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Abstract

We focus on the application of constraint-based methodologies and, more specifically, flux 

balance analysis in the field of metabolic engineering, and enumerate recent developments and 

successes of the field. We also review computational frameworks that have been developed with 

the express purpose of automatically selecting optimal gene deletions for achieving improved 

production of a chemical of interest. The application of flux balance analysis methods in rational 

metabolic engineering requires a metabolic network reconstruction and a corresponding in silico 

metabolic model for the microorganism in question. For this reason, we additionally present a 

brief overview of automated reconstruction techniques. Finally, we emphasize the importance of 

integrating metabolic networks with regulatory information—an area which we expect will 

become increasingly important for metabolic engineering—and present recent developments in the 

field of metabolic and regulatory integration.
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Introduction

Organisms natively use metabolic, mostly enzymatically catalyzed reactions to convert raw 

materials into the essential substances that are needed for the survival of their cells. As such, 

they represent a tremendous resource of existing biological machinery to carry out 

biochemical transformations. Metabolic engineering involves the process of modifying the 

metabolic potential and genetics of a microorganism to our advantage to increase the 

production of a specific substance of interest [91]. The objective of metabolic engineering is 

thus to reroute metabolism towards a pathway of interest to improve production of 

commercially valuable chemicals on an industrial scale. This has been achieved for several 
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commodities, including fuels, pharmaceuticals, drinks such as wine and beer, fine chemicals 

and diesels. In short, many biotechnological products are being produced using microbial 

strains as cell factories [3, 9, 19, 37, 53, 79], with an increasing number on the horizon [35, 

70, 104, 107, 109].

Traditionally, metabolism was altered using classical breeding and random mutagenesis, 

followed by selection and screening [65]. More recently, however, the introduction of 

recombinant DNA techniques has allowed the application of targeted genetic changes [47, 

111] through gene knockouts, overexpression, and expression of heterologous genes [50]. In 

large part owing to the advent of genomics and systems biology, we nowadays have a 

number of new tools that generate a wealth of data for analysis, contributing to our 

understanding of metabolism and cellular behavior. Improved knowledge and new analytical 

tools [14, 67, 68] are increasingly available for use in the development of novel microbial 

strains with phenotypes that allow production of various bulk chemicals [74, 113]. 

Successful applications, for example using the model organisms Escherichia coli, 

Saccharomyces cerevisiae and Corynebacterium glutamicum (for amino acid production 

mainly) as production hosts, have been reported widely in the literature [52, 103].

Metabolic engineering focuses on altering the function of enzymes, transporters, or 

regulatory proteins informed by existing knowledge of the metabolic network, enzymes, 

their encoding genes, and overall regulation [59]. Strategies focus on either introducing new 

metabolic enzyme functions and pathways or altering existing metabolic pathways to 

optimize production of the chemical of interest [47]. For either strategy, detailed 

understanding of the network and a way to determine the distribution of flux [96] are 

necessary. Metabolic analysis methods are powerful analytical tools that can be utilized 

extensively in metabolic engineering, as they allow exploration and detailed consideration of 

the structure and design of a metabolic network [83]. Stoichiometric methods in particular, 

which are based on collecting all the available biochemical knowledge surrounding a 

particular metabolic network of an organism, have helped to construct a collection of 

metabolic models for an expanding number of microorganisms based on annotated genome 

sequences. Such models allow researchers to conduct simulations based on all known 

reactions occurring in the metabolic network of an organism using only the knowledge of 

the stoichiometry of the network as input and, thus, make computational predictions for 

achievable metabolic states of an organism under varying conditions. These predictions can 

encompass the outcomes of genetic manipulations, including but not limited to removal or 

addition of reactions to the network. The capability to perform such manipulations and 

simulate the results computationally forms the basis for rational metabolic engineering [61] 

and provides an aid for prospective study design [30, 44].

Here, we review applications and successes of genome-scale modeling for metabolic 

engineering, provide an overview of the metabolic reconstruction process (particularly the 

tools for automated reconstructions), and briefly offer our view on future developments of 

the field.
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The flux balance analysis (FBA) formulation

Flux balance analysis (FBA) (Fig. 1) can trace its foundations as far back as in the late 

1960s [85, 102] and was popularized in the early 1990s [80, 81, 98–100]. FBA is a 

constraint-based optimization approach that can be used to simulate ranges of achievable 

reaction rates (referred to typically in this field as metabolic “fluxes”) in the metabolic 

network of an organism. The available stoichiometric information for a metabolic network is 

incorporated into a stoichiometric matrix S, in which rows represent metabolites and 

columns represent reactions. Typically, the network is assumed to exist in a quasi-steady 

state, represented by Sv = 0, where vector v represents the fluxes through each reaction. 

