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Abstract

Objective—Biological risk factors underlying psychosis are poorly understood. Biological 

underpinnings of the dimension of psychosis can be derived using genetic associations with 

intermediate phenotypes such as sub-components of auditory event related potentials (ERPs). 

Various ERP sub-component abnormalities in schizophrenia (SZ) and bipolar disorder with 

psychosis (PBP) are heritable and expressed in unaffected relatives. Prior studies investigating 

genetic contributions to ERP abnormalities are limited. We used a novel parallel independent 

component analysis (Para-ICA) to determine which empirically-derived gene clusters are 

associated with data-driven ERP sub-components, assuming a complex etiology underlying 

psychosis.

Methods—We examined the multivariate polygenic association of ERP sub-components from 

64-channel auditory oddball data in 144 SZ, 210 PBP probands and 95 healthy individuals from 

the multi-site BSNIP study. Data were reduced by principal component analysis to 2 target and 1 

standard ERP waveforms. Multivariate association of compressed ERP waveforms with a set of 

20,329 SNPs (reduced from a one million SNP array) was examined using Para-ICA. Genes 

associated with SNPs were further examined using pathway analysis tools.
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Results—Para-ICA identified 4 ERP components that were significantly correlated with 3 

genetic components. Enrichment analysis revealed complement immune response pathway and 

multiple processes including synaptic cell adhesion, axon guidance and neurogenesis significantly 

mediating ERP abnormalities in psychosis.

Conclusions—We identified three genetic components comprising multiple genes mediating 

ERP sub-component abnormalities in SZ and PBP. Our data suggest a possible polygenic structure 

comprised of genes influencing key neurodevelopmental processes, neural circuitry, brain function 

mediating biological pathways plausibly associated with psychoses.
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Introduction

The psychosis dimension contains complex, disabling mental illnesses including 

schizophrenia (SZ), schizoaffective (SZA) and psychotic bipolar disorder (PBP); evidence 

indicates significant overlap for clinical features (1), brain function and structure (2), 

pharmacological treatment (3) and genetic determinants (4). Psychotic disorders 

demonstrate high heritability; unaffected family members are at increased risk for all 

diseases. Recent studies implicate shared neurobiological mechanisms of psychosis 

including impaired calcium channel activity (5) and synaptic function (6). Although copy 

number variants account for a small proportion of cases (7), under polygenic models a single 

gene's contribution to disease liability is small but global effects arising from combination of 

gene subsets are significant because together they impact specific key neural systems at 

multiple points (8). Endophenotypes are heritable, state-independent phenotypes 

intermediate between the causative genes and clinical disease (9).

The auditory oddball event related potential (ERP) is a non-invasively measured electrical 

brain response elicited by an external auditory stimulus. The P300 is a major ERP 

subcomponent visible as endogenous positive voltage deflection ∼300 ms post stimulus 

presentation. P300 amplitude signifies attention allocation, cognitive information processing 

and context updating (10) and is highly heritable (11). Additionally, auditory ERPs comprise 

N1, N2 and P2 sub-components generated by auditory cortices and associated with stimulus 

characteristics. Multiple studies report P300 amplitude abnormalities (12, 13) in both SZ and 

PBP, suggesting general psychosis biomarker status. Auditory P300 amplitude is a 

frequently-employed SZ candidate endophenotype, because it is robustly reduced in SZ and 

their close relatives (14-16), highly heritable, stable across the course of illness, is relatively 

unaffected by illness exacerbations and is elicited by a straightforward task performed easily 

by psychotic patients. P300 amplitude abnormalities in PBP may be proband-specific (17). 

Deficits in ERP subcomponents N1, P2 and N2 are found in SZ patients (18, 19) and their 

relatives (20). Both N1 and P2 amplitude abnormalities (13) and their endophenotypic status 

are less studied in PBP.

