Brain glutamate levels are also affected by antipsychotic medication [73], and may also 

vary with the stage of psychotic illness, with different findings in patients studied at illness 

onset compared to patients who have a long duration of illness [57].
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Studies in Subjects at UHR for Psychosis

The MAM model is particularly relevant to the development of psychosis, rather than to the 

established disorder. Hence, experimental studies in people who are experiencing prodromal 

symptoms and are at high risk of becoming psychotic are especially useful in the context of 

assessing the validity of the MAM model. These individuals present to mental health 

services with a clinical syndrome characterized by ‘attenuated’ psychotic symptoms, and 

about a third will develop a psychotic disorder within 2 years [74]. They have thus been 

termed at ‘Ultra High Risk’ for psychosis. A further advantage in studying this group is that 

some of the factors that potentially confound the interpretation of data from chronic patients, 

such as antipsychotic medication, are minimized. Finally, longitudinal studies in UHR 

subjects provide a means of examining the human brain before and after the onset of 

psychosis in the same individual, which is an ideal paradigm of investigating factors 

relevant to the onset of psychosis. The present review has therefore particularly focused on 

data from this group.

Dopamine Dysfunction

PET studies have recently found that dopamine function is elevated in people at UHR for 

psychosis [75, 76], particularly in the subgroup that subsequently develops a psychotic 

disorder [77, 78]. This is evident in both the striatum and in the midbrain [77, 78] and a 

longitudinal PET study suggests that there is a progressive increase in striatal dopamine 

function as psychosis develops [79]. Striatal dopamine dysfunction in UHR cohorts is 

reported in the associative subdivision of the striatum, whereas no effects have been found 

on the ventral striatum [75–77, 80].

Medial Temporal Lobe Abnormalities

Several MRI studies using region of interest (ROI) or whole-brain voxel-based 

morphometric (VBM) methods have reported reduced hippocampal grey matter volume in 

UHR individuals relative to healthy controls [81–86]. Although not all studies have found 

reductions in hippocampal volume (e.g., [87]), a meta-analysis found that, overall, there was 

a significant reduction in MTL volume in UHR subjects [88]. There is also evidence that 

these reductions are greatest in the subgroup of UHR subjects who develop psychosis 

subsequent to scanning [88–90]. Within the MTL, reductions in volume have often been 

localized to the anterior part of the left parahippocampal gyrus [89, 90].

MTL function is also altered in UHR populations. In an fMRI study using a verbal memory 

task, UHR subjects showed reduced activation in the left parahippocampal gyrus during 

word encoding, and altered hippocampal engagement bilaterally during correct word 

recognition [91]. Furthermore, in a longitudinal fMRI study, clinical and functional 

improvement in UHR subjects was associated with a longitudinal normalization of altered 

activation in the right parahippocampal gyrus during a working memory task [92]. Increased 

hippocampal activation during a verbal fluency task has also been reported in UHR subjects 

that developed psychosis relative to those that did not [78]. Increases in activation in MTL 

regions, particularly in the amygdala, have been reported in UHR cohorts during abnormal 

emotional salience attribution, in terms of hyperactivation of emotional brain regions to 
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otherwise neutral stimuli [93]. Interestingly, such hyperactivation may predict levels of 

psychotic symptoms and global functioning [94]. Schobel and colleagues [95] found that 

resting regional cerebral blood volume (CBV) was increased in the CA1 region of the 

hippocampus in UHR subjects who subsequently developed psychosis. A longitudinal 

follow-up in this cohort showed that the onset of psychosis was associated with a 

progressive increase in CBV that extended from the CA1 region into the subiculum [95].

Glutamate and GABA dysfunction
1H-MR spectroscopy (MRS) in UHR individuals suggests that glutamate levels in the 

thalamus are lower than in healthy controls [96], and are associated with poor clinical and 

functional outcomes [97]. Independent work has reported that both UHR and first episode 

subjects have higher levels of glutamate in the caudate nucleus than controls [80], and that 

UHR subjects that subsequently developed psychosis had higher striatal glutamate levels 

than UHR subjects who did not become psychotic [98]. A study that examined a medial 

prefrontal region failed to find altered glutamate or glutamine in UHR or first episode 

subjects, but did find reductions in chronic patients [99].