Lower and upper bounds can be applied wherever additional information is available for the 

fluxes of the reactions, or to impose directionality and capacity requirements for some or all 

reactions.

The system typically remains under-determined, with many alternative solutions for flux 

distribution that satisfy the imposed constraints. An optimal distribution is selected by 

optimizing an objective function, which usually describes the maximization of biomass 

production, based on the assumption that cells use the available food sources to optimize 

cellular growth. FBA formulations are often characterized by degeneracy, meaning that 

there exist multiple equivalent, non-unique optimal solutions [65, 73] to the problem. A 

typical FBA formulation maximizes the selected objective function (a subset of the fluxes in 

the system) subject to stoichiometric constraints and any necessary bounds on system fluxes:

Maximize → wv

subject to:

Sv = 0

vmin ≤ v ≤ vmax

Vector w incorporates weights that represent the relative contribution of each reaction to the 

objective function. FBA formulations constitute linear programming (LP) problems, which 

makes the FBA approach suitable for application to very large metabolic networks. 

Typically, genome-scale metabolic networks consist of hundreds or a few thousand 

reactions. LP solvers are capable of solving problems with tens of thousands or more 

variables. The solution of an FBA problem is unique for the optimal value of the objective 

function, and also results in a non-unique (except in trivial cases) calculation of a flux 

distribution through every reaction in the system. Subsequently, patterns of consumption and 

production of each metabolite can be determined for systems with thousands or tens of 

thousands of components. Crucially, kinetic information or enzyme concentrations are not 

required for the analysis; although such information can be incorporated for increased 

accuracy. This lack of a high number of parameters greatly reduces the opportunities for 

overfitting models—although some overfitting certainly still exists, for example in the 

choices during model construction—and makes the resulting models amenable to very broad 

use across a wide range of organisms at the genome scale. Additional methods such as Flux 

Variability Analysis [55] or Monte Carlo sampling of solution spaces [4, 73] can address the 

variability possible in each of these reaction fluxes, providing insight to the full range of 
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achievable metabolic states of a system given physico-chemical constraints and a finite set 

of biological measurements.

Genome-scale reconstructions

The reconstruction of genome-scale metabolic models requires the construction of an S 

matrix that closely represents the biochemistry of the organism. Models for an ever 

increasing number of bacteria have been published in recent years [58] (examples: [6, 12, 

25, 31, 32, 34, 57, 60, 63, 82, 86, 110]) and more papers describing both new 

reconstructions and improvements upon previous iterations are published regularly. Most 

reconstructions are now available in a standard format such as the systems biology markup 

language (SBML) [36]. The SBML files can easily be imported into most software 

applications for FBA, such as the COBRA Toolbox [10]. Nevertheless, wherever a 

preexisting model is not readily available (including when the existing model is not of the 

necessary quality or does not cover the required elements of metabolism for the intended 

analysis), a new reconstruction is needed. This process is data intensive and involves 

gathering species-specific information from genome annotations, high-throughput 

experiments, the literature and/or publically available databases, such as KEGG [41], 

EcoCyc [42], BKM-react [46], or BRENDA [84]. Gap-filling methodologies are 

subsequently applied [13, 75] to improve connectivity to the point where the model can 

simulate phenotypes. As labor intensive as manual reconstruction is, the process has been 

well developed and described [95].

Automated reconstructions

As pointed out above, the construction of a genome-scale model is a complex task; but tools 

for improving and accelerating this process are becoming increasingly available. To reduce 

the painstaking process of manual annotation, draft metabolic models can be built by 

utilizing and integrating the resources available in various biological databases in an 

automated manner. Several such automated methods have been reported in the literature; for 

example, Model SEED [24, 33] is an online resource designed to simplify the construction 

of a genome-scale model by utilizing an automated framework. Model SEED can be used to 

create genome-scale metabolic models in a high-throughput manner, by automating the 

annotation of the genome, producing a preliminary reconstruction of the metabolic network, 

performing automatic gap filling of reactions necessary for cellular growth, and, when such 

data are available, incorporating array and gene essentiality data to improve the quality of 

the reconstruction. BioNetBuilder [8] is a Cytoscape plugin with a user-friendly interface to 

create biological networks integrated from several databases. ReMatch [71] is a web-based 

framework that reconstructs a metabolic network by integrating user-developed models into 

a database collected from several comprehensive metabolic data resources, including 