Narayanan et al. Page 2

Am J Psychiatry. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The P300 amplitude response with a parietal maximum (P3b) has been related to 

norepinephrine (21) and dopamine neurotransmission (22). Recent studies examining 

genetic associations of P300 (23, 24) adopted traditional single nucleotide polymorphism 

(SNP)-based univariate approaches, such as genome wide association (GWA). One 

polygenic association study identified several interacting SNP loci including rs1045642 in 

the ABCB1 gene linked to P300 ERP in healthy individuals (25), plus genes related to 

dopaminergic, noradrenergic and signal transduction/amplification pathways. Prior studies 

(26-29) documented genetic associations of P300 amplitude deficits with known SZ risk 

genes including DISC1, NRG1 and COMT. One study (26) identified the above-mentioned 

SNP (rs1045642) as a SZ risk locus.

The univariate GWA approach relates single gene variants to a unitary phenotype. While 

straightforward it has two main drawbacks. First, the weak individual effect of common 

variants prevents most from reaching genome-wide significance, due to numerous multiple-

comparisons, requiring extremely large samples to gain sufficient statistical power. Second, 

simultaneous coupling of multiple genes is ignored. To overcome these problems, 

multivariate association (30) based on parallel independent component analysis (Para-ICA) 

has been developed to model the polygenic architecture (combinatorial gene effects) of 

complex psychiatric illnesses. Prior Para-ICA studies revealed known and novel gene 

clusters implicated in Alzheimer's disease (31) and psychoses (32) based on structural and 

functional imaging data respectively.

The present study sought to: 1) identify risk genes collectively associated with ERP 

endophenotypes in psychosis; 2) determine whether the gene clusters mediate 

neurophysiological abnormalities in either or both disorders. We hypothesized that Para-ICA 

would identify novel interacting risk gene clusters (likely including known risk genes) 

mediating plausible physiological pathways disturbed in psychosis.

Material and Methods

Bipolar-Schizophrenia Network on Intermediate Phenotypes (BSNIP) Study

We assessed genotype–phenotype multivariate associations by combining genetic variants 

and ERP from SZ, SZA, PBP probands and healthy comparison subjects (HC) from the 

BSNIP study (www.b-snip.org), formed to investigate intermediate phenotypes from 

multiple modalities and their genetic underpinnings in psychosis.

Subject Recruitment

We examined a subset of 620 probands and HC selected from the overall ∼2600-person 

BSNIP (33) cohort who had undergone genotyping and participated in the BSNIP auditory 

oddball paradigm. These comprised 144 SZ, 210 PBP and 95 HC, aged 15-65 years (see 

Supplementary Table ST1 for demographic and clinical information). SZA depressive and 

mania subtype probands were classified as SZ and PBP respectively. SZ and PBP proband 

groups were unmatched on age, sex or ethnicity with HC. Probands' medication is listed in 

supplementary Table ST2. The study was explained to all subjects and institutional review 

board approved written informed consent obtained at respective participating sites.
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Auditory Oddball Paradigm and Electroencephalogram (EEG) Data Acquisition

EEG was collected independently at each site from identical Neuroscan equipment equipped 

with 64 Ag/AgCl electrodes (Quik-Cap, Compumedrics, El Paso, Texas), while subjects 

were performing an auditory oddball task (see supplement text). Electrode positions were 

defined according to the International 10-10 EEG system (see Supplementary Figure SF1).

SNP Data Collection

Blood was collected from each subject and genomic DNA extracted. Genetic variants were 

obtained by genotyping for ∼one million (1,140,419) target SNPs across the whole genome 

using the Illumina Human Omni1-Quad chip and BeadArray™ platform at Genomas Inc, 

Hartford Hospital.

ERP Data Processing

EEG data were artifact rejected and averaged ERP data were reduced to 2 targets and 1 

standard component (see Figure 1) using spatial principal component analysis (PCA) (13) 

(see details in supplementary text).

SNP Data Processing

SNP data were converted to discrete numbers and subjected to quality control process 

(Supplementary Figure SF2). Stratification bias was corrected using PCA (Supplementary 

Figure SF3). Data were reduced from million to 20,329 SNPs by selecting those significant 

at p<0.05 in the logistic regression (see supplementary text).