Currently, there are no published neuroimaging studies reporting GABA concentrations in 

UHR subjects. These are, however, of great interest, as the MAM model proposes that 

excessive glutamatergic activity in the MTL is secondary to GABA dysfunction.

Multimodal Imaging Studies in UHR Subjects

Multimodal neuroimaging studies provide a particularly useful source of data for examining 

putative interactions within the MAM model between MTL activity, glutamate and 

dopamine function. A number of recent studies have thus acquired different types of 

neuroimaging data from the same UHR subjects (summarized in Table 1).

Glutamate and Grey Matter Volume

Stone and colleagues [96] investigated the relationship between regional glutamate levels 

and grey matter volume by combining 1H-MRS and volumetric MRI. In UHR subjects, the 

degree to which thalamic glutamate levels were reduced was directly correlated with the 

magnitude of the reduction in grey matter volume in the MTL. No such relationship was 

evident in the controls. This suggests that thalamic glutamatergic dysfunction in UHR 

individuals is associated with cortical structural abnormalities.

Glutamate MRS and fMRI

Animal studies have shown that hippocampal glutamate is critically involved in memory 

encoding [100]. Combining fMRI data acquired during memory encoding and 1H-MRS 

glutamate measures, Valli and colleagues [101] found that in control subjects, MTL 

activation was positively correlated with hippocampal glutamate levels, but that this 

relationship was not evident in UHR subjects. This suggests that in UHR subjects there may 

be a breakdown in the normal relationship between hippocampal glutamate levels and MTL 

activation. Another fMRI study in UHR subjects examined the relationship between 

thalamic glutamate levels and activation during a verbal fluency task [102]. The relationship 
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between thalamic glutamate levels and both MTL and PFC activation was significantly 

altered in UHR subjects compared to controls. Further work suggests that the relationship 

between thalamic glutamate levels and PFC function is particularly perturbed in UHR 

subjects with poor functional outcomes [103].

Glutamate and Dopamine

The MAM model proposes that striatal hyperdopaminergia is driven by upstream changes in 

hippocampal glutamate function. Using 1H-MRS and 18F-DOPA PET data from the same 

individuals, Stone and colleagues [104] found a negative relationship between MTL 

glutamate and striatal dopaminergic function in UHR subjects that was absent in controls, 

and was most marked in the UHR subjects that subsequently developed psychosis.

Dopamine and fMRI

Allen and colleagues [105] used a verbal memory task to examine the relationship between 

MTL activation and striatal dopaminergic function, combining fMRI and 18F-DOPA PET in 

the same subjects. The relationship between striatal dopamine function (in the limbic 

subdivision) and MTL activation during both verbal encoding and recognition in UHR 

subjects was significantly different to that in controls. In controls, there was a negative 

correlation between activation averaged across the subiculum and hippocampus during 

correct recognition trials, and dopamine levels in the limbic striatum: this correlation was 

absent in the UHR group.

Using a salience attribution task, Roiser and colleagues report that UHR subjects attributed 

inappropriate importance to unrewarded stimuli [106], and that this was associated with 

altered activation in the ventral striatum and an altered relationship between hippocampal 

responses and striatal dopamine function [106]. These findings are broadly consistent with 

the model proposed by Kapur and colleagues, which suggests that salience processing is 

perturbed prior to the onset of psychosis, and is driven by abnormal striatal dopamine 

function [34].