KEGG, MetaCyc and CheBI. The SuBliMinaL Toolbox [93] is a framework for 

reconstructing metabolic networks by providing independent modules that can be used 

individually or in a pipeline, and can perform tasks that are common in every reconstruction 

process, such as generating a draft, determining metabolite protonation states, mass-

balancing reactions, compartmentalizing the cell, adding transport reactions, creating a 

biomass function and exporting the reconstruction in a format readable by software 
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packages (typically SBML). Reyes et al. [77] presented an automatic method for the 

reconstruction of genome-scale metabolic models for any organism implemented in 

COPABI. Dale et al. [23] developed a method for predicting metabolic pathways that relies 

on machine learning approaches to reconstruct the network of an organism. In addition to 

automated tools, there have also been instances of semi-automated tools in the literature, for 

example reconstruction, analysis and visualization of metabolic networks (RAVEN) [2] is a 

toolbox for semi-automated reconstruction of genome-scale models, which accesses 

published models and the KEGG database to build a draft reconstruction, coupled with 

extensive gap filling and quality control. Microbes Flux [28] and a method presented by 

Zhou [112] both make extensive use of KEGG to achieve the construction of a draft 

metabolic model. Finally, Benedict et al. [13] presented a likelihood-based gap filling 

method that can automatically improve the quality of metabolic reconstructions by 

incorporating alternative potential gene annotations. This method assigns a score to gene 

annotations based on sequence homology, selects the most likely pathways for gap filling 

using an mixed integer linear programming (MILP) formulation and identifies orphaned 

reactions. The likelihood-based approach performs better both quantitatively and 

qualitatively when compared to pre-existing algorithms.

While automated methods significantly decrease the time and effort required for 

reconstructing a new metabolic model, there is still need for user feedback and manual 

curation to improve the quality and accuracy of the metabolic model. This is especially true 

during the final stages of the reconstruction, as the resulting model is being validated against 

experimental data. The curator is responsible for assessing the precision and accuracy of the 

model, and for evaluating if there is further need for gap filling, removing futile cycles and 

improvement of the biomass reaction. Semi-automated methods permit greater flexibility for 

user intervention during the reconstruction process and constitute a good compromise for 

refining an initial draft model to further elevate the quality of the reconstruction up to the 

required standards.

Once a working model has been constructed and improved to a satisfactory level, in silico 

experiments can predict flux distribution ranges and phenotypic behavior under conditions 

of the user’s choice. Targets for possible genetic manipulation to improve strain 

performance can be identified through comparative studies under both genetic and 

environmental perturbations. The model can then be used to calculate knockout lethality or 

growth rates, and results can be compared to experimental observations, which allows for 

the model to be iteratively tested and improved [40]. Several computational approaches for 

network manipulation and phenotypic simulation have been developed, such as the COBRA 

Toolbox for MATLAB [10], a popular FBA simulator.

Successes of genome-scale modelling

Flux balance analysis and related constraint-based methods can be used to predict the 

optimal set of gene knockout and overexpression targets to increase an organism’s ability to 

produce a chemical of interest. Here, we present various applications of genome-scale 

modeling to gage the impact this computational approach has had on metabolic engineering 
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efforts. Table 1 summarizes examples of successes of genome-scale modeling in the context 

of metabolic engineering.

An exhaustive search of all feasible knockouts in an organism, especially with an 

experimental approach, to identify the exact genotype with the optimal production profile 

for a substance of interest, is a painstakingly tedious and often practically infeasible process. 

Genome-scale metabolic models can be a valuable tool for understanding the inner workings 

of metabolic networks, which cannot always be intuitively discerned. Such insight may be 

used to design strains with specific properties in a manner faster by many scales of 

magnitude, and therefore much more desirable. Genome-scale modeling has been applied in 

various metabolic engineering contexts and has been successfully used to predict genetic 

modifications for improved strains.