Para-ICA based SNP-ERP Association

Para-ICA is a multivariate association analysis that links linearly associated functional ERP 

activity with synergistic gene clusters by relating the hidden structures from both ERP and 

SNP data. Data were organized as a matrix of (i) subjects by SNPs (449 × 20329) and (ii) 

subjects by ERP component waveforms (449 × 294 (3×98 time points)) and were reduced to 

11 and 8 components or factors respectively. ERP and SNP data were jointly processed by 

Para-ICA (25, 30) (see Supplementary Figure SF4 and supplementary text).

Correlation and Statistical Analysis

Bi-modal feature association using Para-ICA was assessed by correlations between SNP and 

ERP loading coefficients (LC). Significance levels were adjusted through partial-correlation 

by regressing effects of age, sex and site on LCs. Correlations for all component pair 

combinations (8×11=88) were evaluated and significance levels adjusted using Bonferroni 

multiple comparison correction number of combinations (p<0.05/88). ERP and SNP LCs of 

significant component pairs were examined for group differences using t-tests. Dominant 

SNPs and ERP features in the components contributing to the association were identified 

with a threshold of |Z| = 2.5 for both modalities. Supplementary analyses included 

correlation of ERP LCs with intelligence quotient (IQ) scores and chlorpromazine (CPZ) 

equivalents.
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ERP-Structural Magnetic Resonance Imaging (sMRI) Association Analysis

Brain structures (see Supplementary methods for sMRI data collection) associated with the 

ERP components were identified by partial correlation (accounting for age, sex and site) of 

regional volumetric measures with ERP loading coefficients. P-values were corrected for 

multiple comparisons using false discovery rate.

Pathway Analysis

Genes corresponding to SNPs selected from the genetic component were entered into 

MetaCore annotation software GeneGo (Thompson Reuters, New York, NY) to determine 

the biological pathways associated with ERP abnormalities (see supplementary text).

Results

Gene-ERP Multivariate Linkage

Four (E1, E2, E3 and E6) of the 8 independent ERP components were significantly 

connected to 3 (G1, G4 and G9) of the 11 genetic/SNP components. ERP component E6 

(frontal target P3a) was correlated negatively with G1 (r=-0.23, N=449, p<0.0000007) 

(Figure 2A); reflecting increased loading on G1 was related to diminished frontal target P3a. 

E1 was positively associated with G9 (r=0.24, N=449, p<0.0000006) (Figure 2C); indicating 

increased loading on G9 related to increased ERP features in E1 (frontal standard N1, P2, 

frontal and parietal target N1). Both E2 (parietal target N2) and E3 (parietal target P3b) 

components were negatively (r=-0.21, N=449, p<0.000008) and positively (r=0.22, N=449, 

p<0.000002) correlated (see Figure 2B) with the same gene component G4 respectively (see 

scatter plot in Figure 3). Although IQ differed between groups and was negatively correlated 

(r= -0.166, N=446, p<0.0004) with component E3, controlling its effects did not alter the 

ERP-SNP correlation. ERP component E2 positively correlated (r= 0.179, N=215, p= 0.009) 

with CPZ equivalents, reflecting higher CPZ dosage associated with increased abnormality. 

Post-hoc comparisons revealed significant differences in ERP and SNP LCs between HC 

and both SZ and PBP for all significantly correlated components (Figure 4). ERP component 

E6 (frontal target P3a) differed between SZ and PBP, while other ERP components failed to 

differentiate two proband groups. Reliability test by leave-one-out cross-validation revealed 

an average within modality correlation > 0.85, indicating stable ERP and SNP components.

ERP-Structural Volume Associations

ERP component E1 (frontal standard N1, P2, frontal and parietal target N1) was associated 

with volume reduction in gray matter regions including pars opercularis, posterior cingulate, 

insula, caudal middle frontal, middle temporal and supramarginal gyrus (see Table 1). E3 

(P3b) was associated with volume reduction in left entorhinal and hippocampal regions.