Fusar-Poli and colleagues combined fMRI and 18F-DOPA PET to examine the relationship 

between prefrontal cortical activation (using a working memory task) and striatal dopamine 

function in people at UHR of psychosis [107]. In UHR subjects, dorsolateral PFC activation 

was negatively correlated with presynaptic dopamine function in the associative striatum, 

whereas in controls the correlation was positive. A similar study using 18F-DOPA PET and 

fMRI in conjunction with a verbal fluency task found that in UHR subjects, the ventral PFC 

response was positively correlated with the level of striatal dopamine function, a relationship 

that was absent in controls [108]. Collectively, these findings suggest that subcortical 

dopamine dysfunction in UHR subjects is related to alterations in both medial temporal and 

prefrontal function. This is consistent with the notion that descending inputs from cortical 

regions may drive elevated dopamine function in psychosis [8, 9]. Furthermore, while the 

MTL and PFC each have a well-established role in cognitive processes, the precise ways in 

which these regions interact to support these functions is not fully understood. Research in 

rodents shows that a projection of neurons extending from the CA1 region of the 

hippocampus and subiculum to the PFC is critically involved in aspects of cognition related 
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to executive function [109]. The implications for the MAM model of putative MTL-PFC 

dysregulation in psychosis are currently unclear. Figure 1 displays MTL/PFC – dopamine 

correlations in UHR subjects across a range of cognitive tasks.

Longitudinal Multimodal Studies

Schobel and colleagues [110] reported that UHR subjects showed increased hippocampal 

perfusion in the CA1 subfield of the hippocampus at presentation, and that this was 

associated with a longitudinal reduction in hippocampal volume during the progression to 

psychosis, especially in the CA1 field and the subiculum/ventral hippocampus. Although 

this study did not examine interactions with striatal dopamine levels or in vivo measures of 

glutamate function, in a series of related experiments in mice, the authors found that similar 

changes in hippocampal CBV and volume could be induced by ketamine, and were 

dependent on local glutamate release. Furthermore, these volumetric changes were 

associated with a local reduction in parvalbumin positive GABA neurons. Excessive 

glutamate concentrations around neurons can result in excitotoxicity through the influx of 

calcium ions [111]. The notion that increased glutamate levels might lead to reduction in 

grey matter volume is consistent with data from neuroimaging studies that have combined 

MRS and MRI in first-episode patients and individuals at UHR [61, 96].

To What Extent Do the Human and Animal Data Converge?

The data reviewed above suggest that a number of findings from neuroimaging studies in 

schizophrenia patients are broadly consistent with the MAM model. Studies in UHR 

populations have produced similar results, revealing altered interactions between regions 

and neurotransmitter systems implicated in the MAM model.

A prediction central to the MAM model is increased dopamine function in the ventral 

(limbic) striatum, although MAM rats also display hyperactivity in the lateral VTA, which 

projects to the associative striatum [31]. Independent groups have confirmed striatal 

dopamine dysfunction in schizophrenia patients and people at UHR but mainly in the 

associative (dorsal) striatum, with a lack of effects in its ventral portion [75–77, 80]. These 

findings in humans represent an inconsistency between the predictions derived from the 

MAM model and clinical observations. One multimodal imaging study reports an 

association between MTL functional activation and dopamine levels in the ventral striatum 

[105] and it has been established that MTL projections to the ventral striatum can influence 

activity of dopamine neurons in the associative striatum via connections with the midbrain 

[30, 31]. Nevertheless, an important question still remains about dopaminergic dysfunction 

in different striatal subdivisions and further research is warranted to resolve the disparity 

between MAM model predictions and clinical observations regarding dopamine 

dysfunction.

Whilst evidence of increased caudate glutamate levels [80], and of altered relationship 

between MTL glutamate levels and striatal dopamine in UHR populations, are in line with 

the MAM model, there is also evidence that glutamate levels are reduced in the thalamus 

[96]. Although the MAM model does not make specific predictions about glutamate activity 

in this region, the thalamus is a key component of the circuit that links the MTL and PFC to 
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the striatum and the midbrain [112]. According to the MAM model, cortical glutamate levels 

are increased due to a reduction in GABAergic inhibition of local pyramidal neurons [14]. 