Lee et al. [49] constructed a metabolic model for E. coli, which was successfully used to 

develop and implement a strategy for increased succinic acid production. The authors 

proposed optimal metabolic pathways for the production of succinic acid based on the 

results of the metabolic flux analyses. For increasing succinic acid production, the pyruvate 

carboxylation pathway was selected as optimal for increasing the production in E. coli. 

Experimental validation of the proposed pathway was performed by comparing the yield of 

succinic acid with traditional succinic acid producing pathways. The experimental results 

suggested that the novel pathway selected through the computational analysis is more 

efficient than conventional pathways.

Alper et al. [5] used a genome-scale model for E. coli and identified and experimentally 

confirmed seven gene deletion strains that showed increased lycopene production. The E. 

coli iJE660 model [76] served as the basis for this approach. Targets for single gene 

knockouts were initially selected, and the ones that resulted in the highest production of 

lycopene were chosen as candidates. Then, a second knockout was computationally 

predicted and then performed on the best performing single gene mutants, and the double 

mutants with the highest yield were selected once more. This process produced knockout 

mutants with progressively increasing yields. The selected single, double, and triple 

knockout strains were constructed experimentally and were shown to significantly improve 

the yield of lycopene, with the top selected strain producing a yield almost 40 % higher than 

an engineered, high-producing parental strain.

Bro et al. [16] used an FBA model of Saccharomyces cerevisiae to identify a strategy for 

metabolic engineering of the redox metabolism that would lead to decreased glycerol and 

increased ethanol yields on glucose under anaerobic conditions. Several suggested mutants 

were suggested computationally that eliminated formation of glycerol and increased ethanol 

yield. One of the most promising results was selected and constructed experimentally. The 

resulting strain had a 40 % decrease and 3 % increase in glycerol and ethanol yields, 

respectively, without affecting the maximum specific growth rate.

Lee et al. [48] reported a strategy for increased threonine production in E. coli. A threonine 

producing strain was re-engineered based on transcriptome profiling and flux analysis 

simulations. The resulting strain produced threonine with a high yield of 0.393 g per gram of 
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glucose and 82.4 g/l threonine by fed-batch culture. Similarly, Park et al. [66] constructed a 

genetically well-defined E. coli strain based on known metabolic information, transcriptome 

analysis, and in silico genome-scale knockout simulation. The authors identified the 

necessary gene knockouts for the construction of an E. coli strain with increased L-valine 

production. Genes ilvA, leuA, and panB were deleted to make more precursors available for 

L-valine biosynthesis, lrp and ygaZH were overexpressed and aceF, mdh, and pfkA were 

identified as knockout targets using gene knockout simulation. The resulting strain produced 

a high yield of 0.378 g per gram of glucose of L-valine, which is higher than industrial 

strains developed through random mutation and selection.

Another useful application of FBA is to identify optimal media composition for the growth 

of an organism and production of a desired metabolite [90]. Song et al. used a genome-scale 

metabolic network and flux balance analysis to identify two amino acids and four vitamins 

as essential compounds to be supplemented to a minimal medium that would improve the 

growth of Mannheimia succiniciproducens and the production of succinic acid. The 

optimized media increased the yield of succinic acid by 15 % compared to growth on a 

complex medium. The optimal, chemically defined medium also lowered by-products by 30 

%.

Meijer et al. [56] presented a metabolic engineering approach for increased production of 

succinic acid with Aspergillus niger, a microorganism that is well established industrially, 

making it an interesting target for engineering of the production of specific chemicals. A 

deletion strategy based on simulations with a genome-scale stoichiometric model of the 

organism was devised. The gene producing citrate lyase (acl) was identified as a deletion 

target through in silico tests with a genome-scale metabolic model of the organism. The 

authors found that the mutant strain tripled the yield of succinic acid compared to the wild 

type, along with an overall increase in the production of organic acids in the mutant strain.

In 2013, Ohno et al. [62] demonstrated that the production of many valuable compounds, 

such as L-butanol, L-propanol, and 1,3-propanediol, can be improved using a triple gene 

knockout strategy. In silico screening was performed and the metabolic potential of all 

possible sets of triple knockouts were evaluated using a reduced metabolic model of 

Escherichia coli, based on the iAF1260 genome-scale model [27]. The use of a reduced 

model was preferred in this study, as it significantly lowered the computational costs. The 

results demonstrated the applicability of multiple deletion strategies, since in many cases the 

effects of the deletions were only observable when multiple genes were simultaneously 

disrupted. Traditional screening methods would have missed these opportunities. Such 

results are indicative of the possibility to develop industrially viable strains through 

metabolic engineering that utilizes genome-scale modeling.