Pathway Analysis

Prominent process networks associated (see Supplementary Table ST3) with G1 (related to 

ERP component E6) included (but not limited to) neurogenesis-axon guidance and cell 

adhesion (cadherins, synaptic contact). Major metabolic components included Lyso-
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phosphatidylserine and sphingomyelin pathways. Functional properties for the top 20 genes 

from all the three genetic components are summarized in Table 2.

Process networks (collection of coordinated genes controlling a biological processes) 

associated with G4 were cell adhesion (synaptic contact, cadherins and amyloid proteins) 

and development neurogenesis (synaptogenesis). Several metabolic networks enriched for 

genes in G4 included (but were not limited to) N-acyl-sphingosine phosphate, Lyso-

phosphatidylserine, phosphatidic acid and ceramide pathways. Gene component G9 (related 

to ERP component E1) was significantly (after false discovery rate correction) enriched with 

immune response genes (classical, alternative and lectin-induced complements) and G-

protein signaling (RhoA regulation). Primary process networks related to G9 were cell 

adhesion (synaptic contact, cadherins) and the inflammation-complement system. Pathways, 

known diseases and major human brain regions from Allen Brain Atlas (www.brain-

map.org) (assessed based on expression Z-scores) associated with the top 20 genes are listed 

in supplementary Table ST4.

Discussion

Etiological mechanisms for SZ and PBP are complex, but one approach to gain insight is to 

examine biological measures such as ERP that are putatively close to the genetic variation. 

Currently, the neural substrates or genetic basis for eliciting ERP components are unknown. 

Various ERP sub-components demonstrate significant heritability, suggesting strong genetic 

influences. As a preliminary step, we investigated polygenic sources underlying abnormal 

ERP sub-components in the psychosis dimension from a large multi-site dataset including 

all probands, based on multivariate association. Additionally we compared SZ and PBP 

probands against HC based on DSM criteria.

ERP Components

ERP component E1 (a linear combination of standard N1, P2, frontal and parietal target N1) 

showed overall increased loadings (less change from baseline) in SZ and PBP compared to 

controls reflecting deficits in early sensory processing, consistent with prior SZ (18, 20, 34) 

and PBP (13) studies. The primary source of N1 and P2 is the auditory cortex (35, 36) 

(Heschl's gyrus); we identified reduction in gray matter regions surrounding this structure. 

Parietal target N2 in E2 was significantly increased (reduced change from baseline) in 

probands indexing abnormal stimulus classification (37). Psychosis probands exhibited 

decreased frontal target P3a in E6 and parietal target P3b in E3, consistent with prior 

psychosis literature (12). The role of hippocampus in P3b generation is debated (38); 

however, our finding of P3b amplitude reduction associated with lesser hippocampus 

volume is consistent with prior evidence (39).

Gene Components

Para-ICA identified gene groups comprising interacting genes with a weight associated to 

each linkage-contributing gene. We discuss here the genetic underpinnings of ERP 

abnormalities based on the functionality of top ranking and frequently appearing genes in 

each component and biological properties associated with the gene clusters. Of all unique 
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genes pooled across the 3 genetic components found in this study (N=376), 76 have 

previously been identified as risk genes for SZ, PBP or both, while we report 300 new genes 

associated with ERP alterations in psychosis

G1

Top Genes and Those Identified Repeatedly

The highest-ranking gene in G1 was DCC, encoding a netrin-1 (40) receptor and a novel SZ 

candidate risk gene (41). Multiple (27 occurrences in the top 50) intronic SNPs within DCC 

were associated with frontal target P3a in E6. The dominant SNP loading was negative with 

a negative correlation between G1 and E6, indicating decreased minor allele frequency 

associated with increased frontal target P3a. DCC plays a critical role in neuronal circuitry 

modulating synaptic connectivity by mediating brain development via axon guidance and 

dendrite growth (42) with roles in functional reorganization of mesocortical dopamine 

circuitry (43). DCC is also involved in development of human brain lateralization (44), 

abnormal in SZ (45).