However, MRS studies in patients with schizophrenia have reported both increased and 

decreased cortical glutamate levels. Decreases have been described in the medial prefrontal 

cortex [57], whereas increases have been reported in the hippocampus [67]. Most studies in 

unmedicated first episode psychosis patients have found elevated glutamate and glutamine 

levels in the hippocampus, anterior cingulate and thalamus [58, 60]. This potentially 

confusing set of findings may partly reflect a variation in the nature of alterations in 

glutamate levels according to the stage of psychotic illness [57]. Longitudinal MRS studies 

could help to resolve this issue, but there are few such studies in the literature [61, 97]. 

Nevertheless, across a variety of regions, glutamate levels in UHR and psychotic subjects 

have often been found to be increased. The reduction in thalamic glutamate levels could be 

related to increased cortical glutamate levels; overactivity in thalamic pyramidal neurons 

(perhaps due to NMDA receptor dysfunction on local GABAergic interneurons) may result 

in a depletion of local glutamate levels, but an increase in glutamate release from the dense 

projections of the thalamic neurons to cortical regions. This would be consistent with 

evidence of both reduced thalamic and increased cortical glutamate levels in the same UHR 

subjects [96].

The MAM model also predicts that cortical GABA levels should be decreased in psychosis 

due to loss and dysfunction of inhibitory GABAergic interneurons. There have only been a 

small number of MRS studies of GABA in patients with schizophrenia, but these have found 

increases in cortical GABA levels [67]. This has been interpreted as reflecting a 

compensatory increase in firing by unaffected GABAergic interneurons [113]. As with MRS 

studies of glutamate, disease stage may influence the nature of the findings: for example, 

GABA levels in the basal ganglia appear to be reduced in patients in the early stage of 

psychosis, whereas increased GABA levels in the anterior cingulate cortex and the parieto-

occipital cortex have been reported in chronic patients [15]. Antipsychotic medication may 

also affect MRS measures of GABA [15]. To date, no studies have examined GABAergic 

function in medication naïve patients with psychosis, or in UHR subjects. Similarly, how 

GABA levels relate to glutamate levels in the same individual has yet to be investigated.

It is important to bear in mind that studies in UHR and psychotic subjects have also 

identified neurobiological findings in other regions and pathways that are not directly related 

to the MAM model. Thus, structural and functional alterations in UHR and psychotic 

subjects are not restricted to a circuit involving the MTL, striatum and midbrain: rather, the 

onset of psychosis had also been associated with alterations in the structure, function and 

connectivity of the prefrontal, anterior cingulate, lateral temporal and cerebellar cortices [82, 

89–91, 114, 115]. Similarly, the model does not postulate a mechanistic role for other 

neurobiological factors that are potentially relevant to psychosis, such as the 

endocannabinoid system [116] and neuroinflammation [117, 118] (Box 5).

Box 5

Outstanding Questions

What Does the Model Not Explain About the Onset of Psychosis?
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• The MAM model provides a testable neurobiological framework in which to 

formulate hypotheses about the development of psychosis in humans. However, 

there are some factors that are implicated in the development of psychosis that it 

does not incorporate. Psychosis has a strong genetic component ([119]), but the 

role of specific risk genes in the model has yet to be determined.

• Work in experimental animals suggests that stress can influence brain GABA 

function in the MTL [120–122]. MAM-treated rats are anxious and hyper-

responsive to stress [123], and peripubertal administration of benzodiazepines 

prevents MAM-induced pathology, blocking the elevation in dopamine function 

normally seen in MAM-treated animals [124]. Stress could also lead to changes 

in the MTL through its effects on cortisol levels. Cortisol levels are altered in 

UHR subjects [125–127], and are associated with reduced MTL volume in first 

episode psychosis [128].