Sun et al. [93] presented a study that identified knockout targets for improving terpenoid 

biosynthesis in S. cerevisiae. Terpenoids have important pharmacological activity, but the 

production of sufficient amounts is challenging. A constraint-based approach was used to 

identify knockout sites with the potential to improve terpenoid production (specifically, 

sesquiterpene amorphadiene). Based on the simulation results, a single mutant was 

constructed and engineered to produce amorphadiene. Production of amorphadiene was 
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measured to assess the effects of gene deletions on the production of terpenoids. Ten novel 

gene knockout targets were described. The yield of amorphadiene produced by most single 

mutants increased 8- to 10-fold compared to the wild type.

Borodina et al. [15] engineered a synthetic pathway for de novo biosynthesis of 3-

Hydroxypropionic acid, using a genome-scale model of S. cerevisiae to evaluate the 

metabolic capabilities of two promising routes. 3-Hydroxypropionic acid (3HP) is a 

potential chemical building block for sustainable production of superabsorbent polymers and 

acrylic plastics. Simulations suggested β-alanine biosynthesis as the most economically 

attractive route. A synthetic pathway for de novo biosynthesis of β-alanine and its 

subsequent conversion into 3-Hydroxypropionic acid was engineered, using a novel β-

alanine-pyruvate aminotransferase discovered in Bacillus cereus. The expression of the 

critical enzymes in the pathway was optimized and aspartate biosynthesis was increased to 

obtain a high 3-Hydroxypropionic acid producing strain.

In addition to the growing number of studies that demonstrate the applicability of genome-

scale modeling to rational metabolic engineering efforts by performing analyses and 

producing strains that improve the production of chemicals of interest, several 

computational approaches for automatic selection of gene knockout candidates have been 

developed. Such frameworks make FBA a tool that is now available to a much wider 

audience. In Zomorrodi et al. [114], the authors review computational tools that utilize 

mathematical optimization and were designed to assist in metabolic network analyses and 

redesign of metabolism. For example, OptKnock [18] is a framework that exploits duality 

theory to search for multiple gene knockout candidates, by solving a bi-level optimization 

problem: the inner problem optimizes biomass production, while the outer problem 

optimizes target chemical yield. The problem is formulated as a single MILP problem. Sets 

of gene knockouts for improved succinate, lactate, and propanediol production in E. coli 

were predicted by the authors.

The OptKnock framework suffers from certain limitations, for example the intractability of 

the problem when very large sets of knockouts are considered. To address such issues, 

researchers have developed extended and improved frameworks that identify deletion 

candidates, such as OptGene and RobustKnock. OptGene [67] utilizes a genetic algorithm to 

rapidly identify gene deletion strategies for optimization of a strain. The advantages of Opt- 

Gene are that it also allows the optimization of nonlinear objective functions, and can be 

much faster than an MILP approach, but unlike with MILP formulations, the identified 

solution is not guaranteed to be a global optimum. Opt-Gene has been used to predict sets of 

gene knockouts for improved production of vanillin, succinate, and glycerol in S. cerevisiae. 

RobustKnock [94] extends OptKnock by accounting for the presence of competing 

pathways in the network that may reroute metabolic flux away from the chemical of interest. 

The framework removes reactions from the network, so that the production of the chemical 

of interest becomes part of the model’s biomass production requirement. RobustKnock was 

used to predict sets of gene knockouts for improving the production of hydrogen, acetate, 

formate and fumarate in E. coli.
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Although frameworks like OptKnock and OptGene are powerful in their ability to predict 

knockouts, the possible modifications are restricted by the selection of reactions included in 

the metabolic reconstruction. The possibility of adding new reactions that are not part of the 

original metabolic network is not considered with these methods. Opt- Strain [68] 

overcomes this problem with the use of a database of known biotransformations to 

maximize the yield of a pathway from substrate to target product, by including heterologous 

reactions. The number of non-native reactions is minimized, and the selected non-native 

reactions are incorporated into the host. In addition to the above tools, OptReg [69] and 

EMILiO(Enhancing Metabolism with Iterative Linear Optimization) [108] are frameworks 

that not only identify gene targets selected for deletion, but also identify genes that can be up 

or downregulated. Such computational tools have been used for several metabolic 

engineering applications, including the production of lactic acid in E. coli [29], vanillin 

production in yeast [17] and sesquiterpene production in S. cerevisiae [7]. For researchers 

and engineers that wish to apply genome-scale modeling methods and the automated gene 

knockout selection frameworks described here, several software options exist that are now 

freely available, including the COBRA toolbox [10], OptFlux [78], CellNetAnalyzer [45] 

other Systems Biology Research Tool [106], to name but a few.