Several intronic SNPs within the BOC gene were found in G1. BOC is the receptor for the 

molecule Sonic Hedgehog, whose critical role in spatial specificity of synapse formation 

(46) guide the formation of cortical microcircuits (47) and dorsoventral axon patterning (48). 

Multiple SNPs within PDLIM5 encoding the LIM domain protein were detected in G1. 

PDLIM5 is a candidate risk gene for SZ, PBP and major depression and interacts with brain 

neuronal N-type calcium channel and protein kinase-C (49). Postsynaptic density proteins 

containing PDZ domain, interact with glutamate receptors to regulate synaptic plasticity (50, 

51). The HDAC9 gene encoding the histone deacetylase 9 enzyme involved in 

transcriptional regulation and cell cycle progression is a known SZ risk gene (52), pivotal in 

neocortical neuron development through transcription regulation via histone modification 

and regulates dendritic growth in developing cortical neurons (53). HDAC inhibitors 

modulate cell lineage differentiation during brain development (52) and are direct targets of 

valproic acid, a mood stabilizer used to treat PBP (54); and may impact antipsychotic 

response (55). Several SNPs within DISC1, a known SZ risk gene were found in G1 but not 

ranked in the top 20.

Pathways, Process and Metabolic Networks

Neurogenesis (in particular axon guidance) and cell adhesion (cadherins and synaptic 

contact) were the enriched functional processes associated with gene clusters in G1 engaged 

in modulating frontal target P3a abnormality common to psychosis, indicating that these 

processes are general psychosis risk mediators. Adult neurogenesis likely plays essential 

roles in both brain function (56) and pathophysiology of psychiatric illnesses (57, 58). The 

primary neurogenesis-axon guidance associated genes are PCSK5, CACNA1C, DCC, 

SLIT3, UNC5C, SLIT1, DISC1, NCAM1, NTRK3, ROBO2, GDA and PLCB1: of these 

several are implicated in psychosis risk.

Another key process identified was cell-adhesion mediated by cadherins and synaptic 

contact. Cadherins depend on calcium ion function to facilitate cell adhesion involved in 

intracellular signaling, memory-formation, neuronal migration, synapse-formation and 
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maturation (59), associated with neuropsychiatric disorders. Genes associated with cadherin-

based cell adhesion were CTNND2, PTPRJ, PCDH15, PDZK3, CTNNA2, CDH12, VAV2, 

CDH13 and WNT5B. Several of these are implicated in multiple psychiatric disorders; in 

particular CDH12 is associated psychosis. Synaptic cell adhesion molecules mediate neural 

connections and synapse development. Such genes were SYT9, NRXN3, CTNND2, 

GRIN2B, CTNNA2, NCAM1 and OBCAM, of which NRXN3 is implicated in SZ, NCAM1 

and GRIN2B in both SZ and PBP. Sphingomyelin is a signal transduction system, impacting 

neural tissue and neuronal membrane integrity, suggesting that sphingolipid metabolism 

may play a key role in pathogenesis of neuropsychiatric disorders (60).

G4

Top Genes and Those Identified Repeatedly

The most significant G4 candidate gene (associated with parietal target N2 and P3b) was 

MSRA, a gene that shields against oxidative stress and is associated with SZ susceptibility 

(61-63). Oxidative stress is important in SZ pathophysiology (64), associated with 

hypoactive N-methyl-D-aspartate glutamate receptors (65). The chromosome region 8p23.1, 

in particular SNP D8S542 within MSRA is strongly associated with both SZ and PBP (66, 

67).

Pathways, Process and Metabolic Networks

Developmental neurogenesis, synaptogenesis and cell adhesion was the significant process 

network mediating psychosis risk through parietal P3b and N2 abnormalities. Metabolic 

processes including Lyso-phosphatidylserine, phosphatidic acid and ceramide networks 

regulated P3b and N2 abnormalities in SZ and PBP. Phospholipids constitute cell 

membranes regulating signal transduction and acting as key secondary messengers. 