• Alterations in the PFC could influence the MAM model circuit in a number of 

ways. Research in rodents shows that neurons in the CA1 region of the 

hippocampus and the subiculum project directly to the PFC [109]. It is possible 

that the hippocampal–PFC–striatal projections regulate dopamine levels at rest, 

but in the presence of salient stimuli, the direct connection between the 

hippocampus and striatum by-passes the PFC [129, 130]. The PFC is also one of 

the few cortical areas that has direct projections to dopaminergic neurons in the 

midbrain [131].

Concluding Remarks

There is a substantial body of evidence from a range of studies in patients with psychosis 

and individuals at UHR for the disorder that supports the MAM model. Much of the human 

data has come from neuroimaging studies, including unimodal studies of a particular 

component of the model and multimodal studies that have examined more than one 

component.

Multimodal studies can be particularly informative as they allow an assessment of the 

putative interactions between different components that are thought to be critical to the 

model. Longitudinal multimodal studies also allow investigation of the chronology of these 

alterations. Overall, the literature indicates that a hippocampal-midbrain-striatal circuit is 

abnormal in psychosis, and that this involves alterations in MTL structure and activity, and 

changes in glutamate and dopamine function. However, caution is needed when comparing 

various kinds of data across rodent and human studies, as these are not measuring precisely 

the same neurophysiological and neurochemical processes.

Crucially, further work is required to clarify the chronology of these alterations in humans, 

and their etiology. Longitudinal multimodal studies in high-risk subjects, and studies that 

integrate neurobiological findings with genetic and environmental risk factors, are crucially 

needed to address these issues. In addition, the model provides a basis for evaluating the 

impact of novel experimental and clinical interventions, such as the administration of 

compounds that act on GABA or glutamate function in people at high risk of psychosis.
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Box 3

Link Between Pathophysiology And Behavior

Lisman and Grace propose that activation of the hippocampal-midbrain loop begins when 

the hippocampus receives new information not already stored in long-term memory [14]. 

The resulting novelty signal is conveyed through the hippocampal subiculum, nucleus 

accumbens, and ventral pallidum to the ventral tegmental area (VTA) where it 

contributes to novelty-dependent firing of dopaminergic cells. In the ascending arm of 

the loop, dopamine (DA) is released within the hippocampus enhancing Long Term 

Potentiation (LTP, a form of synaptic plasticity important for learning [13]).

Functional Magnetic Resonance Imaging (fMRI) studies in healthy human subjects 

suggest that VTA activation is driven by absolute rather than relative novelty [33] as well 

as other types of salient stimuli. Thus, the human VTA, when activated with the 

hippocampus, contributes to enhanced learning in the context of absolute novelty. 

However, as psychosis develops, increased striatal dopamine release may perturb the 

hippocampal-VTA loop and disrupt the normal attribution of salience, such that non-

novel or unrewarding stimuli become salient. This is thought to underlie the development 

of the inappropriate associations that underlie psychotic symptoms, particularly delusions 

[34]. Disruption of dopaminergic signaling in the same network may also alter PFC 

function and the cognitive impairments widely seen in schizophrenia patients [35].
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Figure 1. 
Altered relationship between cortical activation and subcortical dopamine function in 

subjects at Ultra High Risk of Psychosis (UHR). (A) Functional activation in the left inferior 

frontal gyrus (IFG) during verbal fluency is positively correlated with presynaptic 

dopaminergic activity in the associative striatum [108]. (B) Functional activation in the right 

IFG during working memory is positively correlated in healthy controls but negatively 

correlated in UHR subjects [107]. (C) Functional activation in the medial temporal lobe 

(MTL) during verbal encoding is positively correlated with subcortical dopamine levels in 

UHR subjects but not in healthy controls [105]. (D) MTL activation during verbal 

recognition was negatively correlated with dopamine levels in the healthy control group but 

not in the UHR group [105]. (E) Abnormal interaction between functional activation in right 

hippocampus and subcortical dopamine function during the processing of reward salience 

[106]. Ki = 18F-fluorodopa influx constants. All figures adapted with permission from the 

author’s original work.
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