Transcriptional regulation

Genome-scale modeling is not without its limitations; one of the major issues with the 

predictions made with this analysis method is that it does not consider the effects of gene 

regulation. In reality, however, the effect of regulation is very significant and one of the 

major reasons for failed predictions of the metabolic effect of gene modifications. For this 

reason, there is great motivation to look beyond just the metabolic network and attempt to 

integrate the effects of regulation on the metabolic reactions of an organism. Integrated 

models can significantly improve prediction accuracy, though again there is still much room 

for improvement. Machado and Herrgård have performed a systematic comparison of 

methods of transcriptomic data integration with genome-scale modeling [54].

In its simplest form, transcriptional regulation can be added to a stoichiometric model using 

a Boolean representation to map the effects of transcription factors (activating or repressing) 

on the expression of enzyme encoding genes. Such a representation forces the specific 

enzyme-catalyzed reaction to be either on or off, depending on the presence or absence of 

the controlling transcription factors. The implementation of this idea is known as regulatory 

Flux Balance Analysis (rFBA) [22]. rFBA offers the possibility of considering some basic 

regulatory effects on the metabolic network, but it is constrained by the fact that the genes 

that are controlled by transcriptional factors can only be either fully active or completely off. 

This prohibits good predictions in cases where a transcriptional factor knockout only has a 

partial effect on target genes. Another limitation of rFBA is that it arbitrarily chooses one 

metabolic steady state from a space of possible solutions, excluding a whole space of 

possible profiles. Instead, Steady-state Regulatory Flux Balance Analysis, or SR-FBA [88], 

enabled a comprehensive characterization of steady-state behaviors in an integrated model 

of metabolism and regulation. SR-FBA was used to characterize the flux distribution and 

gene expression levels of Escherichia coli across different growth media. Around 50 % of 

metabolic genes’ flux activity was found to be determined by metabolic constraints, whereas 
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regulatory constraints determined the flux activity of 15–20 % of genes. The integrated 

model was then used to identify specific genes for which regulation is not optimally tuned 

for cellular flux demands.

Probabilistic regulation of metabolism (PROM) [20, 89] is another method that overcomes 

the limitations of rFBA by implementing a probabilistic approach for predicting the state of 

a gene, based on the level of expression of a transcription factor. The probability for the 

state of a gene is determined based on microarray data information, and the bounds on the 

flux of the relevant reaction are adjusted using this probability estimation. In addition, 

PROM requires little manual annotation compared to rFBA, because the process can be 

automated to a large degree. Still, the accuracy of all such methods needs to be improved, 

and there is substantial need to expand the repertoire of captured regulatory events related to 

metabolism beyond simple transcriptional effects.

Similarly, E-Flux [21] is an approach that incorporates transcript level measurements to the 

reaction flux constraints that define the maximum achievable flux through each reaction. 

The bounds on the fluxes of the system are determined based on the level of expression for 

the corresponding coding gene. The method was tested on Mycobacterium tuberculosis to 

predict the impact of drugs, drug combinations, and nutrient conditions. E-flux predicted 

seven of the eight known fatty acid inhibitors and made accurate predictions regarding the 

specificity of these compounds for fatty acid biosynthesis.

An important disadvantage of previous methods is that they often require a user-defined 

expression threshold over (or under) which a gene is considered “on” (or “off”). Metabolic 

adjustment by differential expression (MADE) [38] aims to overcome the problem of 

selecting arbitrary thresholds by comparing measurements across multiple conditions. 

MADE uses the statistical significant changes in gene expression measurements across 

sequential conditions to determine instances of high and low expression for various 

reactions. For this reason, MADE requires expression data from more than one experimental 

conditions. The solutions for all conditions are solved simultaneously to maximize 

agreement with the predicted patterns.