Abnormal phospholipid distribution occurs in SZ prefrontal cortex (68). Both calcium 

independent and dependent Phospholipase A2 enzymes are abnormal in SZ (69, 70). 

Ceramides are lipid signaling molecules guiding cellular differentiation, proliferation and 

apoptosis altered in both first-episode schizophrenia (71) and depression.

G9

Top Genes and Those Identified Repeatedly

Multiple SNPs were identified in the ME1 gene encoding the cytosolic, NADP-dependent 

malic enzyme involved in metabolic pathways. No direct evidence from prior studies 

suggests ME1's role in SZ and PBP, except for increased postmortem expression in 

unmedicated bipolar brain (72) and, linkage signals in SZ in the vicinity of ME1 (73). The 

PEMT gene encodes for an enzyme synthesizing membrane phospholipids associated with 

SZ (74). This gene helps mediate Arachidonic acid signaling, neuronal differentiation and 

neurite growth (75). The GPC6 gene belongs to the glypicans that promote glutamate 

receptor clustering, receptivity and induce postsynaptic synapse formation (76). SNAP91 

encodes for clathrin coat assembly protein 180, enriched in presynaptic neuronal terminals 

(77). SNAP91 is involved in intracellular signaling (78) associated with the WNT pathway 

(79) and is implicated in PBP (80).
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Pathways, Process and Metabolic Networks

Multiple immune response pathways were associated with psychosis risk mediated by 

frontal, parietal target N1 and standard N1 and P2 ERP abnormalities in probands, 

suggesting immune system's role in psychosis pathogenesis (81), consistent with prior SZ 

studies (82, 83). The classical complement pathway acts on synapse remodeling, pruning, 

neuronal plasticity and neurodevelopmental processes via immune system cells and 

molecules (C3) (84) and implicated in the pathophysiology of neurodegenerative disorders 

(85, 86). This study implicated immune system CR2 and C3 genes; the latter is a SZ risk 

gene (87). C3 is involved in synapse development and regulates neuronal connectivity (88). 

Gene component G9 was associated with cell adhesion regulated by cadherins and synaptic 

contact, relevant to SZ and PBP risk.

Replication analyses were not conducted to validate the current findings; however several 

candidate genes and processes found in this study are previously implicated in SZ and PBP, 

supporting the neurodevelopmental hypothesis of SZ (89) and affective disorders (90). 

Findings from the current study point to converging evidence from pathway-based studies 

that identified similar biological mechanisms including axon guidance (91-93), cell adhesion 

(94, 95), inflammation and immune system (96) associated with SZ risk. A recent BSNIP 

resting fMRI-genetic study (32) using Para-ICA identified similar processes including 

developmental neurogenesis, axon guidance, synaptic and cadherin cell adhesion, immune 

response, nervous system development, ceramide and sphingosine pathways mediating 

aberrant default mode activity in psychosis. These data help confirm the current findings and 

validate the approach undertaken to merge functional and genetic data to dissect the 

complex mechanisms mediating biological phenotypes in these disorders. A complete 

overlap in pathways and processes across diverse phenotypes is unlikely as they probably 

probe different domains of neurophysiology in these disorders.

Strengths and Limitations

Advantages of the present study include our use of high density spatial ERP data in a large 

multi-site psychosis sample. Limitations included unmatched age, sex and sample sizes 

between groups, adjusted for by controlling their effects through partial correlation between 

the SNP and ERP LCs: multi-site effects were accounted for by regressing data collection 

site. Examined ERP phenotypes may be medication-influenced; it was not straightforward to 

control for medication effects because probands were on numerous medications, combined 

with varying chronicity, severity and illness duration. The current findings could not be 

validated due to lack of replication sample. Para-ICA was optimized by selecting nominally 

disease-associated SNPs from univariate analysis. Thus, other genetic netrowks that may be 

weakly associated with the ERP sub-components were overlooked.