Other approaches for integrated simulation use mRNA expression data to construct a 

functional metabolic model for the organism. Gene Inactivity Moderated by Metabolism and 

Expression (GIMME) [11] utilizes user-supplied gene expression data, a genome-scale 

model and presupposed metabolic objectives to produce a context-specific reconstruction. 

GIMME performs an FBA run on the starting metabolic model to identify the maximum 

possible flux through the network. Then, experimental mRNA transcript levels are compared 

to a threshold and any reactions that fall below this threshold are removed from the network, 

unless their removal impacts the metabolic objectives, in which case an LP problem is 

solved that reintroduces inactive reactions in a way that minimizes deviation from the 

expression data. The algorithm also provides a quantitative inconsistency score indicating 

how consistent a set of gene expression data is with a particular metabolic objective.

The integrative Metabolic Analysis Tool (iMAT) [115] on the other hand is a web-based 

tool based on Shlomi et al. [87], which does not require prior knowledge of a defined 
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metabolic functionality. iMAT enables the prediction of metabolic states in specific 

conditions using protein (or gene) expression data as input, integrating them with 

transcriptomic information and a genome-scale metabolic model. The web tool outputs a 

prediction for the flux state and a set of confidence values for all the reactions in the 

network. Additionally, iMAT can report predicted upregulated and downregulated genes 

post-transcriptionally. The main difference to GIMME is that instead of presupposed 

metabolic objectives, iMAT requires the existence of a minimum flux through reactions that 

correspond to the highly expressed genes in the dataset. This difference gives iMAT an 

advantage in cases where clear metabolic objectives cannot be established.

The first model that can be considered “whole-cell” was developed for Mycoplasma 

genitalium [43], a human pathogen, by combining all the biochemical components and all 

the interactions in the system. Modules with diverse characteristics were built, representing 

distinct cellular functions and combined into a dynamic framework. This integrative 

approach enabled the inclusion of physiologically and mathematically diverse processes and 

experimental measurements. The model was used to examine areas of cellular function that 

had not been studied in conjunction before, such as protein–DNA associations and the 

interactions between DNA replication and the initiation of replication. This whole-cell 

model represents an important advancement in the development of integrated genome-scale 

modeling.

The more biochemically accurate a model is, the more detailed the simulations of an 

organism’s phenotypic behavior we should be able to produce by varying genetic and 

environmental parameters. With the combination of Metabolism and gene Expression, an 

ME model was produced; an integrated model of Thermotoga maritima [51] that 

considerably improves the prediction accuracy of the genome-scale metabolic model of the 

organism, along with the added capability of gene expression prediction. The ME model 

represents the next generation of constraint-based models: stoichiometric models of 

metabolism that also explicitly consider gene transcription and translation. Thanks to the 

integration of additional levels of biological information, ME models can provide a basis for 

considering mRNA transcription, protein translation, protein complexing, reaction catalysis 

or molecule formation within the framework of genome-scale modeling. ME models 

represent a significant step in the effort to bridge the gap between molecular biology and 

cellular physiology.

Another important application of integration of transcriptome, proteome, and phenotypic 

data with metabolic reconstructions is to contextual generic metabolic reconstructions in 

higher organisms to contextualize those aspects of metabolism that are present in any 

particular tissue or cell type. A number of automatic reconstruction approaches have been 

built to achieve this. One such algorithm, the Model Building Algorithm (MBA) [39], was 

employed in the construction of a tissue-specific, hepatic model, from the generic human 

RECON1 model [26], integrating tissue-specific molecular data. The hepatic model was 

validated with flux measurements across various hormonal and dietary conditions. The 

advantage of MBA is that it eliminates the presence of superfluous metabolic reactions and 

streamlines the metabolic model to consist of metabolic reactions that are functional in the 

cell. Similarly, a method called metabolic Context-specificity Assessed by Deterministic 
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Reaction Evaluation (mCADRE) [101] is able to infer a tissue-specific network based on 

gene expression data and metabolic network topology, along with evaluation of functional 

capabilities during model building. mCADRE produces models with similar functionality 

and achieves dramatic computational speed up over MBA using the network topology to set 

a deterministic ordering for reaction removal rather than computing a large ensemble of 

models based on random orderings. Using this method, a reconstruction of draft genome-

scale metabolic models for 126 human tissue and cell types was performed. Finally, another 

approach is the INIT (integrative network inference for tissues) algorithm [1], which uses 

cell type specific information about protein abundances as its main source of evidence. INIT 

is formulated as an MILP problem and relies on evidence from the Human Protein Atlas 

[97] and tissue-specific gene expression data to decide on the presence or absence of 

metabolic enzymes in each cell type, while metabolomics data from the Human Metabolome 

Database [105] are used as constraints that force the ability to produce a specific metabolite 

by adding the necessary reactions, if said metabolite has been observed in a tissue. INIT was 

used to generate genome-scale models for 69 healthy human cell types and 16 cancer cell 

types.

Cells contain thousands of molecular components including transcripts, proteins and 

metabolites, and regulation plays a very important role in every cellular process (gene 

expression, protein transcription, enzymatic reactions). For these reasons, precise estimation 

of the metabolic states and comprehension of the way regulation works are crucial factors 

for accurate simulation of cellular processes. Approaches that integrate transcriptional 

regulation with more traditional constraint-based metabolic simulation make several 

assumptions, particularly since the transcription of genes and the way it correlates with flux 

are still not perfectly understood. As a result, predictions made with these approaches are 

not highly accurate, and while these methods have been successfully applied to specific 

example organisms, wide application is still problematic. Nevertheless, integrated 

approaches constitute an initial step in the effort to effectively correlate genotype with 

phenotype and often offer improved predictions compared to stand-alone FBA simulations.

Conclusions

In the current microbial metabolic engineering field, many tools and applications have been 

developed that facilitate genetic engineering of model organisms. Here, we summarized the 

genome-scale modeling approach, which, thanks to its simplicity and the fact that it offers 

large amounts of biochemical information for an organism’s reactions, is well suited for 

application in systematic metabolic engineering for bio-production using microorganisms. 

Metabolic design using genome-scale modeling is already widely used, as it enables 

prediction of the knockout or amplification target genes for enhancement of productivity. In 

this review, we offered an overview of genome-scale modeling and flux balance analysis, 

and focused particularly on the challenge of metabolic reconstructions, and on the 

developments that the various efforts for automatic reconstruction have achieved. We 

reviewed several successful studies in the area of genome-scale modeling for metabolic 

engineering. Techniques for metabolome analysis have made progress in recent years, and 

researchers can now have direct access to several tools that automate the selection of gene 

deletions, additions and modifications to produce mutants that would facilitate the 
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production of specific chemicals. Finally, we summarized the importance of studying and 

understanding the regulatory mechanisms of the cell and presented studies that focused on 

integration of regulation and metabolism. In the future, we expect that integrated models of 

metabolism will become particularly important in the field of metabolic engineering.
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Fig. 1. 
Conceptual illustration of flux balance analysis formulation and solution. a Reconstruction 

of a genome-scale metabolic network is performed by mathematically representing the flux 

through the reactions of the network. b The stoichiometric matrix for the system is 

constructed to represent the stoichiometry of all reactions, and the mathematical formulation 

for FBA is based on the steady-state condition. These stoichiometric constraints coupled 

with minimum and maximum bounds on reaction rates define the steady-state solution 

space. c FBA provides a method for calculating achievable fluxes through the system (c2), 
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based only on the knowledge of the stoichiometry of a metabolic network (c1). Through 

simulations, alternative solutions can also be identified and/or the effects of alterations to the 

network, such as gene deletions or additions, can be predicted (c3). The “1” in the graph 

signifies that a reaction is “on”, i.e., there is flux through it
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Table 1

Examples of recent developments and successes of genome-scale modeling in metabolic engineering

Publication Year Target Organism

Lee et al. [49] 2002 Succinic acid production E. coli

Alper et al. [5] 2005 Lycopene production E. coli

Bro et al. [16] 2006 Decrease glycerol and increase ethanol yield S. cerevisiae

Lee et al. [48] 2007 Threonine production E. coli

Park et al. [66] 2007 L-valine production E. coli

Song et al. [90] 2008 Optimize media and succinic acid production M. succiniciproducens

Meijer et al. [56] 2009 Succinic acid production A. niger

Ohno et al. [62] 2013 Butanol, propanol, propanediol production E. coli

Sun et al. [93] 2014 Terpenoid biosynthesis S. cerevisiae

Borodina et al. [15] 2015 3-Hydroxypropionic acid biosynthesis S. cerevisiae
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