Conclusions

As hypothesized, we derived both novel interacting candidate genes and known SZ and PBP 

risk genes mediating ERP abnormalities in psychosis. In general, our data suggests a strong 

multifactorial genetic component comprised of brain-relevant genes playing a key role in 

neural functions, specifically those controlling neuronal circuits and neurodevelopmental 

processes. We identified one genetic cluster enriched with genes for neurogenesis related 

Narayanan et al. Page 9

Am J Psychiatry. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



axon guidance mediating psychosis risk via frontal target P3a abnormalities in probands. 

The second genetic component was enriched with genes involved in developmental 

neurogenesis-synaptogenesis, ceramide and phospholipid networks, influencing P3b 

abnormalities in psychosis. The third genetic component comprised genes coding for the 

complement immune response pathway associated with SZ and PBP risk through standard 

N1, P2, frontal and parietal target N1 abnormalities. All three genetic components mediated 

ERP abnormalities across the psychosis dimension. Cell adhesion mediated by synaptic 

contact and cadherins was the prominent network process driving all the ERP abnormalities 

in psychoses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Spatial topography associated with principal components for target and standard stimulus 

conditions. Two targets (parietal and frontal topography) and one standard component 

(frontal) was derived from principal component analysis of grand average 64 channel data. 

The time window for each component is between 250 msec before to 720 msec after 

stimulus onset.
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Figure 2. 
Event-related potential (ERP) sub-components and associated gene components derived 

from the multivariate parallel independent component analysis. A E6-G1 component pair, B 

E2-G4 and E3-G4 component pairs, C E1-G9 component pair E6 comprised frontal target 

P3a sub-component. E2 and E3 comprised parietal target N2 and P3b subcomponents 

respectively. E1 comprised standard N1 and P2, parietal target N1 and frontal target N1 

subcomponents. Peak amplitude within predefined time periods post-stimulus was used to 

identify the ERP component. The polarity of the ERP waveforms for N1, N2 and P2 
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subcomponents is reversed by independent component analysis. Biological pathways and 

process networks associated with each gene component from enrichment analysis are also 

displayed.
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Figure 3. 
Scatter plots of loading coefficients (LC) for the three groups including schizophrenia (SZ), 

psychotic bipolar disorder (PBP) probands and healthy comparison subjects (HC). The 

overall association between the LCs across three groups is displayed as the linear fit. 

ERP=event-related potential; SNP=single nucleotide polymorphism
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Figure 4. 
Mean loading coefficients (LC) for significantly associated event-related potential (ERP) 

and gene components for schizophrenia (SZ) (N=144), psychotic bipolar probands (PBP) 

(N=210) and healthy comparison subjects (HC) (N=95). Error bars represent standard 

deviation. Post-hoc comparisons included pairwise t-tests between HCs and SZ and PBP 

probands. *** P≪0.000000001 ** p<0.0001 * p<0.05 SNP=single nucleotide 

polymorphism
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Table 1

Association of event-related potential (ERP) with cortical and subcortical structural volumes. 82 brain 

volumes were extracted for N=369 subjects out of the 449 who had ERP data using Freesurfer. The 

association was evaluated using partial correlation adjusting for age, sex and data collection site. ERP 

component E1 was correlated with six regional volumes (after false discovery rate correction (FDR)), while 

E3 was related to 2 regional volumes. ERP components E2 and E6 did not yield significant correlations after 

FDR correction.

Brain Regions (volume) E1

R P

L. caudal middle frontal -0.158 0.00238

L. pars opercularis -0.173 0.00086

L. posterior cingulate -0.153 0.00324

L. insula -0.158 0.00236

R. middle temporal -0.152 0.00351

R. supramarginal -0.148 0.00433

E3

L. entorhinal 0.171 0.00098

L. Hippocampus 0.167 0.00125

L, Left; R, Right
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